
Package: fICA (via r-universe)
September 20, 2024

Type Package

Title Classical, Reloaded and Adaptive FastICA Algorithms

Version 1.1-2

Date 2021-12-08

Imports stats, JADE, Rcpp (>= 0.11.0)

LinkingTo Rcpp, RcppArmadillo

Suggests BSSasymp

Description Algorithms for classical symmetric and deflation-based
FastICA, reloaded deflation-based FastICA algorithm and an
algorithm for adaptive deflation-based FastICA using multiple
nonlinearities. For details, see Miettinen et al. (2014)
<doi:10.1109/TSP.2014.2356442> and Miettinen et al. (2017)
<doi:10.1016/j.sigpro.2016.08.028>. The package is described in
Miettinen, Nordhausen and Taskinen (2018)
<doi:10.32614/RJ-2018-046>.

License GPL (>= 2)

NeedsCompilation yes

Author Jari Miettinen [aut] (<https://orcid.org/0000-0002-3270-7014>),
Klaus Nordhausen [aut, cre]
(<https://orcid.org/0000-0002-3758-8501>), Hannu Oja [aut],
Sara Taskinen [aut] (<https://orcid.org/0000-0001-9470-7258>)

Maintainer Klaus Nordhausen <klaus.k.nordhausen@jyu.fi>

Repository CRAN

Date/Publication 2021-12-08 12:50:02 UTC

Contents
fICA-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
adapt_fICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
compute_alphas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
fICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
reloaded_fICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1

https://doi.org/10.1109/TSP.2014.2356442
https://doi.org/10.1016/j.sigpro.2016.08.028
https://doi.org/10.32614/RJ-2018-046
https://orcid.org/0000-0002-3270-7014
https://orcid.org/0000-0002-3758-8501
https://orcid.org/0000-0001-9470-7258


2 adapt_fICA

Index 12

fICA-package Classical, Reloaded and Adaptive FastICA Algorithms

Description

Algorithms for classical symmetric and deflation-based FastICA, reloaded deflation-based FastICA
algorithm and an algorithm for adaptive deflation-based FastICA using multiple nonlinearities. For
details, see Miettinen et al. (2014) <doi:10.1109/TSP.2014.2356442> and Miettinen et al. (2017)
<doi:10.1016/j.sigpro.2016.08.028>. The package is described in Miettinen, Nordhausen and Task-
inen (2018) <doi:10.32614/RJ-2018-046>.

Details

Package: fICA
Type: Package
Version: 1.1-2
Date: 2021-12-08
License: GPL (>= 2)

Author(s)

Jari Miettinen, Klaus Nordhausen, Hannu Oja, Sara Taskinen

Maintainer: Klaus Nordhausen <klaus.k.nordhausen@jyu.fi>

References

Miettinen, J., Nordhausen, K. and Taskinen, S. (2018), fICA: FastICA Algorithms and Their Im-
proved Variants, The R Journal, 10, 148–158, <doi:10.32614/RJ-2018-046>.

adapt_fICA Adaptive Deflation-based FastICA Method for Independent Compo-
nent Analysis

Description

The adaptive deflation-based FastICA method for the independent component problem. The func-
tion estimates the unmixing matrix by finding, for each component separately, the best nonlinearity
from a set of nonlinearities.
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Usage

adapt_fICA(X, gs=gf, dgs=dgf, name=gnames, kj=0, inR=TRUE,
eps=1e-06, maxiter=100)

Arguments

X a numeric data matrix. Missing values are not allowed.

gs a list of functions containing the nonlinearities.

dgs a list of functions containing the first derivatives of the nonlinearities.

name a list of strings containing the names of the nonlinearities.

kj defines the initial estimate of the unmixing matrix, see details.

inR a logical which indicates whether R or C is used for computations. If FALSE,
the default set of nonlinearities gf is used.

eps convergence tolerance.

maxiter maximum number of iterations.

Details

The algorithm first finds initial estimates of the sources. The method to find the estimates is decided
by the choice of the argument kj. If the value of kj is an integer between 1 and number of the
sources, then the method is kj-JADE, otherwise it is FOBI. For the meaning of the value kj used
as kj-JADE, see the help for k_JADE.

Value

A list with class ’bss’ containing the following components:

W estimated unmixing matrix.

gs nonlinearities that were available.

used_gs nonlinearities, in order of appearance, that were used. The last row of the un-
mixing matrix follows directly from the other rows, and hence no nonlinearity
is connected to it.

alphas the statistics for the choice of the nonlinearities.

init_est method that was used for the initial estimate (FOBI or k-JADE).

