Package 'fdrtool'

Title: Estimation of (Local) False Discovery Rates and Higher Criticism
Description: Estimates both tail area-based false discovery rates (Fdr) as well as local false discovery rates (fdr) for a variety of null models (p-values, z-scores, correlation coefficients, t-scores). The proportion of null values and the parameters of the null distribution are adaptively estimated from the data. In addition, the package contains functions for non-parametric density estimation (Grenander estimator), for monotone regression (isotonic regression and antitonic regression with weights), for computing the greatest convex minorant (GCM) and the least concave majorant (LCM), for the half-normal and correlation distributions, and for computing empirical higher criticism (HC) scores and the corresponding decision threshold.
Authors: Bernd Klaus [aut], Korbinian Strimmer [aut, cre]
Maintainer: Korbinian Strimmer <[email protected]>
License: GPL (>= 3)
Version: 1.2.18
Built: 2024-12-19 06:43:39 UTC
Source: CRAN

Help Index


Fit Null Distribution To Censored Data by Maximum Likelihood

Description

censored.fit fits a null distribution to censored data.

fndr.cutoff finds a suitable cutoff point based on the (approximate) false non-discovery rate (FNDR).

Usage

censored.fit(x, cutoff, statistic=c("normal", "correlation", "pvalue", "studentt"))
fndr.cutoff(x, statistic=c("normal", "correlation", "pvalue", "studentt"))

Arguments

x

vector of test statistics.

cutoff

truncation point (this may a single value or a vector).

statistic

type of statistic - normal, correlation, or student t.

Details

As null model truncated normal, truncated student t or a truncated correlation density is assumed. The truncation point is specified by the cutoff parameter. All data points whose absolute value are large than the cutoff point are ignored when fitting the truncated null model via maximum likelihood. The total number of data points is only used to estimate the fraction of null values eta0.

Value

censored.fit returns a matrix whose rows contain the estimated parameters and corresponding errors for each cutoff point.

fndr.cutoff returns a tentative cutoff point.

See Also

fdrtool.

Examples

# load "fdrtool" library
library("fdrtool")

# simulate normal data
sd.true = 2.232
n = 5000
z = rnorm(n, sd=sd.true)
censored.fit(z, c(2,3,5), statistic="normal")


# simulate contaminated mixture of correlation distribution
r = rcor0(700, kappa=10)
u1 = runif(200, min=-1, max=-0.7)
u2 = runif(200, min=0.7, max=1)
rc = c(r, u1, u2)

censored.fit(r, 0.7, statistic="correlation")
censored.fit(rc, 0.7, statistic="correlation")

# pvalue example
data(pvalues)
co = fndr.cutoff(pvalues, statistic="pvalue")
co
censored.fit(pvalues, cutoff=co, statistic="pvalue")

Distribution of the Vanishing Correlation Coefficient (rho=0) and Related Functions

Description

The above functions describe the distribution of the Pearson correlation coefficient r assuming that there is no correlation present (rho = 0).

Note that the distribution has only a single parameter: the degree of freedom kappa, which is equal to the inverse of the variance of the distribution.

The theoretical value of kappa depends both on the sample size n and the number p of considered variables. If a simple correlation coefficient between two variables (p=2) is considered the degree of freedom equals kappa = n-1. However, if a partial correlation coefficient is considered (conditioned on p-2 remaining variables) the degree of freedom is kappa = n-1-(p-2) = n-p+1.

Usage

dcor0(x, kappa, log=FALSE)
pcor0(q, kappa, lower.tail=TRUE, log.p=FALSE)
qcor0(p, kappa, lower.tail=TRUE, log.p=FALSE)
rcor0(n, kappa)

Arguments

x, q

vector of sample correlations

p

vector of probabilities

kappa

the degree of freedom of the distribution (= inverse variance)

n

number of values to generate. If n is a vector, length(n) values will be generated

log, log.p

logical vector; if TRUE, probabilities p are given as log(p)

lower.tail

logical vector; if TRUE (default), probabilities are P[R<=r]P[R <= r], otherwise, P[R>r]P[R > r]

Details

For density and distribution functions as well as a corresponding random number generator of the correlation coefficient for arbitrary non-vanishing correlation rho please refer to the SuppDists package by Bob Wheeler [email protected] (available on CRAN). Note that the parameter N in his dPearson function corresponds to N=kappa+1.

