Package 'evoper'

Title: Evolutionary Parameter Estimation for 'Repast Simphony' Models
Description: The EvoPER, Evolutionary Parameter Estimation for Individual-based Models is an extensible package providing optimization driven parameter estimation methods using metaheuristics and evolutionary computation techniques (Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization for continuous domains, Tabu Search, Evolutionary Strategies, ...) which could be more efficient and require, in some cases, fewer model evaluations than alternatives relying on experimental design. Currently there are built in support for models developed with 'Repast Simphony' Agent-Based framework (<https://repast.github.io/>) and with NetLogo (<https://ccl.northwestern.edu/netlogo/>) which are the most used frameworks for Agent-based modeling.
Authors: Antonio Prestes Garcia [aut, cre], Alfonso Rodriguez-Paton [aut, ths]
Maintainer: Antonio Prestes Garcia <[email protected]>
License: MIT + file LICENSE
Version: 0.5.0
Built: 2024-12-29 08:36:58 UTC
Source: CRAN

Help Index


Ant colony optimization for continuous domains

Description

An implementation of Ant Colony Optimization algorithm for continuous variables.

Usage

abm.acor(objective, options = NULL)

Arguments

objective

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options

An apropiate instance from a sublclass of Options class

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046

Examples

## Not run: 
 f<- PlainFunction$new(f0.rosenbrock2)

 f$Parameter(name="x1",min=-100,max=100)
 f$Parameter(name="x2",min=-100,max=100)

 extremize("acor", f)

## End(Not run)

EvoPER Evolutionary Strategy 1

Description

This function tries to provide a rough approximation to best solution when no information is available for the correct range of input parameters for the objective function. It can useful for studying the behavior of individual-based models with high variability in the output variables showing nonlinear behaviors.

Usage

abm.ees1(objective, options = NULL)

Arguments

objective

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options

An apropiate instance from a sublclass of Options class

Examples

## Not run: 
 f<- PlainFunction$new(f0.rosenbrock2)

 f$Parameter(name="x1",min=-100,max=100)
 f$Parameter(name="x2",min=-100,max=100)

 extremize("ees1", f)

## End(Not run)

EvoPER Evolutionary Strategy 2

Description

This function tries to provide a rough approximation to best solution when no information is available for the correct range of input parameters for the objective function. It can useful for studying the behavior of individual-based models with high variability in the output variables showing nonlinear behaviors.

Usage

abm.ees2(objective, options = NULL)

Arguments

objective

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options

An apropiate instance from a sublclass of Options class

Examples

## Not run: 
 f<- PlainFunction$new(f0.rosenbrock2)

 f$Parameter(name="x1",min=-100,max=100)
 f$Parameter(name="x2",min=-100,max=100)

 extremize("ees2", f)

## End(Not run)

abm.pso

Description

An implementaion of Particle Swarm Optimization method for parameter estimation of Individual-based models.

Usage

abm.pso(objective, options = NULL)

Arguments

objective

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options

An apropiate instance from a sublclass of Options class

References

[1] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN 95 - International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE.

[2] Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33-57.

Examples

## Not run: 
 f<- PlainFunction$new(f0.rosenbrock2)

 f$Parameter(name="x1",min=-100,max=100)
 f$Parameter(name="x2",min=-100,max=100)

 extremize("pso", f)

## End(Not run)

abm.saa

Description

An implementation of Simulated Annealing Algorithm optimization method for parameter estimation of Individual-based models.

Usage

abm.saa(objective, options = NULL)

Arguments

objective

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options

An apropiate instance from a sublclass of Options class

Value

The best solution.

References

[1] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598).

Examples

## Not run: 
 f<- PlainFunction$new(f0.rosenbrock2)

 f$Parameter(name="x1",min=-100,max=100)
 f$Parameter(name="x2",min=-100,max=100)

 extremize("saa", f)

## End(Not run)

## Not run: 
 ## A Repast defined function
 f<- RepastFunction$new("/usr/models/BactoSim(HaldaneEngine-1.0)","ds::Output",300)

 ## or a plain function

 f1<- function(x1,x2,x3,x4) {
   10 * (x1 - 1)^2 + 20 * (x2 - 2)^2 + 30 * (x3 - 3)^2 + 40 * (x4 - 4)^2
 }

 f<- PlainFunction$new(f1)

 f$addFactor(name="cyclePoint",min=0,max=90)
 f$addFactor(name="conjugationCost",min=0,max=100)
 f$addFactor(name="pilusExpressionCost",min=0,max=100)
 f$addFactor(name="gamma0",min=1,max=10)

 abm.saa(f, 100, 1,  100, 0.75)

## End(Not run)

Tabu Search metaheuristic

Description

An implementation of Tabu Search algorithm for parameter estimation

Usage

abm.tabu(objective, options = NULL)

Arguments

objective

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options

An apropiate instance from a sublclass of Options class

References

[1] Fred Glover (1989). "Tabu Search - Part 1". ORSA Journal on Computing, 190-206. doi:10.1287/ijoc.1.3.190. [2] Fred Glover (1990). "Tabu Search - Part 2". ORSA Journal on Computing, 4-32. doi:10.1287/ijoc.2.1.4.

