Title: | Joint Clustering and Alignment of Functional Data |
---|---|
Description: | Implementations of the k-means, hierarchical agglomerative and DBSCAN clustering methods for functional data which allows for jointly aligning and clustering curves. It supports functional data defined on one-dimensional domains but possibly evaluating in multivariate codomains. It supports functional data defined in arrays but also via the 'fd' and 'funData' classes for functional data defined in the 'fda' and 'funData' packages respectively. It currently supports shift, dilation and affine warping functions for functional data defined on the real line and uses the SRSF framework to handle boundary-preserving warping for functional data defined on a specific interval. Main reference for the k-means algorithm: Sangalli L.M., Secchi P., Vantini S., Vitelli V. (2010) "k-mean alignment for curve clustering" <doi:10.1016/j.csda.2009.12.008>. Main reference for the SRSF framework: Tucker, J. D., Wu, W., & Srivastava, A. (2013) "Generative models for functional data using phase and amplitude separation" <doi:10.1016/j.csda.2012.12.001>. |
Authors: | Aymeric Stamm [aut, cre] , Laura Sangalli [ctb], Piercesare Secchi [ctb], Simone Vantini [ctb], Valeria Vitelli [ctb], Alessandro Zito [ctb] |
Maintainer: | Aymeric Stamm <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.3.0 |
Built: | 2024-12-28 06:42:24 UTC |
Source: | CRAN |
caps
object with
ggplot2This function creates a visualization of the result of the k-mean alignment algorithm and invisibly returns the corresponding ggplot2::ggplot object which enable further customization of the plot. The user can choose to visualize either the amplitude information data in which case original and aligned curves are shown or the phase information data in which case the estimated warping functions are shown.
## S3 method for class 'caps' autoplot(object, type = c("amplitude", "phase"), ...)
## S3 method for class 'caps' autoplot(object, type = c("amplitude", "phase"), ...)
object |
An object of class |
type |
A string specifying the type of information to display. Choices
are |
... |
Not used. |
A ggplot2::ggplot object invisibly.
ggplot2::autoplot(sim30_caps, type = "amplitude") ggplot2::autoplot(sim30_caps, type = "phase")
ggplot2::autoplot(sim30_caps, type = "amplitude") ggplot2::autoplot(sim30_caps, type = "phase")
This is an S3 method implementation of the ggplot2::autoplot()
generic
for objects of class mcaps
to visualize the performances of multiple
caps
objects applied on the same data sets either in terms of WSS or in
terms of silhouette values.
## S3 method for class 'mcaps' autoplot( object, validation_criterion = c("wss", "silhouette"), what = c("mean", "distribution"), ... )
## S3 method for class 'mcaps' autoplot( object, validation_criterion = c("wss", "silhouette"), what = c("mean", "distribution"), ... )
object |
An object of class |
validation_criterion |
A string specifying the validation criterion to
be used for the comparison. Choices are |
what |
A string specifying the kind of information to display about the
validation criterion. Choices are |
... |
Other arguments passed to specific methods. |
An object of class ggplot2::ggplot
.
p <- ggplot2::autoplot(sim30_mcaps)
p <- ggplot2::autoplot(sim30_mcaps)
The k-means algorithm with joint amplitude and phase separation produces a
number of outputs. This class is meant to encapsulate them into a single
object for providing dedicated S3
methods for e.g. plotting, summarizing,
etc. The name of the class stems from Clustering with Amplitude and
Phase Separation.
as_caps(x) is_caps(x)
as_caps(x) is_caps(x)
x |
A list coercible into an object of class |
An object of class caps
is a list with the following components:
original_curves
: A numeric matrix of shape
storing a sample with the
-dimensional original curves
observed on grids of size
.
original_grids
: A numeric matrix of size storing the
grids of size
on which original curves are evaluated;
aligned_grids
: A numeric matrix of size storing the
grids of size
on which original curves must be evaluated to be
aligned;
center_curves
: A numeric matrix of shape
storing the
centers which are
-dimensional curves observed on
a grid of size
;
center_grids
: A numeric matrix of size storing the grids
of size
on which center curves are evaluated;
warpings
: A numeric matrix of shape storing the
estimated warping functions for each of the
curves evaluated on the
within-cluster common
grids
of size ;
n_clusters
: An integer value storing the number of clusters;
memberships
: An integer vector of length storing the cluster ID
which each curve belongs to;
distances_to_center
: A numeric vector of length storing the
distance of each curve to the center of its cluster;
silhouettes
: A numeric vector of length storing the silhouette
values of each observation;
amplitude_variation
: A numeric value storing the fraction of total
variation explained by amplitude variability.
total_variation
: A numeric value storing the amount of total variation.
n_iterations
: An integer value storing the number of iterations
performed until convergence;
call_name
: A string storing the name of the function that was used to
produce the k-means alignment results;
call_args
: A list containing the exact arguments that were passed to
the function call_name
that produced this output.