Value

dcor0 gives the density, pcor0 gives the distribution function, qcor0 gives the quantile function, and rcor0 generates random deviates.

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

See Also

cor.

Examples

# load fdrtool library
library("fdrtool")

# distribution of r for various degrees of freedom
x = seq(-1,1,0.01)
y1 = dcor0(x, kappa=7)
y2 = dcor0(x, kappa=15)
plot(x,y2,type="l", xlab="r", ylab="pdf",
  xlim=c(-1,1), ylim=c(0,2))
lines(x,y1)

# simulated data
r = rcor0(1000, kappa=7)
hist(r, freq=FALSE, 
  xlim=c(-1,1), ylim=c(0,5))
lines(x,y1,type="l")

# distribution function
pcor0(-0.2, kappa=15)

Estimate (Local) False Discovery Rates For Diverse Test Statistics

Description

fdrtool takes a vector of z-scores (or of correlations, p-values, or t-statistics), and estimates for each case both the tail area-based Fdr as well as the density-based fdr (=q-value resp. local false discovery rate). The parameters of the null distribution are estimated adaptively from the data (except for the case of p-values where this is not necessary).

Usage

fdrtool(x, statistic=c("normal", "correlation", "pvalue"),
  plot=TRUE, color.figure=TRUE, verbose=TRUE, 
  cutoff.method=c("fndr", "pct0", "locfdr"),
  pct0=0.75)

Arguments

x

vector of the observed test statistics.

statistic

one of "normal" (default), "correlation", "pvalue". This species the null model.

plot

plot a figure with estimated densities, distribution functions, and (local) false discovery rates.

verbose

print out status messages.

cutoff.method

one of "fndr" (default), "pct0", "locfdr".

pct0

fraction of data used for fitting null model - only if cutoff.method="pct0"

color.figure

determines whether a color figure or a black and white figure is produced (defaults to "TRUE", i.e. to color figure).

Details

The algorithm implemented in this function proceeds as follows:

  1. A suitable cutoff point is determined. If cutoff.method is "fndr" then first an approximate null model is fitted and subsequently a cutoff point is sought with false nondiscovery rate as small as possible (see fndr.cutoff). If cutoff.method is "pct0" then a specified quantile (default value: 0.75) of the data is used as the cutoff point. If cutoff.method equals "locfdr" then the heuristic of the "locfdr" package (version 1.1-6) is employed to find the cutoff (z-scores and correlations only).

  2. The parameters of the null model are estimated from the data using censored.fit. This results in estimates for scale parameters und and proportion of null values (eta0).

  3. Subsequently the corresponding p-values are computed, and a modified grenander algorithm is employed to obtain the overall density and distribution function (note that this respects the estimated eta0).

  4. Finally, q-values and local fdr values are computed for each case.

The assumed null models all have (except for p-values) one free scale parameter. Note that the z-scores and the correlations are assumed to have zero mean.

Value

A list with the following components:

pval

a vector with p-values for each case.

qval

a vector with q-values (Fdr) for each case.

lfdr

a vector with local fdr values for each case.

statistic

the specified type of null model.

param

a vector containing the estimated parameters (the null proportion eta0 and the free parameter of the null model).

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

References

Strimmer, K. (2008a). A unified approach to false discovery rate estimation. BMC Bioinformatics 9: 303. <DOI:10.1186/1471-2105-9-303>

Strimmer, K. (2008b). fdrtool: a versatile R package for estimating local and tail area- based false discovery rates. Bioinformatics 24: 1461-1462. <DOI:10.1093/bioinformatics/btn209>

See Also

pval.estimate.eta0, censored.fit.