Examples

## Not run: 
 f<- PlainFunction$new(f0.rosenbrock2)

 f$Parameter(name="x1",min=-100,max=100)
 f$Parameter(name="x2",min=-100,max=100)

 or

 f$Parameter0(name="x1",levels=c(0:4))
 f$Parameter0(name="x2",levels=c(-2,-1,0,1,2))

 extremize("tabu", f)

## End(Not run)

acor.archive

Description

This function is used for creating and maintaining the ACOr archive 'T'. The function keeps the track of 'k' solotion in the archive.

Usage

acor.archive(s, f, w, k, T = NULL)

Arguments

s

The solution 'ants'

f

The evaluation of solution

w

The weight vector

k

The archive size

T

The current archive

Value

The solution archive

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046


acor.F

Description

Helper function for extracting the 'F' function evaluations from archive ACOr 'T'

Usage

acor.F(T)

Arguments

T

The solution archive

Value

The F matrix


Select the lth gaussian function

Description

Given a weight vector calculate the probabilities of selecting the lth gaussian function and return the index of lht gaussian selected with probability p

Usage

acor.lthgaussian(W)

Arguments

W

The vector of weights

Value

The index of lht gaussian function

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046


acor.N

Description

Helper function for getting the size of solution

Usage

acor.N(T)

Arguments

T

The solution archive

Value

The size 'n' of a solution 's'


Gaussian kernel choosing probability

Description

Calculate the probability of choosing the lth Gaussian function

Usage

acor.probabilities(W, l = NULL)

Arguments

W

The vector of weights

l

The lth element of algorithm solution archive T

Value

The vector of probabilities 'p'

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046


acor.S

Description

Helper function for extracting solution 'S' from archive 'T'

Usage

acor.S(T)

Arguments

T

The solution archive

Value

The solution matrix


Sigma calculation for ACOr

Description

Calculate the value of sigma

Usage

acor.sigma(Xi, k, T)

Arguments

Xi

The algorithm parameter

k

The solution archive size

T

The solution archive

Value

The sigma value

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046


acor.updateants

Description

Update the solution using the gaussian kernel

Usage

acor.updateants(S, N, W, t.mu, t.sigma)

Arguments

S

The current solution ants

N

The numnber of required ants in solution

W

The weight vector

t.mu

The 'mean' from solution archive

t.sigma

The value of sigma from solution archive

Value

The new solution ants

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046


acor.W

Description

Helper function for extracting the 'W' function evaluations from archive ACOr 'T'

Usage

acor.W(T)

Arguments

T

The solution archive

Value

The weight vector


Weight calculation for ant colony optimization

Description

Calculates the weight element of ACOr algorithm for the solution archive.

Usage

acor.weigth(q, k, l)

Arguments

q

The Algorithm parameter. When small best-ranked solution is preferred

k

The Archive size

l

The lth element of algorithm solution archive T

Value

A scalar or a vector with calculated weigth.

References

[1] Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155-1173. http://doi.org/10.1016/j.ejor.2006.06.046


assert

Description

The assert function stop the execution if the logical expression given by the parameter expresion is false.

Usage

assert(expresion, string)

Arguments

expresion

Some logical expression

string

The text message to show if expression does not hold


bestFitness

Description

Given a set S of N solutions created with sortSolution, this function returns the fitness component fot the best solution.

Usage

bestFitness(S)

Arguments

S

The solution set

Value

The best fitness value


bestSolution

Description

Given a set S of N solutions created with sortSolution, this function returns the best solution found.

Usage

bestSolution(S)

Arguments

S

The solution set

Value

The best solution


cbuf

Description

Simple implementation of a circular buffer.

Usage

cbuf(b, v, e)

Arguments

b

The variable holding the current buffer content

v

The new valued to be added to b

e

The length of circular buffer

Value

The buffer b plus the element v minus the least recently added element


compare.algorithms1

Description

Compare the number of function evalutions and convergence for the following optimization algorithms, ("saa","pso","acor","ees1").

Usage

compare.algorithms1(F, seeds = c(27, 2718282, 36190727, 3141593, -91190721,
  -140743, 1321))

Arguments

F

The function to be tested

seeds

The random seeds which will be used for testing algorithms

Examples

## Not run: 
 rm(list=ls())
 d.cigar4<- compare.algorithms1(f0.cigar4)
 d.schaffer4<- compare.algorithms1(f0.schaffer4)
 d.griewank4<- compare.algorithms1(f0.griewank4)
 d.bohachevsky4<- compare.algorithms1(f0.bohachevsky4)
 d.rosenbrock4<- compare.algorithms1(f0.rosenbrock4)

## End(Not run)

contourplothelper

Description

Simple helper function for countour plots

Usage

contourplothelper(d, x, y, z, nbins = 32, binwidth = c(10, 10),
  points = c(300, 300), title = NULL)

Arguments

d

A data frame.

x

A string with the dataframe column name for x axis.

y

A string with the dataframe column name for y axis.

z

A string with the dataframe column name for z axis.

nbins

The number bins. The default is 32.

binwidth

The binwidths for 'kde2d'. Can be an scalar or a vector.

points

The number of grid points. Can be an scalar or a vector.

title

The optional plot title. May be omited.


ees1.challenge

Description

Repeat the evalution of best solution to tacke with variability.

Usage

ees1.challenge(solution, objective)

Arguments

solution

The Problem solution

objective

The objective function


ees1.explore

Description

Explore the solution space on the neighborhood of solution 's' in order to find a new best.