The function as_caps()
returns an object of class caps
. The
function is_caps()
returns a boolean which evaluates to TRUE
is the
input object is of class caps
.
as_caps(sim30_caps) is_caps(sim30_caps)
as_caps(sim30_caps) is_caps(sim30_caps)
This function searches for clusters in the input data set using different
strategies and generates an object of class mcaps
which stores multiple
objects of class caps
. This is a helper function to facilitate comparison
of clustering methods and choice of an optimal one.
compare_caps( x, y, n_clusters = 1:5, metric = c("l2", "pearson"), clustering_method = c("kmeans", "hclust-complete", "hclust-average", "hclust-single", "dbscan"), warping_class = c("affine", "dilation", "none", "shift", "srsf"), centroid_type = c("mean", "medoid", "median", "lowess", "poly"), cluster_on_phase = FALSE )
compare_caps( x, y, n_clusters = 1:5, metric = c("l2", "pearson"), clustering_method = c("kmeans", "hclust-complete", "hclust-average", "hclust-single", "dbscan"), warping_class = c("affine", "dilation", "none", "shift", "srsf"), centroid_type = c("mean", "medoid", "median", "lowess", "poly"), cluster_on_phase = FALSE )
x |
A numeric vector of length |
y |
Either a numeric matrix of shape |
n_clusters |
An integer vector specifying a set of clustering partitions
to create. Defaults to |
metric |
A string specifying the metric used to compare curves. Choices
are |
clustering_method |
A character vector specifying one or more clustering
methods to be fit. Choices are |
warping_class |
A character vector specifying one or more classes of
warping functions to use for curve alignment. Choices are |
centroid_type |
A character vector specifying one or more ways to
compute centroids. Choices are |
cluster_on_phase |
A boolean specifying whether clustering should be
based on phase variation or amplitude variation. Defaults to |
An object of class mcaps
which is a tibble::tibble
storing the
objects of class caps
in correspondence of each combination of possible
choices from the input arguments.
#---------------------------------- # Compare k-means results with k = 1, 2, 3, 4, 5 using mean centroid and # various warping classes. ## Not run: sim30_mcaps <- compare_caps( x = simulated30_sub$x, y = simulated30_sub$y, warping_class = c("none", "shift", "dilation", "affine"), clustering_method = "kmeans", centroid_type = "mean" ) ## End(Not run) #---------------------------------- # Then visualize the results # Either with ggplot2 via ggplot2::autoplot(sim30_mcaps) # or using graphics::plot() # You can visualize the WSS values: plot(sim30_mcaps, validation_criterion = "wss", what = "mean") plot(sim30_mcaps, validation_criterion = "wss", what = "distribution") # Or the average silhouette values: plot(sim30_mcaps, validation_criterion = "silhouette", what = "mean") plot(sim30_mcaps, validation_criterion = "silhouette", what = "distribution")
#---------------------------------- # Compare k-means results with k = 1, 2, 3, 4, 5 using mean centroid and # various warping classes. ## Not run: sim30_mcaps <- compare_caps( x = simulated30_sub$x, y = simulated30_sub$y, warping_class = c("none", "shift", "dilation", "affine"), clustering_method = "kmeans", centroid_type = "mean" ) ## End(Not run) #---------------------------------- # Then visualize the results # Either with ggplot2 via ggplot2::autoplot(sim30_mcaps) # or using graphics::plot() # You can visualize the WSS values: plot(sim30_mcaps, validation_criterion = "wss", what = "mean") plot(sim30_mcaps, validation_criterion = "wss", what = "distribution") # Or the average silhouette values: plot(sim30_mcaps, validation_criterion = "silhouette", what = "mean") plot(sim30_mcaps, validation_criterion = "silhouette", what = "distribution")
caps
objectThis function plots the values of the distance to center and silhouette for each observation. Observations are ordered within cluster by decreasing value of silhouette.