Examples

# load "fdrtool" library and p-values
library("fdrtool")
data(pvalues)


# estimate fdr and Fdr from p-values

data(pvalues)
fdr = fdrtool(pvalues, statistic="pvalue")
fdr$qval # estimated Fdr values 
fdr$lfdr # estimated local fdr 

# the same but with black and white figure  
fdr = fdrtool(pvalues, statistic="pvalue", color.figure=FALSE)


# estimate fdr and Fdr from z-scores

sd.true = 2.232
n = 500
z = rnorm(n, sd=sd.true)
z = c(z, runif(30, 5, 10)) # add some contamination
fdr = fdrtool(z)

# you may change some parameters of the underlying functions
fdr = fdrtool(z, cutoff.method="pct0", pct0=0.9)

Greatest Convex Minorant and Least Concave Majorant

Description

gcmlcm computes the greatest convex minorant (GCM) or the least concave majorant (LCM) of a piece-wise linear function.

Usage

gcmlcm(x, y, type=c("gcm", "lcm"))

Arguments

x, y

coordinate vectors of the piece-wise linear function. Note that the x values need to be unique and be arranged in sorted order.

type

specifies whether to compute the greatest convex minorant (type="gcm", the default) or the least concave majorant (type="lcm").

Details

The GCM is obtained by isotonic regression of the raw slopes, whereas the LCM is obtained by antitonic regression. See Robertson et al. (1988).

Value

A list with the following entries:

x.knots

the x values belonging to the knots of the LCM/GCM curve

y.knots

the corresponding y values

slope.knots

the slopes of the corresponding line segments

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

References

Robertson, T., F. T. Wright, and R. L. Dykstra. 1988. Order restricted statistical inference. John Wiley and Sons.

See Also

monoreg.

Examples

# load "fdrtool" library
library("fdrtool")

# generate some data
x = 1:20
y = rexp(20)
plot(x, y, type="l", lty=3, main="GCM (red) and LCM (blue)")
points(x, y)

# greatest convex minorant (red)
gg = gcmlcm(x,y)
lines(gg$x.knots, gg$y.knots, col=2, lwd=2)

# least concave majorant (blue)
ll = gcmlcm(x,y, type="lcm")
lines(ll$x.knots, ll$y.knots, col=4, lwd=2)

Grenander Estimator of a Decreasing or Increasing Density

Description

The function grenander computes the Grenander estimator of a one-dimensional decreasing or increasing density.

Usage

grenander(F, type=c("decreasing", "increasing"))

Arguments

F

an ecdf containing the empirical cumulative density.

type

specifies whether the distribution is decreasing (the default) or increasing.

Details

The Grenander (1956) density estimator is given by the slopes of the least concave majorant (LCM) of the empirical distribution function (ECDF). It is a decreasing piecewise-constant function and can be shown to be the non-parametric maximum likelihood estimate (NPMLE) under the assumption of a decreasing density (note that the ECDF is the NPMLE without this assumption). Similarly, an increasing density function is obtained by using the greatest convex minorant (GCM) of the ECDF.

Value

A list of class grenander with the following components:

F

the empirical distribution function specified as input.

x.knots

x locations of the knots of the least concave majorant of the ECDF.

F.knots

the corresponding y locations of the least concave majorant of the ECDF.

f.knots

the corresponding slopes (=density).

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

References

Grenander, U. (1956). On the theory of mortality measurement, Part II. Skan. Aktuarietidskr, 39, 125–153.

See Also

ecdf, gcmlcm, density.

Examples

# load "fdrtool" library
library("fdrtool")

# samples from random exponential variable 
z = rexp(30,1)
e = ecdf(z)
g = grenander(e)
g

# plot ecdf, concave cdf, and Grenander density estimator (on log scale)
plot(g, log="y") 

# for comparison the kernel density estimate
plot(density(z)) 

# area under the Grenander density estimator 
sum( g$f.knots[-length(g$f.knots)]*diff(g$x.knots) )

The Half-Normal Distribution

Description

Density, distribution function, quantile function and random generation for the half-normal distribution with parameter theta.