Usage

ees1.explore(s, weight, p = 0.01)

Arguments

s

The Problem solution

weight

The exploration intensity

p

The mutation probability


ees1.mating

Description

This function 'mix' the elements present in the solution. The parameter 'mu' controls the intensity of mixing. Low values give preference to best solution components and high values make the values being select randomly.

Usage

ees1.mating(solution, mu)

Arguments

solution

The Problem solution

mu

The mixing intensity ratio, from 0 to 1. The mix intensity controls de the probability of chosing a worst solutions


ees1.mating1

Description

This function 'mix' the elements present in the solution. The parameter 'mu' controls the intensity of mixing. Low values give preference to best solution components and high values make the values being select randomly.

Usage

ees1.mating1(solution, mu)

Arguments

solution

The Problem solution

mu

The mixing intensity ratio, from 0 to 1. The mix intensity controls de the probability of chosing a worst solutions


ees1.mutation

Description

Performs the mutation on generated solution

Usage

ees1.mutation(solution, mates, p = 0.01)

Arguments

solution

The Problem solution

mates

The mixed parents

p

The mutation probability


ees1.recombination

Description

Performs the recombination on solution

Usage

ees1.recombination(solution, mates)

Arguments

solution

The Problem solution

mates

The mixed parents


ees.selection

Description

Select the elements with best fitness but accept uphill moves with probability 'kkappa'.

Usage

ees1.selection(s0, s1, kkappa)

Arguments

s0

The current best solution set

s1

The new solution

kkappa

The selection pressure


elog.debug

Description

Wrapper for logging debug messages.

Usage

elog.debug(...)

Arguments

...

Variable number of arguments including a format string.


elog.error

Description

Wrapper for logging error messages.

Usage

elog.error(...)

Arguments

...

Variable number of arguments including a format string.


elog.info

Description

Wrapper for logging info messages.

Usage

elog.info(...)

Arguments

...

Variable number of arguments including a format string.


elog.level

Description

Configure the current log level

Usage

elog.level(level = NULL)

Arguments

level

The log level (ERROR|WARN|INFO|DEBUG)

Value

The log level


enforceBounds

Description

Checks if parameters fall within upper an lower bounds

Usage

enforceBounds(particles, factors)

Arguments

particles

The particle set

factors

the defined range for objective function parameters

Value

The particle inside the valid limits


es.evaluate

Description

For each element in solution 's' evaluate the respective fitness.

Usage

es.evaluate(f, s, enforce = TRUE)

Arguments

f

A reference to an instance of objective function

s

The set of solutions

enforce

If true the values are enforced to fall within provided range

Value

The solution ordered by its fitness.


Estimates

Description

A simple class for encapsulating the return of metaheuristic methods


extremize

Description

Entry point for optimization functions

Usage

extremize(type, objective, options = NULL)

Arguments

type

The optimization method (aco,pso,saa,sda)

objective

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

options

An apropiate instance from a sublclass of Options class

Examples

## Not run: 
 f<- PlainFunction$new(f0.rosenbrock2)

 f$Parameter(name="x1",min=-100,max=100)
 f$Parameter(name="x2",min=-100,max=100)

 extremize("pso", f)

## End(Not run)

f0.ackley

Description

The ackley function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0. Domain xi E [-32.768, 32.768], for all i = 1, ..., d

Usage

f0.ackley(...)

Arguments

...

The variadic list of function variables.

Value

The function value

References

https://www.sfu.ca/~ssurjano/ackley.html


f0.ackley4

Description

The ackley function of four variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.ackley4(x1, x2, x3, x4)

Arguments

x1

The first function variable

x2

The second function variable

x3

The third function variable

x4

The fourth function variable

Value

The function value


f0.adtn.rosenbrock2

Description

Two variable Rosenbrock function with random additive noise.

Usage

f0.adtn.rosenbrock2(x1, x2)

Arguments

x1

Parameter 1

x2

Parameter 2


f0.bohachevsky

Description

The Bohachevsky function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.bohachevsky(...)

Arguments

...

The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f0.bohachevsky4

Description

The Bohachevsky function of four variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.bohachevsky4(x1, x2, x3, x4)

Arguments

x1

The first function variable

x2

The second function variable

x3

The third function variable

x4

The fourth function variable

Value

The function value


f0.cigar

Description

The Cigar function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.cigar(...)

Arguments

...

The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f0.cigar4

Description

The Cigar function of four variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.cigar4(x1, x2, x3, x4)

Arguments

x1

The first function variable

x2

The second function variable

x3

The third function variable

x4

The fourth function variable

Value

The function value


f0.griewank

Description

The griewank function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.griewank(...)

Arguments

...

The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f0.griewank4

Description

The griewank function of four variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.griewank4(x1, x2, x3, x4)

Arguments

x1

The first function variable

x2

The second function variable

x3

The third function variable

x4

The fourth function variable

Value

The function value


f0.nlnn.rosenbrock2

Description

Two variable Rosenbrock function with random additive noise.

Usage

f0.nlnn.rosenbrock2(x1, x2)

Arguments

x1

Parameter 1

x2

Parameter 2


Period tuning for Predator-Prey base

Description

This function is an example on how EvoPER can be used for estimating the parameter values in order to produce oscilations with the desired period. It is not intended to be used directelly, the provided wrappers should be instead.