S estimated source components standardized to have mean 0 and unit variances.

Author(s)

Jari Miettinen
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References

Hyvarinen, A. and Oja, E. (1997), A fast fixed-point algorithm for independent component analysis,
Neural Computation, vol. 9, 1483–1492.

Nordhausen, K., Ilmonen, P., Mandal, A., Oja, H. and Ollila, E. (2011), Deflation-based Fas-
tICA reloaded, in Proc. "19th European Signal Processing Conference 2011 (EUSIPCO 2011)",
Barcelona, 1854–1858.

Miettinen, J., Nordhausen, K., Oja, H. and Taskinen, S. (2014), Deflation-based FastICA with
adaptive choices of nonlinearities, IEEE Transactions on Signal Processing, 62(21), 5716–5724.

See Also

fICA, nonlinearities, FOBI, k_JADE

Examples

A <- matrix(rnorm(9),3,3)
s1 <- rt(1000,6)
s2 <- rexp(1000,1)
s3 <- runif(1000)

S <- cbind(s1,s2,s3)
X <- S %*% t(A)

res1<-adapt_fICA(X, inR=FALSE)
res1
coef(res1)
plot(res1)

require(JADE)
MD(coef(res1),A)

# changing the set of candidate nonlinearities

?nonlinearities
g <- function(x){x^2}
dg <- function(x){2*x}
gf_new <- c(gf[-c(5,8,10)],g)
dgf_new <- c(dgf[-c(5,8,10)],g)
gnames_new <- c(gnames[-c(5,8,10)],"skew")

res2<-adapt_fICA(X, gs=gf_new, dgs=dgf_new, name=gnames_new)
res2
MD(coef(res2),A)

# reloaded FastICA using tanh

res3<-adapt_fICA(X, gs=gf[2], dgs=dgf[2], name=gnames[2])
res3
MD(coef(res3),A)
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compute_alphas Estimation of Alphas in the Asymptotic Covariance Matrix of the
Deflation-based FastICA Estimator

Description

Using the estimates of the independent components, the function computes for a given set of non-
linearities, the quantities (alphas). Alphas determine the choices of the nonlinearities and in which
order the nonlinearities are used in the adaptive deflation-based FastICA method.

Usage

compute_alphas(Z, gs=gf, dgs=dgf, name=gnames)

Arguments

Z a numeric matrix of the estimated independent components, which should be
standardized so that the mean is zero and the covariance matrix is the identity
matrix.

gs a vector of functions containing the nonlinearities.

dgs a vector of functions containing the first derivatives of the nonlinearities.

name a vector of strings containing the names of the nonlinearities.

Details

See the references.

Value

A matrix where the ith row gives the estimates of alphas for the ith nonlinearity and the jth column
corresponds to the jth component of Z.

Author(s)

Jari Miettinen

References

Hyvarinen, A. and Oja, E. (1997), A fast fixed-point algorithm for independent component analysis,
Neural Computation, vol. 9, 1483–1492.

Nordhausen, K., Ilmonen, P., Mandal, A., Oja, H. and Ollila, E. (2011), Deflation-based Fas-
tICA reloaded, in Proc. "19th European Signal Processing Conference 2011 (EUSIPCO 2011)",
Barcelona, 1854–1858.

Miettinen, J., Nordhausen, K., Oja, H. and Taskinen, S. (2014), Deflation-based FastICA with
adaptive choices of nonlinearities, IEEE Transactions on Signal Processing, 62(21), 5716–5724.
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See Also

fICA, nonlinearities, FOBI, k_JADE

Examples

A <- matrix(rnorm(9),3,3)
s1 <- rt(1000,6)
s2 <- rexp(1000,1)
s3 <- runif(1000)

S <- cbind(s1,s2,s3)
X <- S %*% t(A)

Sest <- fICA(X,method="def")$S

compute_alphas(Sest, gs=gf[1:3], dgs=dgf[1:3], name=gnames[1:3])

fICA Symmetric and Deflation-based FastICA Methods for Independent
Component Analysis

Description

The symmetric and deflation-based FastICA methods for the independent component problem. The
function estimates the unmixing matrix using a single nonlinearity g.