Usage

dhalfnorm(x, theta=sqrt(pi/2), log = FALSE)
phalfnorm(q, theta=sqrt(pi/2), lower.tail = TRUE, log.p = FALSE)
qhalfnorm(p, theta=sqrt(pi/2), lower.tail = TRUE, log.p = FALSE)
rhalfnorm(n, theta=sqrt(pi/2))
sd2theta(sd)
theta2sd(theta)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

theta

parameter of half-normal distribution.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

sd

standard deviation of the zero-mean normal distribution that corresponds to the half-normal with parameter theta.

Details

x = abs(z) follows a half-normal distribution with if z is a normal variate with zero mean. The half-normal distribution has density

f(x)=2θπex2θ2/πf(x) = \frac{2 \theta}{\pi} e^{-x^2 \theta^2/\pi}

It has mean E(x)=1θE(x) = \frac{1}{\theta} and variance Var(x)=π22θ2Var(x) = \frac{\pi-2}{2 \theta^2}.

The parameter θ\theta is related to the standard deviation σ\sigma of the corresponding zero-mean normal distribution by the equation θ=π/2/σ\theta = \sqrt{\pi/2}/\sigma.

If θ\theta is not specified in the above functions it assumes the default values of π/2\sqrt{\pi/2}, corresponding to σ=1\sigma=1.

Value

dhalfnorm gives the density, phalfnorm gives the distribution function, qhalfnorm gives the quantile function, and rhalfnorm generates random deviates. sd2theta computes a theta parameter. theta2sd computes a sd parameter.

See Also

Normal.

Examples

# load "fdrtool" library
library("fdrtool")


## density of half-normal compared with a corresponding normal
par(mfrow=c(1,2))

sd.norm = 0.64
x  = seq(0, 5, 0.01)
x2 = seq(-5, 5, 0.01)
plot(x, dhalfnorm(x, sd2theta(sd.norm)), type="l", xlim=c(-5, 5), lwd=2,
   main="Probability Density", ylab="pdf(x)")
lines(x2, dnorm(x2, sd=sd.norm), col=8 )


plot(x, phalfnorm(x, sd2theta(sd.norm)), type="l", xlim=c(-5, 5),  lwd=2,
   main="Distribution Function", ylab="cdf(x)")
lines(x2, pnorm(x2, sd=sd.norm), col=8 )

legend("topleft", 
c("half-normal", "normal"), lwd=c(2,1),
col=c(1, 8), bty="n", cex=1.0)

par(mfrow=c(1,1))


## distribution function

integrate(dhalfnorm, 0, 1.4, theta = 1.234)
phalfnorm(1.4, theta = 1.234)

## quantile function
qhalfnorm(-1) # NaN
qhalfnorm(0)
qhalfnorm(.5)
qhalfnorm(1)
qhalfnorm(2) # NaN

## random numbers
theta = 0.72
hz = rhalfnorm(10000, theta)
hist(hz, freq=FALSE)
lines(x, dhalfnorm(x, theta))

mean(hz) 
1/theta  # theoretical mean

var(hz)
(pi-2)/(2*theta*theta) # theoretical variance


## relationship with two-sided normal p-values
z = rnorm(1000)

# two-sided p-values
pvl = 1- phalfnorm(abs(z))
pvl2 = 2 - 2*pnorm(abs(z)) 
sum(pvl-pvl2)^2 # equivalent
hist(pvl2, freq=FALSE)  # uniform distribution

# back to half-normal scores
hz = qhalfnorm(1-pvl)
hist(hz, freq=FALSE)
lines(x, dhalfnorm(x))

Compute Empirical Higher Criticism Scores and Corresponding Decision Threshold From p-Values

Description

hc.score computes the empirical higher criticism (HC) scores from p-values.

hc.thresh determines the HC decision threshold by searching for the p-value with the maximum HC score.

