Title: | Evolutionary Quantitative Genetics |
---|---|
Description: | Provides functions for covariance matrix comparisons, estimation of repeatabilities in measurements and matrices, and general evolutionary quantitative genetics tools. Melo D, Garcia G, Hubbe A, Assis A P, Marroig G. (2016) <doi:10.12688/f1000research.7082.3>. |
Authors: | Diogo Melo [aut, cre] , Ana Paula Assis [aut], Edgar Zanella [ctb], Fabio Andrade Machado [aut] , Guilherme Garcia [aut], Alex Hubbe [rev] , Gabriel Marroig [ths] |
Maintainer: | Diogo Melo <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.3-4 |
Built: | 2024-12-30 08:28:44 UTC |
Source: | CRAN |
Calculates the matrix repeatability using the equation in Cheverud 1996 Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology 9, 5-42.
AlphaRep(cor.matrix, sample.size)
AlphaRep(cor.matrix, sample.size)
cor.matrix |
Correlation matrix |
sample.size |
Sample size used in matrix estimation |
Alpha repeatability for correlation matrix
Diogo Melo, Guilherme Garcia
Cheverud 1996 Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology 9, 5-42.
#For single matrices cor.matrix <- RandomMatrix(10) AlphaRep(cor.matrix, 10) AlphaRep(cor.matrix, 100) #For many matrices mat.list <- RandomMatrix(10, 100) sample.sizes <- floor(runif(100, 20, 50)) unlist(Map(AlphaRep, mat.list, sample.sizes))
#For single matrices cor.matrix <- RandomMatrix(10) AlphaRep(cor.matrix, 10) AlphaRep(cor.matrix, 100) #For many matrices mat.list <- RandomMatrix(10, 100) sample.sizes <- floor(runif(100, 20, 50)) unlist(Map(AlphaRep, mat.list, sample.sizes))
Calculates covariance matrix using the maximum likelihood estimator, the maximum a posteriori (MAP) estimator under a regularized Wishart prior, and if the sample is large enough can give samples from the posterior and the median posterior estimator.
BayesianCalculateMatrix(linear.m, samples = NULL, ..., nu = NULL, S_0 = NULL)
BayesianCalculateMatrix(linear.m, samples = NULL, ..., nu = NULL, S_0 = NULL)
linear.m |
Linear model adjusted for original data |
samples |
number os samples to be generated from the posterior. Requires sample size to be at least as large as the number of dimensions |
... |
additional arguments, currently ignored |
nu |
degrees of freedom in prior distribution, defaults to the number of traits (this can be a too strong prior) |
S_0 |
cross product matrix of the prior. Default is to use the observed variances and zero covariance |
Estimated covariance matrices and posterior samples
Diogo Melo, Fabio Machado
Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
Schafer, J., e Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical applications in genetics and molecular biology, 4(1).
data(iris) iris.lm = lm(as.matrix(iris[,1:4])~iris[,5]) matrices <- BayesianCalculateMatrix(iris.lm, nu = 0.1, samples = 100)
data(iris) iris.lm = lm(as.matrix(iris[,1:4])~iris[,5]) matrices <- BayesianCalculateMatrix(iris.lm, nu = 0.1, samples = 100)
Random populations are generated by resampling the suplied data or residuals. R2 is calculated on all the random population's correlation matrices, provinding a distribution based on the original data.
BootstrapR2(ind.data, iterations = 1000, parallel = FALSE)
BootstrapR2(ind.data, iterations = 1000, parallel = FALSE)
ind.data |
Matrix of residuals or indiviual measurments |
iterations |
Number of resamples to take |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
returns a vector with the R2 for all populations
Diogo Melo Guilherme Garcia
r2.dist <- BootstrapR2(iris[,1:4], 30) quantile(r2.dist)
r2.dist <- BootstrapR2(iris[,1:4], 30) quantile(r2.dist)
Calculates the repeatability of the covariance matrix of the supplied data via bootstrap resampling
BootstrapRep( ind.data, ComparisonFunc, iterations = 1000, sample.size = dim(ind.data)[1], correlation = FALSE, parallel = FALSE )
BootstrapRep( ind.data, ComparisonFunc, iterations = 1000, sample.size = dim(ind.data)[1], correlation = FALSE, parallel = FALSE )
ind.data |
Matrix of residuals or individual measurements |
ComparisonFunc |
comparison function |
iterations |
Number of resamples to take |
sample.size |
Size of resamples, default is the same size as ind.data |
correlation |
If TRUE, correlation matrix is used, else covariance matrix. |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
Samples with replacement are taken from the full population, a statistic calculated and compared to the full population statistic.
returns the mean repeatability, that is, the mean value of comparisons from samples to original statistic.