Usage

fICA(X, g="tanh", dg=NULL, G=NULL, init=NULL, n.init = 1, method="sym2",
inR=TRUE, eps=1e-06, maxiter=1000)

Arguments

X a numeric data matrix. Missing values are not allowed.
g the nonlinearity, tanh by default, see details.
dg the first derivative of the nonlinearity, see details.
G the integral function of the nonlinearity, see details.
init a numeric matrix for the initial value of the algorithm
n.init a positive integer for the number of initial values in symmetric algorithms, see

details.
method squared symmetric ("sym2"), symmetric ("sym") or deflation-based ("def")

.

inR a logical which indicates whether R or C is used for computations, see details.
eps convergence tolerance.
maxiter maximum number of iterations.
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Details

The deflation-based FastICA estimate depends on the initial value of the unmixing matrix. This
is due to the fact that the algorithm does not always find the global maximum of the objective
function, but it may stop to local maxima as well. Hence, the deflation-based FastICA estimate is
affine equivariant only if the initial value is affine equivariant. Therefore, we recommend the use of
reloaded_fICA or adapt_fICA.

The standard nonlinearities can be chosen by g="pow3", g="tanh" or g="gaus". These estimates
can be computed either in R or in C (except the squared symmetric). In order to use some other
nonlinearity, one has to give the nonlinearity and its derivative as functions (and the integral function
when squared symmetric FastICA is computed), and the computations have to be performed in R.

If the symmetric or squared symmetric algorithm does not converge, one can choose n.init=k for
some k > 1. Then up to k random initial values are tried, and if none of them gives a convergent
run of the algorithm, the function returns the matrix which gave the largest value of the objective
function over all k ×maxiter steps.

Value

A list with class ’bss’ containing the following components:

W estimated unmixing matrix.

g nonlinearity used.

method symmetric or deflation-based.

S estimated source components standardized to have mean 0 and unit variances.

Author(s)

Jari Miettinen

References

Hyvarinen, A. and Oja, E. (1997), A fast fixed-point algorithm for independent component analysis,
Neural Computation, vol. 9, 1483–1492.

Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S. and Virta, J. (2015), The squared symmetric
FastICA estimator, Signal Processing, vol. 131, 402–411.

See Also

adapt_fICA, reloaded_fICA, nonlinearities

Examples

# creating some toy data
A<- matrix(rnorm(9),3,3)
s1 <- rt(1000,6)
s2 <- rexp(1000,1)
s3 <- runif(1000)

S <- cbind(s1,s2,s3)
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X <- S %*% t(A)

# tanh is the default nonlinearity
res1<-fICA(X,method="sym")
coef(res1)
plot(res1)
require(JADE)
MD(coef(res1),A)

# nonlinearity pow3 is chosen as follows
res2<-fICA(X,g="pow3",method="sym")
coef(res2)
require(JADE)
MD(coef(res2),A)

# nonlinearity from gf is chosen as follows
res3<-fICA(X,g=gf[[6]],dg=dgf[[6]],method="sym")
coef(res3)
require(JADE)
MD(coef(res3),A)

nonlinearities Set of Nonlinearities for Adaptive Deflation-based FastICA Method

Description

The default set of nonlinearities with their first derivatives and names used in adapt_fICA.

Usage

gf

dgf

Gf

gnames

Details

The set of nonlinearities includes both well-known functions (pow3, tanh and gaus) and the ones
suggested in Miettinen et al. (2014).

The object gf contains the nonlinearities which are:

gf[[1]] pow3 x3

gf[[2]] tanh tanh(x)
gf[[3]] gaus exp(−(x)2/2)
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gf[[4]] lt0.6 (x+ 0.6)2−
gf[[5]] rt0.6 (x− 0.6)2+
gf[[6]] bt (x)2+ − (x)2−
gf[[7]] bt0.2 (x− 0.2)2+ − (x+ 0.2)2−
gf[[8]] bt0.4 (x− 0.4)2+ − (x+ 0.4)2−
gf[[9]] bt0.6 (x− 0.6)2+ − (x+ 0.6)2−
gf[[10]] bt0.8 (x− 0.8)2+ − (x+ 0.8)2−
gf[[11]] bt1.0 (x− 1.0)2+ − (x+ 1.0)2−
gf[[12]] bt1.2 (x− 1.2)2+ − (x+ 1.2)2−
gf[[13]] bt1.4 (x− 1.4)2+ − (x+ 1.4)2−
gf[[14]] bt1.6 (x− 1.6)2+ − (x+ 1.6)2−

The objects dgf, Gf and gnames contain the corresponding first derivatives, integrals and names in
the same order.