Usage

hc.score(pval)
hc.thresh(pval, alpha0=1, plot=TRUE)

Arguments

pval

vector of p-values.

alpha0

look only at a fraction alpha0 of the p-values (default: 1, i.e. all p-values).

plot

show plot with HC decision threshold.

Details

Higher Criticism (HC) provides an alternative means to determine decision thresholds for signal identification, especially if the signal is rare and weak.

See Donoho and Jin (2008) for details of this approach and Klaus and Strimmer (2012) for a review and connections with FDR methdology.

Value

hc.score returns a vector with the HC score corresponding to each p-value.

hc.thresh returns the p-value corresponding to the maximum HC score.

Author(s)

Bernd Klaus and Korbinian Strimmer (https://strimmerlab.github.io).

References

Donoho, D. and J. Jin. (2008). Higher criticism thresholding: optimal feature selection when useful features are rare and weak. Proc. Natl. Acad. Sci. USA 105:14790-15795.

Klaus, B., and K. Strimmer (2013). Signal identification for rare and weak features: higher criticism or false discovery rates? Biostatistics 14: 129-143. <DOI:10.1093/biostatistics/kxs030>

See Also

fdrtool.

Examples

# load "fdrtool" library
library("fdrtool")

# some p-values
data(pvalues)

# compute HC scores
hc.score(pvalues)

# determine HC threshold
hc.thresh(pvalues)

Monotone Regression: Isotonic Regression and Antitonic Regression

Description

monoreg performs monotone regression (either isotonic or antitonic) with weights.

Usage

monoreg(x, y=NULL, w=rep(1, length(x)), type=c("isotonic", "antitonic"))

Arguments

x, y

coordinate vectors of the regression points. Alternatively a single “plotting” structure can be specified: see xy.coords.

w

data weights (default values: 1).

type

fit a monotonely increasing ("isotonic") or monotonely decreasing ("antitonic") function.

Details

monoreg is similar to isoreg, with the addition that monoreg accepts weights.

If several identical x values are given as input, the corresponding y values and the weights w are automatically merged, and a warning is issued.

The plot.monoreg function optionally plots the cumulative sum diagram with the greatest convex minorant (isotonic regression) or the least concave majorant (antitonic regression), see the examples below.

Value

A list with the following entries:

x

the sorted and unique x values

y

the corresponding y values

w

the corresponding weights

yf

the fitted y values

type

the type of monotone regression ("isotonic" or "antitonic"

call

the function call

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

Part of this function is C code that has been ported from R code originally written by Kaspar Rufibach.

References

Robertson, T., F. T. Wright, and R. L. Dykstra. 1988. Order restricted statistical inference. John Wiley and Sons.

See Also

isoreg.

Examples

# load "fdrtool" library
library("fdrtool")


# an example with weights

# Example 1.1.1. (dental study) from Robertson, Wright and Dykstra (1988)
age = c(14, 14, 8, 8, 8, 10, 10, 10, 12, 12, 12)
size = c(23.5, 25, 21, 23.5, 23, 24, 21, 25, 21.5, 22, 19)

mr = monoreg(age, size)

# sorted x values
mr$x # 8 10 12 14
# weights and merged y values
mr$w  # 3 3 3 2
mr$y #  22.50000 23.33333 20.83333 24.25000
# fitted y values
mr$yf # 22.22222 22.22222 22.22222 24.25000
fitted(mr)
residuals(mr)

plot(mr, ylim=c(18, 26))  # this shows the averaged data points
points(age, size, pch=2)  # add original data points


###

y = c(1,0,1,0,0,1,0,1,1,0,1,0)
x = 1:length(y)
mr = monoreg(y)

# plot with greatest convex minorant
plot(mr, plot.type="row.wise")  

# this is the same
mr = monoreg(x,y)
plot(mr)

# antitonic regression and least concave majorant
mr = monoreg(-y, type="a")
plot(mr, plot.type="row.wise")  

# the fit yf is independent of the location of x and y
plot(monoreg(x + runif(1, -1000, 1000), 
             y +runif(1, -1000, 1000)) )

###

y = c(0,0,2/4,1/5,2/4,1/2,4/5,5/8,7/11,10/11)
x = c(5,9,13,18,22,24,29,109,120,131)

mr = monoreg(x,y)
plot(mr, plot.type="row.wise")

# the fit (yf) only depends on the ordering of x
monoreg(1:length(y), y)$yf 
monoreg(x, y)$yf

Estimate the Proportion of Null p-Values

Description

pval.estimate.eta0 estimates the proportion eta0 of null p-values in a given vector of p-values.