Diogo Melo, Guilherme Garcia
BootstrapRep(iris[,1:4], MantelCor, iterations = 5, correlation = TRUE) BootstrapRep(iris[,1:4], RandomSkewers, iterations = 50) BootstrapRep(iris[,1:4], KrzCor, iterations = 50, correlation = TRUE) BootstrapRep(iris[,1:4], PCAsimilarity, iterations = 50) #Multiple threads can be used with some foreach backend library, like doMC or doParallel #library(doParallel) ##Windows: #cl <- makeCluster(2) #registerDoParallel(cl) ##Mac and Linux: #registerDoParallel(cores = 2) #BootstrapRep(iris[,1:4], PCAsimilarity, # iterations = 5, # parallel = TRUE)
BootstrapRep(iris[,1:4], MantelCor, iterations = 5, correlation = TRUE) BootstrapRep(iris[,1:4], RandomSkewers, iterations = 50) BootstrapRep(iris[,1:4], KrzCor, iterations = 50, correlation = TRUE) BootstrapRep(iris[,1:4], PCAsimilarity, iterations = 50) #Multiple threads can be used with some foreach backend library, like doMC or doParallel #library(doParallel) ##Windows: #cl <- makeCluster(2) #registerDoParallel(cl) ##Mac and Linux: #registerDoParallel(cores = 2) #BootstrapRep(iris[,1:4], PCAsimilarity, # iterations = 5, # parallel = TRUE)
Random populations are generated via ressampling using the suplied population. A statistic is calculated on the random population and compared to the statistic calculated on the original population.
BootstrapStat( ind.data, iterations, ComparisonFunc, StatFunc, sample.size = dim(ind.data)[1], parallel = FALSE )
BootstrapStat( ind.data, iterations, ComparisonFunc, StatFunc, sample.size = dim(ind.data)[1], parallel = FALSE )
ind.data |
Matrix of residuals or indiviual measurments |
iterations |
Number of resamples to take |
ComparisonFunc |
comparison function |
StatFunc |
Function for calculating the statistic |
sample.size |
Size of ressamples, default is the same size as ind.data |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
returns the mean repeatability, that is, the mean value of comparisons from samples to original statistic.
Diogo Melo, Guilherme Garcia
cov.matrix <- RandomMatrix(5, 1, 1, 10) BootstrapStat(iris[,1:4], iterations = 50, ComparisonFunc = function(x, y) PCAsimilarity(x, y)[1], StatFunc = cov) #Calculating R2 confidence intervals r2.dist <- BootstrapR2(iris[,1:4], 30) quantile(r2.dist) #Multiple threads can be used with some foreach backend library, like doMC or doParallel #library(doParallel) ##Windows: #cl <- makeCluster(2) #registerDoParallel(cl) ##Mac and Linux: #registerDoParallel(cores = 2) #BootstrapStat(iris[,1:4], iterations = 100, # ComparisonFunc = function(x, y) KrzCor(x, y)[1], # StatFunc = cov, # parallel = TRUE)
cov.matrix <- RandomMatrix(5, 1, 1, 10) BootstrapStat(iris[,1:4], iterations = 50, ComparisonFunc = function(x, y) PCAsimilarity(x, y)[1], StatFunc = cov) #Calculating R2 confidence intervals r2.dist <- BootstrapR2(iris[,1:4], 30) quantile(r2.dist) #Multiple threads can be used with some foreach backend library, like doMC or doParallel #library(doParallel) ##Windows: #cl <- makeCluster(2) #registerDoParallel(cl) ##Mac and Linux: #registerDoParallel(cores = 2) #BootstrapStat(iris[,1:4], iterations = 100, # ComparisonFunc = function(x, y) KrzCor(x, y)[1], # StatFunc = cov, # parallel = TRUE)
Uses a binary correlation matrix as a mask to calculate average within- and between-module correlations. Also calculates the ratio between them and the Modularity Hypothesis Index.