diagnostic_plot(x)
diagnostic_plot(x)
x |
An object of class |
An object of class ggplot2::ggplot.
diagnostic_plot(sim30_caps)
diagnostic_plot(sim30_caps)
This function extends DBSCAN
to functional data. It includes the
possibility to separate amplitude and phase information.
fdadbscan( x, y, warping_class = c("affine", "dilation", "none", "shift", "srsf"), centroid_type = "mean", metric = c("l2", "pearson"), cluster_on_phase = FALSE, use_verbose = TRUE, warping_options = c(0.15, 0.15), maximum_number_of_iterations = 100L, number_of_threads = 1L, parallel_method = 0L, distance_relative_tolerance = 0.001, use_fence = FALSE, check_total_dissimilarity = TRUE, compute_overall_center = FALSE )
fdadbscan( x, y, warping_class = c("affine", "dilation", "none", "shift", "srsf"), centroid_type = "mean", metric = c("l2", "pearson"), cluster_on_phase = FALSE, use_verbose = TRUE, warping_options = c(0.15, 0.15), maximum_number_of_iterations = 100L, number_of_threads = 1L, parallel_method = 0L, distance_relative_tolerance = 0.001, use_fence = FALSE, check_total_dissimilarity = TRUE, compute_overall_center = FALSE )
x |
A numeric vector of length |
y |
Either a numeric matrix of shape |
warping_class |
A string specifying the warping class Choices are
|
centroid_type |
A string specifying the type of centroid to compute.
Choices are |
metric |
A string specifying the metric used to compare curves. Choices
are |
cluster_on_phase |
A boolean specifying whether clustering should be
based on phase variation or amplitude variation. Defaults to |
use_verbose |
A boolean specifying whether the algorithm should output
details of the steps to the console. Defaults to |
warping_options |
A numeric vector supplied as a helper to the chosen
|
maximum_number_of_iterations |
An integer specifying the maximum number
of iterations before the algorithm stops if no other convergence criterion
was met. Defaults to |
number_of_threads |
An integer value specifying the number of threads
used for parallelization. Defaults to |
parallel_method |
An integer value specifying the type of desired
parallelization for template computation, If |
distance_relative_tolerance |
A numeric value specifying a relative
tolerance on the distance update between two iterations. If all
observations have not sufficiently improved in that sense, the algorithm
stops. Defaults to |
use_fence |
A boolean specifying whether the fence algorithm should be
used to robustify the algorithm against outliers. Defaults to |
check_total_dissimilarity |
A boolean specifying whether an additional
stopping criterion based on improvement of the total dissimilarity should
be used. Defaults to |
compute_overall_center |
A boolean specifying whether the overall center
should be also computed. Defaults to |
An object of class caps
.
#---------------------------------- # Extracts 15 out of the 30 simulated curves in `simulated30_sub` data set idx <- c(1:5, 11:15) x <- simulated30_sub$x[idx, ] y <- simulated30_sub$y[idx, , ] #---------------------------------- # Runs an HAC with affine alignment, searching for 2 clusters out <- fdadbscan( x = x, y = y, warping_class = "affine" ) #---------------------------------- # Then visualize the results # Either with ggplot2 via ggplot2::autoplot(out) # or using graphics::plot() # You can visualize the original and aligned curves with: plot(out, type = "amplitude") # Or the estimated warping functions with: plot(out, type = "phase")
#---------------------------------- # Extracts 15 out of the 30 simulated curves in `simulated30_sub` data set idx <- c(1:5, 11:15) x <- simulated30_sub$x[idx, ] y <- simulated30_sub$y[idx, , ] #---------------------------------- # Runs an HAC with affine alignment, searching for 2 clusters out <- fdadbscan( x = x, y = y, warping_class = "affine" ) #---------------------------------- # Then visualize the results # Either with ggplot2 via ggplot2::autoplot(out) # or using graphics::plot() # You can visualize the original and aligned curves with: plot(out, type = "amplitude") # Or the estimated warping functions with: plot(out, type = "phase")
This function computes the matrix of pairwise distances between curves a functional data sample. This can be achieved with or without phase and amplitude separation, which can be done using a variety of warping classes.