Usage

pval.estimate.eta0(p, method=c("smoother", "bootstrap", "conservative",
   "adaptive", "quantile"), lambda=seq(0,0.9,0.05), 
   diagnostic.plot=TRUE, q=0.1)

Arguments

p

vector of p-values

method

algorithm used to estimate the proportion of null p-values. Available options are "conservative" , "adaptive", "bootstrap", quantile, and "smoother" (default).

lambda

optional tuning parameter vector needed for "bootstrap" and "smoothing" methods (defaults to seq(0,0.9,0.05)) - see Storey (2002) and Storey and Tibshirani (2003).

diagnostic.plot

if TRUE (the default) the histogram of the p-values together with the estimate of eta0 null line is plotted. This is useful to visually check the fit of the estimated proportion of null p-values.

q

quantile used for estimating eta0 - only if method="quantile"

Details

This quantity eta0, i.e. the proportion eta0 of null p-values in a given vector of p-values, is an important parameter when controlling the false discovery rate (FDR). A conservative choice is eta0 = 1 but a choice closer to the true value will increase efficiency and power - see Benjamini and Hochberg (1995, 2000) and Storey (2002) for details.

The function pval.estimate.eta0 provides five algorithms: the "conservative" method always returns eta0 = 1 (Benjamini and Hochberg, 1995), "adaptive" uses the approach suggested in Benjamini and Hochberg (2000), "bootstrap" employs the method from Storey (2002), "smoother" uses the smoothing spline approach in Storey and Tibshirani (2003), and "quantile" is a simplified version of "smoother".

Value

The estimated proportion eta0 of null p-values.

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io).

Adapted in part from code by Y. Benjamini and J.D. Storey.

References

"conservative" procedure: Benjamini, Y., and Y. Hochberg (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. B, 57, 289–300.

"adaptive" procedure: Benjamini, Y., and Y. Hochberg (2000) The adaptive control of the false discovery rate in multiple hypotheses testing with independent statistics. J. Behav. Educ. Statist., 25, 60–83.

"bootstrap" procedure: Storey, J. D. (2002) A direct approach to false discovery rates. J. Roy. Statist. Soc. B., 64, 479–498.

"smoother" procedure: Storey, J. D., and R. Tibshirani (2003) Statistical significance for genome-wide experiments. Proc. Nat. Acad. Sci. USA, 100, 9440-9445.

"quantile" procedure: similar to smoother, except that the lower q quantile of all eta0 computed in dependence of lambda is taken as overall estimate of eta0.

See Also

fdrtool.

Examples

# load "fdrtool" library and p-values
library("fdrtool")
data(pvalues)


# Proportion of null p-values for different methods
pval.estimate.eta0(pvalues, method="conservative")
pval.estimate.eta0(pvalues, method="adaptive")
pval.estimate.eta0(pvalues, method="bootstrap")
pval.estimate.eta0(pvalues, method="smoother")
pval.estimate.eta0(pvalues, method="quantile")

Example p-Values

Description

This data set contains 4,289 p-values. These data are used to illustrate the functionality of the functions fdrtool and pval.estimate.eta0.

Usage

data(pvalues)

Format

pvalues is a vector with 4,289 p-values.

Examples

# load fdrtool library
library("fdrtool")

# load data set
data(pvalues)

# estimate density and distribution function, 
# and compute corresponding (local) false discovery rates
fdrtool(pvalues, statistic="pvalue")