CalcAVG(cor.hypothesis, cor.matrix, MHI = TRUE, landmark.dim = NULL)
CalcAVG(cor.hypothesis, cor.matrix, MHI = TRUE, landmark.dim = NULL)
cor.hypothesis |
Hypothetical correlation matrix, with 1s within-modules and 0s between modules |
cor.matrix |
Observed empirical correlation matrix. |
MHI |
Indicates if Modularity Hypothesis Index should be calculated instead of AVG Ratio. |
landmark.dim |
Used if within-landmark correlations are to be excluded in geometric morphometric data. Either 2 for 2d data or 3 for 3d data. Default is NULL for non geometric morphomotric data. |
a named vector with the mean correlations and derived statistics
# Module vectors modules = matrix(c(rep(c(1, 0, 0), each = 5), rep(c(0, 1, 0), each = 5), rep(c(0, 0, 1), each = 5)), 15) # Binary modular matrix cor.hypot = CreateHypotMatrix(modules)[[4]] # Modular correlation matrix hypot.mask = matrix(as.logical(cor.hypot), 15, 15) mod.cor = matrix(NA, 15, 15) mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules diag(mod.cor) = 1 mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric CalcAVG(cor.hypot, mod.cor) CalcAVG(cor.hypot, mod.cor, MHI = TRUE)
# Module vectors modules = matrix(c(rep(c(1, 0, 0), each = 5), rep(c(0, 1, 0), each = 5), rep(c(0, 0, 1), each = 5)), 15) # Binary modular matrix cor.hypot = CreateHypotMatrix(modules)[[4]] # Modular correlation matrix hypot.mask = matrix(as.logical(cor.hypot), 15, 15) mod.cor = matrix(NA, 15, 15) mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules diag(mod.cor) = 1 mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric CalcAVG(cor.hypot, mod.cor) CalcAVG(cor.hypot, mod.cor, MHI = TRUE)
Calculates integration indexes based on eigenvalue dispersion of covariance or correlation matrices.
CalcEigenVar( matrix, sd = FALSE, rel = TRUE, sample = NULL, keep.positive = TRUE )
CalcEigenVar( matrix, sd = FALSE, rel = TRUE, sample = NULL, keep.positive = TRUE )
matrix |
Covariance/correlation matrix |
sd |
Logical. Default is FALSE. If TRUE, estimates eigenvalue standard deviation. If FALSE, estimate the eigenvalue variance. |
rel |
Logical. If TRUE, scales eigenvalue dispersion value by the theoretical maximum. |
sample |
Default is NULL. If a integer is provided, function calculates the expected integration value for that particular sample size and returns value as a deviation from the expected. |
keep.positive |
Logical. If TRUE, non-positive eigenvalues are removed from calculation |
This function quantifies morphological integration as the dispersion of eigenvalues in a matrix. It takes either a covariance or a correlation matrix as input, and there is no need to discern between them.The output will depend on the combination of parameters specified during input.
As default, the function calculates the relative eigenvalue variance of the matrix, which expresses the eigenvalue variance as a ratio between the actual variance and the theoretical maximum for a matrix of the same size and same amount of variance (same trace), following Machado et al. (2019). If sd=TRUE, the dispersion is measured with the standard deviation of eigenvalues instead of the variance (Pavlicev, 2009). If the sample size is provided, the function automatically calculates the expected integration value for a matrix of the same size but with no integration (e.g. a matrix with all eigenvalues equal). In that case, the result is given as a deviation from the expected and is invariant to sample size (Wagner, 1984).
Integration index based on eigenvalue dispersion.
Fabio Andrade Machado
Diogo Melo
Machado, Fabio A., Alex Hubbe, Diogo Melo, Arthur Porto, and Gabriel Marroig. 2019. "Measuring the magnitude of morphological integration: The effect of differences in morphometric representations and the inclusion of size." Evolution 33:402–411.
Pavlicev, Mihaela, James M. Cheverud, and Gunter P. Wagner. 2009. "Measuring Morphological Integration Using Eigenvalue Variance." Evolutionary Biology 36(1):157-170.
Wagner, Gunther P. 1984. "On the eigenvalue distribution of genetic and phenotypic dispersion matrices: evidence for a nonrandom organization of quantitative character variation." Journal of Mathematical Biology 21(1):77–95.