Usage

f0.periodtuningpp(x1, x2, x3, x4, period)

Arguments

x1

The growth rate of prey

x2

The decay rate of predator

x3

The predating effect on prey

x4

The predating effecto on predator

period

The desired oscilation period

Value

The solution fitness cost


Period tuning of 12 time units for Predator-Prey

Description

This function is an example on how EvoPER can be used for estimating the parameter values in order to produce oscilations with the desired period.

Usage

f0.periodtuningpp12(x1, x2, x3, x4)

Arguments

x1

The growth rate of prey

x2

The decay rate of predator

x3

The predating effect on prey

x4

The predating effecto on predator

Value

The solution fitness cost

Examples

## Not run: 
rm(list=ls())
set.seed(-27262565)
f<- PlainFunction$new(f0.periodtuningpp12)
f$Parameter(name="x1",min=0.5,max=2)
f$Parameter(name="x2",min=0.5,max=2)
f$Parameter(name="x3",min=0.5,max=2)
f$Parameter(name="x4",min=0.5,max=2)
extremize("pso", f)

## End(Not run)

Period tuning of 24 time units for Predator-Prey

Description

This function is an example on how EvoPER can be used for estimating the parameter values in order to produce oscilations with the desired period.

Usage

f0.periodtuningpp24(x1, x2, x3, x4)

Arguments

x1

The growth rate of prey

x2

The decay rate of predator

x3

The predating effect on prey

x4

The predating effecto on predator

Value

The solution fitness cost

Examples

## Not run: 
rm(list=ls())
set.seed(-27262565)
f<- PlainFunction$new(f0.periodtuningpp24)
f$Parameter(name="x1",min=0.5,max=2)
f$Parameter(name="x2",min=0.5,max=2)
f$Parameter(name="x3",min=0.5,max=2)
f$Parameter(name="x4",min=0.5,max=2)
extremize("pso", f)

## End(Not run)

Period tuning of 48 time units for Predator-Prey

Description

This function is an example on how EvoPER can be used for estimating the parameter values in order to produce oscilations with the desired period.

Usage

f0.periodtuningpp48(x1, x2, x3, x4)

Arguments

x1

The growth rate of prey

x2

The decay rate of predator

x3

The predating effect on prey

x4

The predating effecto on predator

Value

The solution fitness cost

Examples

## Not run: 
rm(list=ls())
set.seed(-27262565)
f<- PlainFunction$new(f0.periodtuningpp24)
f$Parameter(name="x1",min=0.5,max=2)
f$Parameter(name="x2",min=0.5,max=2)
f$Parameter(name="x3",min=0.5,max=2)
f$Parameter(name="x4",min=0.5,max=2)
extremize("pso", f)

## End(Not run)

Period tuning of 72 time units for Predator-Prey

Description

This function is an example on how EvoPER can be used for estimating the parameter values in order to produce oscilations with the desired period.

Usage

f0.periodtuningpp72(x1, x2, x3, x4)

Arguments

x1

The growth rate of prey

x2

The decay rate of predator

x3

The predating effect on prey

x4

The predating effecto on predator

Value

The solution fitness cost

Examples

## Not run: 
rm(list=ls())
set.seed(-27262565)
f<- PlainFunction$new(f0.periodtuningpp24)
f$Parameter(name="x1",min=0.5,max=2)
f$Parameter(name="x2",min=0.5,max=2)
f$Parameter(name="x3",min=0.5,max=2)
f$Parameter(name="x4",min=0.5,max=2)
extremize("pso", f)

## End(Not run)

f0.rosenbrock2

Description

Two variable Rosenbrock function, where f(1,1) = 0

Usage

f0.rosenbrock2(x1, x2)

Arguments

x1

Parameter 1

x2

Parameter 2


f0.rosenbrock4

Description

The rosenbrock function of 4 variables for testing optimization methods. The global optima for the function is given by xi = 1, forall i E 1...N, f(x) = 0.

Usage

f0.rosenbrock4(x1, x2, x3, x4)

Arguments

x1

The first function variable

x2

The second function variable

x3

The third function variable

x4

The fourth function variable

Value

The function value


f0.rosenbrockn

Description

The rosenbrock function of N variables for testing optimization methods. The global optima for the function is given by xi = 1, forall i E 1...N, f(x) = 0.

Usage

f0.rosenbrockn(...)

Arguments

...

The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f0.schaffer

Description

The schaffer function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.schaffer(...)

Arguments

...

The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f0.schaffer4

Description

The Schaffer function of four variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f0.schaffer4(x1, x2, x3, x4)

Arguments

x1

The first function variable

x2

The second function variable

x3

The third function variable

x4

The fourth function variable

Value

The function value


f0.schwefel

Description

The schwefel function of N variables for testing optimization methods. The global optima for the function is given by xi = 420.96874636, forall i E 1...N, f(x) = 0. The range of xi is [-500,500]

Usage

f0.schwefel(...)

Arguments

...