fdadist( x, y = NULL, warping_class = c("affine", "dilation", "none", "shift", "srsf"), metric = c("l2", "pearson"), cluster_on_phase = FALSE, labels = NULL )
fdadist( x, y = NULL, warping_class = c("affine", "dilation", "none", "shift", "srsf"), metric = c("l2", "pearson"), cluster_on_phase = FALSE, labels = NULL )
x |
A numeric vector of length |
y |
Either a numeric matrix of shape |
warping_class |
A string specifying the warping class Choices are
|
metric |
A string specifying the metric used to compare curves. Choices
are |
cluster_on_phase |
A boolean specifying whether clustering should be
based on phase variation or amplitude variation. Defaults to |
labels |
A character vector specifying curve labels. Defaults to |
A stats::dist object storing the distance matrix between the input
curves using the metric specified through the argument metric
and the
warping class specified by the argument warping_class
.
idx <- c(1:5, 11:15, 21:25) D <- fdadist(simulated30_sub$x[idx, ], simulated30_sub$y[idx, , ])
idx <- c(1:5, 11:15, 21:25) D <- fdadist(simulated30_sub$x[idx, ], simulated30_sub$y[idx, , ])
This function extends hierarchical agglomerative clustering to functional data. It includes the possibility to separate amplitude and phase information.
fdahclust( x, y = NULL, n_clusters = 1L, warping_class = c("affine", "dilation", "none", "shift", "srsf"), centroid_type = "mean", metric = c("l2", "pearson"), linkage_criterion = c("complete", "average", "single", "ward.D2"), cluster_on_phase = FALSE, use_verbose = TRUE, warping_options = c(0.15, 0.15), maximum_number_of_iterations = 100L, number_of_threads = 1L, parallel_method = 0L, distance_relative_tolerance = 0.001, use_fence = FALSE, check_total_dissimilarity = TRUE, compute_overall_center = FALSE )
fdahclust( x, y = NULL, n_clusters = 1L, warping_class = c("affine", "dilation", "none", "shift", "srsf"), centroid_type = "mean", metric = c("l2", "pearson"), linkage_criterion = c("complete", "average", "single", "ward.D2"), cluster_on_phase = FALSE, use_verbose = TRUE, warping_options = c(0.15, 0.15), maximum_number_of_iterations = 100L, number_of_threads = 1L, parallel_method = 0L, distance_relative_tolerance = 0.001, use_fence = FALSE, check_total_dissimilarity = TRUE, compute_overall_center = FALSE )
x |
A numeric vector of length |
y |
Either a numeric matrix of shape |
n_clusters |
An integer value specifying the number of clusters.
Defaults to |
warping_class |
A string specifying the warping class Choices are
|
centroid_type |
A string specifying the type of centroid to compute.
Choices are |
metric |
A string specifying the metric used to compare curves. Choices
are |
linkage_criterion |
A string specifying which linkage criterion should
be used to compute distances between sets of curves. Choices are
|
cluster_on_phase |
A boolean specifying whether clustering should be
based on phase variation or amplitude variation. Defaults to |
use_verbose |
A boolean specifying whether the algorithm should output
details of the steps to the console. Defaults to |
warping_options |
A numeric vector supplied as a helper to the chosen
|
maximum_number_of_iterations |
An integer specifying the maximum number
of iterations before the algorithm stops if no other convergence criterion
was met. Defaults to |
number_of_threads |
An integer value specifying the number of threads
used for parallelization. Defaults to |
parallel_method |
An integer value specifying the type of desired
parallelization for template computation, If |
distance_relative_tolerance |
A numeric value specifying a relative
tolerance on the distance update between two iterations. If all
observations have not sufficiently improved in that sense, the algorithm
stops. Defaults to |
use_fence |
A boolean specifying whether the fence algorithm should be
used to robustify the algorithm against outliers. Defaults to |
check_total_dissimilarity |
A boolean specifying whether an additional
stopping criterion based on improvement of the total dissimilarity should
be used. Defaults to |
compute_overall_center |
A boolean specifying whether the overall center
should be also computed. Defaults to |
The number of clusters is required as input because, with functional data, once hierarchical clustering is performed, curves within clusters need to be aligned to their corresponding centroid.
An object of class caps
.