For skew sources lt0.6 and rt0.6 combined are more efficient than the commonly used skew. The
rest of the functions are useful for example for sources with multimodal density functions.

The user can easily submit a own set or modify the set suggested here. See the example below and
the examples in adapt_fICA.

Author(s)

Jari Miettinen

References

Hyvarinen, A. and Oja, E. (1997), A fast fixed-point algorithm for independent component analysis,
Neural Computation, vol. 9, 1483–1492.

Miettinen, J., Nordhausen, K., Oja, H. and Taskinen, S. (2014), Deflation-based FastICA with
adaptive choices of nonlinearities, IEEE Transactions on Signal Processing, 62(21), 5716–5724.

See Also

adapt_fICA

Examples

# leaving out functions from the default set and adding a new function
g <- function(x){x^2}
dg <- function(x){2*x}
G <- function(x){x^3/3}

gf_new <- c(gf[-c(6,8,10)],g)
dgf_new <- c(dgf[-c(6,8,10)],dg)
Gf_new <- c(Gf[-c(6,8,10)],G)
gnames_new <- c(gnames[-c(6,8,10)],"skew")
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reloaded_fICA Reloaded Deflation-based FastICA Method for Independent Compo-
nent Analysis

Description

The reloaded and the affine equivariant deflation-based FastICA method for the independent com-
ponent problem. The function estimates the rows of the unmixing matrix one by one, either in
asymptotically optimal order, or so that the objective function is globally maximized at each stage.

Usage

reloaded_fICA(X, g="tanh", dg=NULL, G=NULL, kj=0, method="alpha",
inR=TRUE, eps=1e-06, maxiter=100)

Arguments

X a numeric data matrix. Missing values are not allowed.

g the nonlinearity, tanh by default, see details.

dg the first derivative of the nonlinearity, see details.

G the integral of the nonlinearity, see details.

kj defines the initial estimate of the unmixing matrix, see details.

method "alpha" or "G", see details.

inR a logical which indicates whether R or C is used for computations, see details.

eps convergence tolerance.

maxiter maximum number of iterations.

Details

The algorithm first finds initial estimates of the sources. The method to find the estimates is decided
by the choice of the argument kj. If the value of kj is an integer between 1 and number of the
sources, then the method is kj-JADE, otherwise it is FOBI. For the meaning of the value kj used
as kj-JADE, see the help for k_JADE.

The function has the argument method, which determines the extraction order of the components.
If method="alpha", the components are found in asymptotically optimal order, that is, the reloaded
deflation-based FastICA estimate is computed. If method="G", the objective function is globally
maximized at each stage.

The standard nonlinearities can be chosen by g="pow3", g="tanh" or g="gaus". These estimates
can be computed either in R or in C. In order to use some other nonlinearity, one has to give the
nonlinearity and its derivative (and integral if method="G") as functions, and the computations have
to be performed in R.
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Value

A list with class ’bss’ containing the following components:

W estimated unmixing matrix.

g nonlinearity used.

alphas the statistics for the choice of the nonlinearities.

init_est method that was used for the initial estimate (FOBI or k-JADE).

S estimated source components standardized to have mean 0 and unit variances.

Author(s)

Jari Miettinen

References

Hyvarinen, A. and Oja, E. (1997), A fast fixed-point algorithm for independent component analysis,
Neural Computation, vol. 9, 1483–1492.

Nordhausen, K., Ilmonen, P., Mandal, A., Oja, H. and Ollila, E. (2011), Deflation-based Fas-
tICA reloaded, in Proc. "19th European Signal Processing Conference 2011 (EUSIPCO 2011)",
Barcelona, 1854–1858.

See Also

fICA, nonlinearities, FOBI, k_JADE

Examples

# creating some toy data
A<- matrix(rnorm(9),3,3)
s1 <- rt(1000,6)
s2 <- rexp(1000,1)
s3 <- runif(1000)

S <- cbind(s1,s2,s3)
X <- S %*% t(A)

# tanh is the default nonlinearity
res1<-reloaded_fICA(X)
coef(res1)
plot(res1)
require(JADE)
MD(coef(res1),A)

# nonlinearity pow3 and method "G" is chosen as follows
res2<-reloaded_fICA(X,g="pow3",method="G")
coef(res2)
require(JADE)
MD(coef(res2),A)
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