The variadic list of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f0.schwefel4

Description

The schwefel function of N variables for testing optimization methods. The global optima for the function is given by xi = 420.96874636, forall i E 1...N, f(x) = 0. The range of xi is [-500,500]

Usage

f0.schwefel4(x1, x2, x3, x4)

Arguments

x1

The first function variable

x2

The second function variable

x3

The third function variable

x4

The fourth function variable

Value

The function value


f0.test

Description

Simple test function f(1,2,3,4) = 0

Usage

f0.test(x1, x2, x3, x4)

Arguments

x1

Parameter 1

x2

Parameter 2

x3

Parameter 3

x4

Parameter 4


f1.ackley

Description

The ackley function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0. Domain xi E [-32.768, 32.768], for all i = 1, ..., d

Usage

f1.ackley(x)

Arguments

x

The vector of function parameters

Value

The function value

References

https://www.sfu.ca/~ssurjano/ackley.html


f1.adtn.rosenbrock2

Description

Two variable Rosenbrock function with random additive noise.

Usage

f1.adtn.rosenbrock2(x)

Arguments

x

Parameter vector


f1.bohachevsky

Description

The Bohachevsky function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f1.bohachevsky(x)

Arguments

x

The vector of function parameters

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f1.cigar

Description

The Cigar function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f1.cigar(x)

Arguments

x

The vector of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f1.griewank

Description

The griewank function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f1.griewank(x)

Arguments

x

The vector of function parameters

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f1.nlnn.rosenbrock2

Description

Two variable Rosenbrock function with random additive noise.

Usage

f1.nlnn.rosenbrock2(x)

Arguments

x

Parameter vector


f1.rosenbrock2

Description

Two variable Rosenbrock function, where f(c(1,1)) = 0

Usage

f1.rosenbrock2(x)

Arguments

x

Parameter vector


f1.rosenbrockn

Description

The rosenbrock function of N variables for testing optimization methods. The global optima for the function is given by xi = 1, forall i E 1...N, f(x) = 0.

Usage

f1.rosenbrockn(x)

Arguments

x

The vector of function parameters

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f1.schaffer

Description

The schaffer function of N variables for testing optimization methods. The global optima for the function is given by xi = 0, forall i E 1...N, f(x) = 0.

Usage

f1.schaffer(x)

Arguments

x

The vector of function parameters

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f1.schwefel

Description

The schwefel function of N variables for testing optimization methods. The global optima for the function is given by xi = 420.96874636, forall i E 1...N, f(x) = 0. The range of xi is [-500,500]

Usage

f1.schwefel(x)

Arguments

x

The vector of function variables.

Value

The function value

References

http://deap.gel.ulaval.ca/doc/dev/api/benchmarks.html


f1.test

Description

Simple test function f(c(1,2,3,4)) = 0

Usage

f1.test(x)

Arguments

x

Parameter vector


fixdfcolumns

Description

Coerce dataframe columns to a specic type.

Usage

fixdfcolumns(df, cols = c(), skip = TRUE, type = as.numeric)

Arguments

df

The data frame.

cols

The dataframe columns to be skiped or included.

skip

If TRUE the column names in 'cols' are skiped. When FALSE logic is inverted.

type

The type for which data frame columns must be converted.

Value

The data frame with converted column types.


generateSolution

Description

Generates a problema solution using discrete leves

Usage

generateSolution(parameters, size)

Arguments

parameters

The Objective Function parameter list

size

The solution size

Value

The solution set


getFitness

Description

Given a set S of N solutions created with sortSolution, this function returns the solution component fot the best solution.

Usage

getFitness(S, i = NULL)

Arguments

S

The solution set

i

The fitness index, if null return the whole column.

Value

The selected fitness entry


getSolution

Description

Given a set S of N solutions created with sortSolution, this function returns the solution component. A solutions is a set of solutions and their associated fitness

Usage

getSolution(S)

Arguments

S

The solution set

Value

The solution set


gm.mean

Description

Simple implementation for geometric mean

Usage

gm.mean(x)

Arguments

x

data

Value

geometric mean for data


gm.sd

Description

Simple implementation for geometric standard deviation

Usage

gm.sd(x, mu = NULL)

Arguments

x

data

mu

The geometric mean. If not provided it is calculated.

Value

geometric standard deviation for data


histplothelper

Description

Simple helper for ploting histograms

Usage

histplothelper(d, x, title = NULL)

Arguments

d

A data frame.

x

A string with the dataframe column name for histogram

title

The plot title

Value

A ggplot2 plot object


initSolution

Description

Creates the initial Solution population taking into account the lower an upper bounds of provided experiment factors.

Usage

initSolution(parameters, N = 20, sampling = "mcs")

Arguments

parameters

The Objective Function parameter list

N

The size of Solution population

sampling

The population sampling scheme, namelly <mcs|lhs|ffs> standing respectively for montecarlo sampling, latin hypercube sampling and full factorial sampling

Value

A random set of solutions


lowerBound

Description

Checks if parameters is greater than the lower bounds

Usage

lowerBound(particles, factors)

Arguments

particles

The particle set

factors

the defined range for objective function parameters

Value

The particle greater than or equal to lower limit


Magnitude

Description

Calculates the magnitude order for a given value

Usage

Magnitude(v)

Arguments

v

The numerical value

Value

The magnitude order


naiveperiod

Description

A naive approach for finding the period in a series of data points

Usage

naiveperiod(d)

Arguments

d

The data to search period

Value

A list with the average period and amplitude


NetLogoFunction

Description

NetLogoFunction class


NLWrapper.FindJar

Description

Search for the netlogo jar file on the provided path

Usage

NLWrapper.FindJar(path)