#---------------------------------- # Extracts 15 out of the 30 simulated curves in `simulated30_sub` data set idx <- c(1:5, 11:15, 21:25) x <- simulated30_sub$x[idx, ] y <- simulated30_sub$y[idx, , ] #---------------------------------- # Runs an HAC with affine alignment, searching for 2 clusters out <- fdahclust( x = x, y = y, n_clusters = 2, warping_class = "affine" ) #---------------------------------- # Then visualize the results # Either with ggplot2 via ggplot2::autoplot(out) # or using graphics::plot() # You can visualize the original and aligned curves with: plot(out, type = "amplitude") # Or the estimated warping functions with: plot(out, type = "phase")
#---------------------------------- # Extracts 15 out of the 30 simulated curves in `simulated30_sub` data set idx <- c(1:5, 11:15, 21:25) x <- simulated30_sub$x[idx, ] y <- simulated30_sub$y[idx, , ] #---------------------------------- # Runs an HAC with affine alignment, searching for 2 clusters out <- fdahclust( x = x, y = y, n_clusters = 2, warping_class = "affine" ) #---------------------------------- # Then visualize the results # Either with ggplot2 via ggplot2::autoplot(out) # or using graphics::plot() # You can visualize the original and aligned curves with: plot(out, type = "amplitude") # Or the estimated warping functions with: plot(out, type = "phase")
This function provides implementations of the k-means clustering algorithm for functional data, with possible joint amplitude and phase separation. A number of warping class are implemented to achieve this separation.
fdakmeans( x, y = NULL, n_clusters = 1L, seeds = NULL, seeding_strategy = c("kmeans++", "exhaustive-kmeans++", "exhaustive", "hclust"), warping_class = c("affine", "dilation", "none", "shift", "srsf"), centroid_type = "mean", metric = c("l2", "pearson"), cluster_on_phase = FALSE, use_verbose = TRUE, warping_options = c(0.15, 0.15), maximum_number_of_iterations = 100L, number_of_threads = 1L, parallel_method = 0L, distance_relative_tolerance = 0.001, use_fence = FALSE, check_total_dissimilarity = TRUE, compute_overall_center = FALSE, add_silhouettes = TRUE )
fdakmeans( x, y = NULL, n_clusters = 1L, seeds = NULL, seeding_strategy = c("kmeans++", "exhaustive-kmeans++", "exhaustive", "hclust"), warping_class = c("affine", "dilation", "none", "shift", "srsf"), centroid_type = "mean", metric = c("l2", "pearson"), cluster_on_phase = FALSE, use_verbose = TRUE, warping_options = c(0.15, 0.15), maximum_number_of_iterations = 100L, number_of_threads = 1L, parallel_method = 0L, distance_relative_tolerance = 0.001, use_fence = FALSE, check_total_dissimilarity = TRUE, compute_overall_center = FALSE, add_silhouettes = TRUE )
x |
A numeric vector of length |
y |
Either a numeric matrix of shape |
n_clusters |
An integer value specifying the number of clusters.
Defaults to |
seeds |
An integer value or vector specifying the indices of the initial
centroids. If an integer vector, it is interpreted as the indices of the
intial centroids and should therefore be of length |
seeding_strategy |
A character string specifying the strategy for
choosing the initial centroids in case the argument |
warping_class |
A string specifying the warping class Choices are
|
centroid_type |
A string specifying the type of centroid to compute.
Choices are |
metric |
A string specifying the metric used to compare curves. Choices
are |
cluster_on_phase |
A boolean specifying whether clustering should be
based on phase variation or amplitude variation. Defaults to |
use_verbose |
A boolean specifying whether the algorithm should output
details of the steps to the console. Defaults to |
warping_options |
A numeric vector supplied as a helper to the chosen
|
maximum_number_of_iterations |
An integer specifying the maximum number
of iterations before the algorithm stops if no other convergence criterion
was met. Defaults to |
number_of_threads |
An integer value specifying the number of threads
used for parallelization. Defaults to |
parallel_method |
An integer value specifying the type of desired
parallelization for template computation, If |
distance_relative_tolerance |
A numeric value specifying a relative
tolerance on the distance update between two iterations. If all
observations have not sufficiently improved in that sense, the algorithm
stops. Defaults to |
use_fence |
A boolean specifying whether the fence algorithm should be
used to robustify the algorithm against outliers. Defaults to |
check_total_dissimilarity |
A boolean specifying whether an additional
stopping criterion based on improvement of the total dissimilarity should
be used. Defaults to |
compute_overall_center |
A boolean specifying whether the overall center
should be also computed. Defaults to |
add_silhouettes |
A boolean specifying whether silhouette values should
be computed for each observation for internal validation of the clustering
structure. Defaults to |
An object of class caps
.