cov.matrix <- RandomMatrix(10, 1, 1, 10) # calculates the relative eigenvalue variance of a covariance matrix CalcEigenVar(cov.matrix) # calculates the relative eigenvalue variance of a correlation matrix CalcEigenVar(cov2cor(cov.matrix)) # calculates the relative eigenvalue standard deviation of a covariance # matrix CalcEigenVar(cov.matrix, sd=TRUE) # calculates the absolute eigenvalue variance of a covariance matrix CalcEigenVar(cov.matrix, rel=FALSE) # to evaluate the effect of sampling error on integration x<-mvtnorm::rmvnorm(10, sigma=cov.matrix) sample_cov.matrix<-var(x) # to contrast values of integration obtained from population covariance # matrix CalcEigenVar(cov.matrix) # with the sample integration CalcEigenVar(sample_cov.matrix) # and with the integration measured corrected for sampling error CalcEigenVar(sample_cov.matrix,sample=10)
cov.matrix <- RandomMatrix(10, 1, 1, 10) # calculates the relative eigenvalue variance of a covariance matrix CalcEigenVar(cov.matrix) # calculates the relative eigenvalue variance of a correlation matrix CalcEigenVar(cov2cor(cov.matrix)) # calculates the relative eigenvalue standard deviation of a covariance # matrix CalcEigenVar(cov.matrix, sd=TRUE) # calculates the absolute eigenvalue variance of a covariance matrix CalcEigenVar(cov.matrix, rel=FALSE) # to evaluate the effect of sampling error on integration x<-mvtnorm::rmvnorm(10, sigma=cov.matrix) sample_cov.matrix<-var(x) # to contrast values of integration obtained from population covariance # matrix CalcEigenVar(cov.matrix) # with the sample integration CalcEigenVar(sample_cov.matrix) # and with the integration measured corrected for sampling error CalcEigenVar(sample_cov.matrix,sample=10)
Calculates the coefficient of variation of the eigenvalues of a covariance matrix, a measure of integration comparable to the R^2 in correlation matrices.
CalcICV(cov.matrix)
CalcICV(cov.matrix)
cov.matrix |
Covariance matrix. |
Warning: CalcEigenVar is strongly preferred and should probably be used in place of this function.
coefficient of variation of the eigenvalues of a covariance matrix
Diogo Melo
Shirai, Leila T, and Gabriel Marroig. 2010. "Skull Modularity in Neotropical Marsupials and Monkeys: Size Variation and Evolutionary Constraint and Flexibility." Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 314 B (8): 663-83. doi:10.1002/jez.b.21367.
Porto, Arthur, Leila Teruko Shirai, Felipe Bandoni de Oliveira, and Gabriel Marroig. 2013. "Size Variation, Growth Strategies, and the Evolution of Modularity in the Mammalian Skull." Evolution 67 (July): 3305-22. doi:10.1111/evo.12177.
cov.matrix <- RandomMatrix(10, 1, 1, 10) CalcICV(cov.matrix)
cov.matrix <- RandomMatrix(10, 1, 1, 10) CalcICV(cov.matrix)
Calculates the mean squared correlation of a covariance or correlation matrix. Measures integration.
CalcR2(c.matrix)
CalcR2(c.matrix)
c.matrix |
Covariance or correlation matrix. |
Warning: CalcEigenVar is strongly preferred and should probably be used in place of this function.
Mean squared value of off diagonal elements of correlation matrix
Diogo Melo, Guilherme Garcia
Porto, Arthur, Felipe B. de Oliveira, Leila T. Shirai, Valderes de Conto, and Gabriel Marroig. 2009. "The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes." Evolutionary Biology 36 (1): 118-35. doi:10.1007/s11692-008-9038-3.
Porto, Arthur, Leila Teruko Shirai, Felipe Bandoni de Oliveira, and Gabriel Marroig. 2013. "Size Variation, Growth Strategies, and the Evolution of Modularity in the Mammalian Skull." Evolution 67 (July): 3305-22. doi:10.1111/evo.12177.
cov.matrix <- RandomMatrix(10, 1, 1, 10) # both of the following calls are equivalent, # CalcR2 converts covariance matrices to correlation matrices internally CalcR2(cov.matrix) CalcR2(cov2cor(cov.matrix))
cov.matrix <- RandomMatrix(10, 1, 1, 10) # both of the following calls are equivalent, # CalcR2 converts covariance matrices to correlation matrices internally CalcR2(cov.matrix) CalcR2(cov2cor(cov.matrix))
Calculates the Young correction for integration, using bootstrap resampling Warning: CalcEigenVar is strongly preferred and should probably be used in place of this function..
CalcR2CvCorrected(ind.data, ...) ## Default S3 method: CalcR2CvCorrected( ind.data, cv.level = 0.06, iterations = 1000, parallel = FALSE, ... ) ## S3 method for class 'lm' CalcR2CvCorrected(ind.data, cv.level = 0.06, iterations = 1000, ...)