Arguments

path

The base path for searching

Value

The path for NetLogo jar file


NLWrapper.GetParameter

Description

Gets the value of a model parameter

Usage

NLWrapper.GetParameter(obj, name)

Arguments

obj

The object retuned by NLWrapper.Model

name

The parameter name string or the collection of parameter names

Value

The parameter values

Examples

## Not run: 
   rm(list=ls())
   p<- "C:/Program Files/NetLogo 6.0.4/app"
   m<- file.path(nlpath, "models", "Sample Models", "Biology", "Wolf Sheep Predation.nlogo")
   o<- NLWrapper.Model(p, m)
   v<- NLWrapper.GetParameter(o, c("initial-number-sheep"))

   or

   v<- NLWrapper.GetParameter(o, c("initial-number-sheep","initial-number-wolves")))

## End(Not run)

NLWrapper.Model

Description

This wrapper prepares the environment and instantiates the model

Usage

NLWrapper.Model(netlogodir, modelfile, dataset, maxtime)

Arguments

netlogodir

The base path of NetLogo installation

modelfile

The absolute path for NetLogo model file

dataset

The names of model variables

maxtime

The total number of iterations

Examples

## Not run: 
   rm(list=ls())
   p<- "C:/Program Files/NetLogo 6.0.4/app"
   output<- c("count sheep", "count wolves")
   m<- file.path(nlpath, "models", "Sample Models", "Biology", model, "Wolf Sheep Predation.nlogo")
   o<- NLWrapper.Model(p, m, output, 150)

## End(Not run)

NLWrapper.Run

Description

Executes a NetLogo Model using rNetLogo

Usage

NLWrapper.Run(obj, r = 1, seed = c())

Arguments

obj

The object retuned by NLWrapper.Model

r

The number of replications

seed

The collection of random seeds


NLWrapper.RunExperiment

Description

Executes a NetLogo Model using rNetLogo

Usage

NLWrapper.RunExperiment(obj, r = 1, design, FUN)

Arguments

obj

The object retuned by NLWrapper.Model

r

The number of replications

design

The desing matrix holding parameter sampling

FUN

THe calibration function.

Value

A list containing the the parameters, the calibration functio output and the whole resultset

Examples

## Not run: 
   rm(list=ls())
   objectivefn<- function(params, results) { 0 }

   f<- AddFactor(name="initial-number-sheep",min=100,max=250)
   f<- AddFactor(factors=f, name="initial-number-wolves",min=50,max=150)
   f<- AddFactor(factors=f, name="grass-regrowth-time",min=30,max=100)
   f<- AddFactor(factors=f, name="sheep-gain-from-food",min=1,max=50)
   f<- AddFactor(factors=f, name="wolf-gain-from-food",min=1,max=100)
   f<- AddFactor(factors=f, name="sheep-reproduce",min=1,max=20)
   f<- AddFactor(factors=f, name="wolf-reproduce",min=1,max=20)

   design<- AoE.LatinHypercube(factors=f)

   p<- "C:/Program Files/NetLogo 6.0.4/app"
   m<- file.path(p, "models", "Sample Models", "Biology", "Wolf Sheep Predation.nlogo")
   output<- c("count sheep", "count wolves")
   o<- NLWrapper.Model(p, m, output, 150)
   v<- RunExperiment(o, r=1, design, objectivefn)
   NLWrapper.Shutdown(o)

## End(Not run)

NLWrapper.SetParameter

Description

Set parameter values

Usage

NLWrapper.SetParameter(obj, parameters)

Arguments

obj

The object retuned by NLWrapper.Model

parameters

The data frame containing the paramters

Examples

## Not run: 
   rm(list=ls())
   p<- "C:/Program Files/NetLogo 6.0.4/app"
   m<- file.path(nlpath, "models", "Sample Models", "Biology", "Wolf Sheep Predation.nlogo")
   o<- NLWrapper.Model(p, m)

## End(Not run)

NLWrapper.SetRandomSeed

Description

Configures the random seed

Usage

NLWrapper.SetRandomSeed(obj, seed)

Arguments

obj

The object retuned by NLWrapper.Model

seed

The new random seed


NLWrapper.Shutdown

Description

This wrapper terminates RNetLogo execution environment

Usage

NLWrapper.Shutdown(obj)

Arguments

obj

The object retuned by NLWrapper.Model


ObjectiveFunction class

Description

The base class for optimization functions.

Fields

object

The raw output of objective function

objective

The objective function

parameters

The parameter list for objective function

value

The results from objective function


Options

Description

The base class for the options for the optimization metaheuristics

Fields

type

The configuration type

neighborhood

The neighborhood function for population methods

discrete

Flag indicating that and specific algorithm is discrete or continuous

nlevelz

Default value for generating parameter levels when range is provided, default value is 5

container

The object holding the configuration otions


OptionsACOR

Description

Options for ACOR method


OptionsEES1

Description

Options for EvoPER Evolutionary Stratety 1


OptionsEES2

Description

Options for Serial Dilutions method

Fields

dilutions

The desired dilutions


OptionsFactory

Description

Instantiate the Options class required for the specific metaheuristic method.