#---------------------------------- # Extracts 15 out of the 30 simulated curves in `simulated30_sub` data set idx <- c(1:5, 11:15, 21:25) x <- simulated30_sub$x[idx, ] y <- simulated30_sub$y[idx, , ] #---------------------------------- # Runs a k-means clustering with affine alignment, searching for 2 clusters out <- fdakmeans( x = x, y = y, n_clusters = 2, warping_class = "affine" ) #---------------------------------- # Then visualize the results # Either with ggplot2 via ggplot2::autoplot(out) # or using graphics::plot() # You can visualize the original and aligned curves with: plot(out, type = "amplitude") # Or the estimated warping functions with: plot(out, type = "phase")
#---------------------------------- # Extracts 15 out of the 30 simulated curves in `simulated30_sub` data set idx <- c(1:5, 11:15, 21:25) x <- simulated30_sub$x[idx, ] y <- simulated30_sub$y[idx, , ] #---------------------------------- # Runs a k-means clustering with affine alignment, searching for 2 clusters out <- fdakmeans( x = x, y = y, n_clusters = 2, warping_class = "affine" ) #---------------------------------- # Then visualize the results # Either with ggplot2 via ggplot2::autoplot(out) # or using graphics::plot() # You can visualize the original and aligned curves with: plot(out, type = "amplitude") # Or the estimated warping functions with: plot(out, type = "phase")
caps
objectThis function creates a visualization of the result of the k-mean alignment algorithm without returning the plot data as an object. The user can choose to visualize either the amplitude information data in which case original and aligned curves are shown or the phase information data in which case the estimated warping functions are shown.
## S3 method for class 'caps' plot(x, type = c("amplitude", "phase"), ...)
## S3 method for class 'caps' plot(x, type = c("amplitude", "phase"), ...)
x |
An object of class |
type |
A string specifying the type of information to display. Choices
are |
... |
Not used. |
plot(sim30_caps, type = "amplitude") plot(sim30_caps, type = "phase")
plot(sim30_caps, type = "amplitude") plot(sim30_caps, type = "phase")
This is an S3 method implementation of the graphics::plot()
generic for
objects of class mcaps
to visualize the performances of multiple caps
objects applied on the same data sets either in terms of WSS or in terms of
silhouette values.
## S3 method for class 'mcaps' plot( x, validation_criterion = c("wss", "silhouette"), what = c("mean", "distribution"), ... )
## S3 method for class 'mcaps' plot( x, validation_criterion = c("wss", "silhouette"), what = c("mean", "distribution"), ... )
x |
An object of class |
validation_criterion |
A string specifying the validation criterion to
be used for the comparison. Choices are |
what |
A string specifying the kind of information to display about the
validation criterion. Choices are |
... |
Other arguments passed to specific methods. |
plot(sim30_mcaps)
plot(sim30_mcaps)
caps
object from simulated data for examplesAn object of class caps
storing the result of the fdakmeans()
function applied on the data set simulated30
using the affine warping
class and the Pearson metric and searching for 2 clusters.
sim30_caps
sim30_caps
An object of class caps
.
mcaps
object from simulated data for examplesAn object of class mcaps
storing the result of the compare_caps()
function applied on the data set simulated30_sub
for comparing the
clustering structures found by the fdakmeans()
function with mean
centroid type used with various classes of warping functions and varying
number of clusters.
sim30_mcaps
sim30_mcaps
An object of class mcaps
which is effectively a tibble::tibble
with 5 columns and as many rows as there are clustering strategies to
compare. The 5 column-variables are:
n_clusters
: The number of clusters;
clustering_method
: The clustering method;
warping_class
: The class of warping functions used for curve alignment;
centroid_type
: The type of centroid used to compute a cluster
representative;
caps_obj
: The result of the corresponding clustering strategy as
objects of class caps
.
A data set containing 30 simulated uni-dimensional curves.
simulated30
simulated30
A list with abscissas x and values y:
Matrix 30x200;
Array 30x1x200.
A data set containing 30 simulated uni-dimensional curves.
simulated30_sub
simulated30_sub
A list with abscissas x and values y:
Matrix 30x30;
Array 30x1x30.
A data set containing 90 simulated uni-dimensional curves.
simulated90
simulated90
A list with abscissas x and values y:
Vector of size 100;
Matrix if size 90x100.