--- title: Getting started with fastkqr author: An introductory tutorial with examples output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Getting started with fastkqr} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` This package provides tools for fitting kernel quantile regression. The strengths and improvements that this package offers relative to other quantile regression packages are as follows: * Compiled Fortran code significantly speeds up the kernel quantile regression estimation process. * Solve non-crossing kernel quantile regression. For this getting-started vignette, first, we will use a real data set named as `GAGurine` in the package `MASS`, which collects the concentration of chemical GAGs in the urine of 314 children aged 0 to 17 years. We used the concentration of GAG as the response variable. ```{r} library(fastkqr) library(MASS) data(GAGurine) x <- as.matrix(GAGurine$Age) y <- GAGurine$GAG ``` Then the kernel quantile regression model is formulated as the sum of check loss and an $\ell_2$ penalty: $$ \min_{\alpha\in\mathbb{R}^{n},b\in\mathbb{R}}\frac{1}{n} \sum_{i=1}^{n}\rho_{\tau}(y_{i}-b-\mathbf{K}_{i}^{\top}\alpha) +\frac{\lambda}{2} \alpha^{\top}\mathbf{K}\alpha \qquad (*). $$ ## `kqr()` Given an input matrix `x`, a quantile level `tau`, and a response vector `y`, a kernel quantile regression model is estimated for a sequence of penalty parameter values. The other main arguments the users might supply are: * `lambda`: a user-supplied `lambda` sequence. * `is_exact`: exact or approximated solutions. ```{r} lambda <- 10^(seq(1, -4, length.out=10)) fit <- kqr(x, y, lambda=lambda, tau=0.1, is_exact=TRUE) ``` ## `cv.kqr()` This function performs k-fold cross-validation (cv). It takes the same arguments as `kqr`. ```{r} cv.fit <- cv.kqr(x, y, lambda=lambda, tau=0.1) ``` ### Methods A number of S3 methods are provided for `nckqr` object. * `coef()` and `predict()` return a matrix of coefficients and predictions $\hat{y}$ given a matrix `x` at each lambda respectively. The optional `s` argument may provide a specific value of $\lambda$ (not necessarily part of the original sequence). ```{r} coef <- coef(fit, s = c(0.02, 0.03)) predict(fit, x, tail(x), s = fit$lambda[2:3]) ``` ## `nckqr()` Given an input matrix `x`, a sequence of quantile levels `tau`, and a response vector `y`, a non-crossing kernel quantile regression model is estimated for two sequences of penalty parameter values. It takes the same arguments `x`, `y`,`is_exact`, which are specified above. The other main arguments the users might supply are: * `lambda2`: a user-supplied `lambda1` sequence for the L2 penalty. * `lambda1`: a user-supplied `lambda2` sequence for the smooth ReLU penalty. ```{r} l2 <- 1e-4 tau <- c(0.1, 0.3, 0.5) l1_list <- 10^seq(-8, 2, length.out=10) fit1 <- nckqr(x ,y, lambda1 = l1_list, lambda2 = l2, tau = tau) ``` ## `cv.nckqr()` This function performs k-fold cross-validation (cv) for selecting the tuning parameter 'lambda2' of non-crossing kernel quantile regression. It takes the same arguments as `nckqr`. ```{r} l2_list <- 10^(seq(1, -4, length.out=10)) cv.fit1 <- cv.nckqr(x, y, lambda1=10, lambda2=l2_list, tau=tau) ``` ### Methods A number of S3 methods are provided for `nckqr` object. * `coef()` and `predict()` return an array of coefficients and predictions $\hat{y}$ given a matrix `X` and `lambda2` at each lambda1 respectively. The optional `s1` argument may provide a specific value of $\lambda_1$ (not necessarily part of the original sequence). ```{r} coef <- coef(fit1, s2=1e-4, s1 = l1_list[2:3]) predict(fit1, x, tail(x), s1=l1_list[1:3], s2=l2) ```