Usage

OptionsFactory(type, v = NULL)

Arguments

type

The metaheuristic method

v

The options object

Value

Options object


OptionsPSO

Description

Options for PSO optimization metaheuristic


OptionsSAA

Description

Options for SAA method

Fields

temperature

The temperature dacay function


OptionsTS

Description

Options for Tabu search optimization metaheuristic


paramconverter

Description

Convert parameter from continuous to discrete and vice-versa if needed

Usage

paramconverter(parameters, discrete, levelz = 5)

Arguments

parameters

The current parameter set

discrete

The desired parameter type

levelz

When discrete is true the number of levels to be generated

Value

The parameter collection casted to desired mode


partSolutionSpace

Description

Creates the initial Solution population taking into account the lower an upper bounds of provided experiment factors. This method works by dividing the solution space into partitions of size 'd' and then creating a full factorial combination of partitions.

Usage

partSolutionSpace(parameters, d = 4)

Arguments

parameters

The Objective Function parameter list

d

The partition size. Default value 4.

Value

A set of solutions


PlainFunction

Description

PlainFunction Class


pop.first

Description

pop an element

Usage

pop.first(x)

Arguments

x

The element collection

Value

The first element added to list FIFO


pop.last

Description

pop an element

Usage

pop.last(x)

Arguments

x

The element collection

Value

The last element added to list LIFO


predatorprey

Description

The solver for Lotka-Volterra differential equation.

Usage

predatorprey(x1, x2, x3, x4)

Arguments

x1

The growth rate of prey

x2

The decay rate of predator

x3

The predating effect on prey

x4

The predating effecto on predator

Value

The ODE solution


predatorprey.plot0

Description

Generate a plot for the predator-prey ODE output.

Usage

predatorprey.plot0(x1, x2, x3, x4, title = NULL)

Arguments

x1

The growth rate of prey

x2

The decay rate of predator

x3

The predating effect on prey

x4

The predating effect on predator

title

The optional plot title. May be omited.

Value

An ggplot2 object

Examples

## Not run: 
 predatorprey.plot0(1.351888, 1.439185, 1.337083, 0.9079049)

## End(Not run)

predatorprey.plot1

Description

Simple wrapper for 'predatorprey.plot0' accepting the parameters as a list.

Usage

predatorprey.plot1(x, title = NULL)

Arguments

x

A list containing the values of predator/prey parameters c1, c2, c3 and c4 denoting respectivelly the growth rate of prey, the decay rate of predator, the predating effect on prey and the predating effect on predator

title

The optional plot title. May be omited.

Value

An ggplot2 object

Examples

## Not run: 
 rm(list=ls())
 predatorprey.plot1(v$getBest()[1:4])

## End(Not run)

pso.best

Description

Search for the best particle solution which minimize the objective function.

Usage

pso.best(objective, particles)

Arguments

objective

The results of evaluating the objective function

particles

The particles tested

Value

The best particle


pso.chi

Description

Implementation of constriction coefficient

Usage

pso.chi(phi1, phi2)

Arguments

phi1

Acceleration coefficient toward the previous best

phi2

Acceleration coefficient toward the global best

Value

The calculated constriction coefficient


pso.lbest

Description

Finds the lbest for the particle 'i' using the topology function given by the topology parameter.

Usage

pso.lbest(i, pbest, topology)

Arguments

i

The particle position

pbest

The pbest particle collection

topology

The desired topology function

Value

The lbes for i th particle


pso.neighborhood.K2

Description

The neighborhood function for a simple linear topology where every particle has k = 2 neighbors

Usage

pso.neighborhood.K2(i, n)

Arguments

i

The particle position

n

the size of particle population


pso.neighborhood.K4

Description

The von neumann neighborhood function for a lattice-based topology where every particle has k = 4 neighbors

Usage

pso.neighborhood.K4(i, n)

Arguments

i

The particle position

n

the size of particle population


pso.neighborhood.KN

Description

Simple helper method for 'gbest' neighborhood

Usage

pso.neighborhood.KN(i, n)

Arguments

i

The particle position

n

the size of particle population


pso.printbest

Description

Shows the best particle of each of simulated generations

Usage

pso.printbest(objective, particles, generation, title)

Arguments

objective

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

particles

The current particle population

generation

The current generation

title

Some informational text to be shown


pso.velocity

Description

Calculates the PSO Velocity

Usage

pso.Velocity(W = 1, Vi, phi1, phi2, Pi, Pg, Xi)

Arguments

W

Weight (Inertia weight or constriction coefficient)

Vi

Current Velocity vector

phi1

Acceleration coefficient toward the previous best

phi2

Acceleration coefficient toward the global best

Pi

Personal best

Pg

Neighborhood best

Xi

Particle vector

Value

Updated velocity


push

Description

push an element

Usage

push(x, v)

Arguments

x

The collection of elements

v

The value to be pushed

Value

The collection of elements


random.whell

Description

A simple randon seed generator

Usage

random.wheel()

Value

A random number for seeding


RepastFunction

Description

RepastFunction class


saa.bolt

Description

Temperature function boltzmann

Usage

saa.bolt(t0, k)

Arguments

t0

The current temperature

k

The annealing value

Value

The new temperature


saa.neighborhood

Description

Generates neighbor solutions for simulated annealing

Usage

saa.neighborhood(f, S, d, n)

Arguments

f

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

S

The current solution to find a neighbor

d

The distance from current solution S distance = (max - min) * d

n

The number of parameters to be perturbed

Value

The neighbor of solution S


saa.neighborhood1

Description

Generates neighbor solutions perturbing one parameter from current solution S picked randonly.

Usage

saa.neighborhood1(f, S, d)

Arguments

f

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

S

The current solution to find a neighbor

d

The distance from current solution S distance = (max - min) * d

Value

The neighbor of solution of S


saa.neighborhoodH

Description

Generates neighbor solutions perturbing half parameters from current solution S.

Usage

saa.neighborhoodH(f, S, d)

Arguments

f

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

S

The current solution to find a neighbor

d

The distance from current solution S distance = (max - min) * d

Value

The neighbor of solution of S


saa.neighborhoodN

Description

Generates neighbor solutions perturbing all parameters from current solution S.

Usage

saa.neighborhoodN(f, S, d)

Arguments

f

An instance of ObjectiveFunction (or subclass) class ObjectiveFunction

S

The current solution to find a neighbor

d

The distance from current solution S distance = (max - min) * d

Value

The neighbor of solution of S


saa.tbyk

Description

Temperature function t/k

Usage

saa.tbyk(t0, k)

Arguments

t0

The current temperature

k

The annealing value

Value

The new temperature


saa.tcte

Description

Temperature function cte * t0

Usage

saa.tcte(t0, k)

Arguments

t0

The current temperature

k

The annealing value

Value

The new temperature


saa.texp

Description

Temperature function exponential

Usage

saa.texp(t0, k)

Arguments

t0

The current temperature

k

The annealing value

Value

The new temperature


scatterplotlothelper

Description

Simple helper for ploting 3d scaterplots

Usage

scatterplotlothelper(d, x, y, z, title = NULL)

Arguments

d

A data frame.

x

A string with the dataframe column name for x axis

y

A string with the dataframe column name for y axis

z

A string with the dataframe column name for z axis

title

The optional plot title. May be omited.

Value

A scatter3D plot


searchrow

Description

Search for a value value on a matrix

Usage

searchrow(ddata, value)

Arguments

ddata

The matrix containing the dataset

value

The value to search for

Value

Boolean TRUE for those indexes matching value


show.comp1

Description

Generates a barplot comparing the number of evalutions for algorithms ("saa","pso","acor","ees1").

Usage

show.comp1(mydata, what, title = NULL)

Arguments

mydata

The data generated with 'summarize.comp1'

what

The name of variable to plot on 'y' axis

title

the plot title

Examples

## Not run: 
	p.a<- show.comp1(d.cigar4,"evals","(a) Cigar function")
	p.b<- show.comp1(d.schaffer4,"evals","(b) Schafer function")
	p.c<- show.comp1(d.griewank4,"evals","(c) Griewank function")
	p.d<- show.comp1(d.bohachevsky4,"evals","(d) Bohachevsky function")

## End(Not run)

slope

Description

Simple function for calculate the slope on the ith element position

Usage

slope(x, y, i)

Arguments

x

The x vector

y

The y vector

i

The position

Value

The slope


slopes

Description

Calcule all slopes for the discrete x,y series

Usage

slopes(x, y)

Arguments

x

The x vector

y

The y vector

Value

A vector with all slopes


sortSolution

Description

Sort solution by its respective fitness

Usage

sortSolution(s, f)

Arguments

s

Problem solution

f

The function evaluation for s


summarize.comp1

Description

Provides as summary with averged values of experimental setup

Usage

summarize.comp1(mydata)

Arguments

mydata

The data frame generated with 'compare.algorithms1'

Value

The summarized data


tabu.getNeighbors

Description

create neighbor solutions

Usage

tabu.getNeighbors(tabu, parameters, solution, size)

Arguments

tabu

The tabu list

parameters

The parameter set

solution

The current solution

size

The neigborhood size

Value

The neighbor for solution


tabu.istabu

Description

Check whether a solution is present on tabulist

Usage

tabu.istabu(tabulist, solution)

Arguments

tabulist

The matrix of tabu solutions

solution

The solution value to be checked

Value

Boolean TRUE tabulist contains the solution


upperBound

Description

Checks if parameters is below the upper bounds

Usage

upperBound(particles, factors)

Arguments

particles

The particle set

factors

the defined range for objective function parameters

Value

The particle inside the valid upper bound


xmeanci1

Description

Calculates confidence interval of mean for provided data with desired confidence level. This functions uses bootstrap resampling scheme for estimanting the CI.

Usage

xmeanci1(x, alpha = 0.95)

Arguments

x

The data set for which CI will be calculated

alpha

The confidence level. The default value is 0.95 (95%)

Value

The confidence interval for the mean calculated using 'boot.ci'


xmeanci2

Description

Calculates confidence interval of mean for provided data with desired confidence level.

Usage

xmeanci2(x, alpha = 0.95)

Arguments

x

The data set for which CI will be calculated

alpha

The confidence level. The default value is 0.95 (95%)

Value

The confidence interval for the mean


xyplothelper

Description

Simple helper for ploting xy dispersion points.

Usage

xyplothelper(d, x, y, title = NULL)

Arguments

d

A data frame.

x

A string with the dataframe column name for x axis

y

A string with the dataframe column name for y axis

title

The optional plot title. May be omited.

Value

A ggplot2 plot object