CalcR2CvCorrected(ind.data, ...) ## Default S3 method: CalcR2CvCorrected( ind.data, cv.level = 0.06, iterations = 1000, parallel = FALSE, ... ) ## S3 method for class 'lm' CalcR2CvCorrected(ind.data, cv.level = 0.06, iterations = 1000, ...)
ind.data |
Matrix of individual measurments, or adjusted linear model |
... |
additional arguments passed to other methods |
cv.level |
Coefficient of variation level chosen for integration index adjustment in linear model. Defaults to 0.06. |
iterations |
Number of resamples to take |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
List with adjusted integration indexes, fitted models and simulated distributions of integration indexes and mean coefficient of variation.
Diogo Melo, Guilherme Garcia
Young, N. M., Wagner, G. P., and Hallgrimsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3400-5. doi:10.1073/pnas.0911856107
## Not run: integration.dist = CalcR2CvCorrected(iris[,1:4]) #adjusted values integration.dist[[1]] #ploting models library(ggplot2) ggplot(integration.dist$dist, aes(r2, mean_cv)) + geom_point() + geom_smooth(method = 'lm', color= 'black') + theme_bw() ggplot(integration.dist$dist, aes(eVals_cv, mean_cv)) + geom_point() + geom_smooth(method = 'lm', color= 'black') + theme_bw() ## End(Not run)
## Not run: integration.dist = CalcR2CvCorrected(iris[,1:4]) #adjusted values integration.dist[[1]] #ploting models library(ggplot2) ggplot(integration.dist$dist, aes(r2, mean_cv)) + geom_point() + geom_smooth(method = 'lm', color= 'black') + theme_bw() ggplot(integration.dist$dist, aes(eVals_cv, mean_cv)) + geom_point() + geom_smooth(method = 'lm', color= 'black') + theme_bw() ## End(Not run)
Estimates the variance in the sample not due to measurement error
CalcRepeatability(ID, ind.data)
CalcRepeatability(ID, ind.data)
ID |
identity of individuals |
ind.data |
individual measurements |
vector of repeatabilities
Requires at least two observations per individual
Guilherme Garcia
Lessels, C. M., and Boag, P. T. (1987). Unrepeatable repeatabilities: a common mistake. The Auk, 2(January), 116-121.
num.ind = length(iris[,1]) ID = rep(1:num.ind, 2) ind.data = rbind(iris[,1:4], iris[,1:4]+array(rnorm(num.ind*4, 0, 0.1), dim(iris[,1:4]))) CalcRepeatability(ID, ind.data)
num.ind = length(iris[,1]) ID = rep(1:num.ind, 2) ind.data = rbind(iris[,1:4], iris[,1:4]+array(rnorm(num.ind*4, 0, 0.1), dim(iris[,1:4]))) CalcRepeatability(ID, ind.data)
Calculates covariance matrix using the maximum likelihood estimator and the model residuals.
CalculateMatrix(linear.m)
CalculateMatrix(linear.m)
linear.m |
Linear model adjusted for original data. |
Estimated covariance matrix.
Diogo Melo, Fabio Machado
https://github.com/lem-usp/evolqg/wiki/
data(iris) old <- options(contrasts=c("contr.sum","contr.poly")) iris.lm = lm(as.matrix(iris[,1:4])~iris[,5]) cov.matrix <- CalculateMatrix(iris.lm) options(old) #To obtain a corrlation matrix, use: cor.matrix <- cov2cor(cov.matrix)
data(iris) old <- options(contrasts=c("contr.sum","contr.poly")) iris.lm = lm(as.matrix(iris[,1:4])~iris[,5]) cov.matrix <- CalculateMatrix(iris.lm) options(old) #To obtain a corrlation matrix, use: cor.matrix <- cov2cor(cov.matrix)
Calculates mean jacobian matrix for a set of jacobian matrices describing a local aspect of shape deformation for a given set of volumes, returning log determinants of deviations from mean jacobian (Woods, 2003).
Center2MeanJacobianFast(jacobArray)
Center2MeanJacobianFast(jacobArray)
jacobArray |
Arrays of Jacobian calculated in the JacobianArray function |
array of centered residual jacobians
Guilherme Garcia
Diogo Melo
Woods, Roger P. 2003. “Characterizing Volume and Surface Deformations in an Atlas Framework: Theory, Applications, and Implementation.” NeuroImage 18 (3):769-88.
Generic Comparison Map functions for creating parallel list methods Internal functions for making eficient comparisons.
ComparisonMap( matrix.list, MatrixCompFunc, ..., repeat.vector = NULL, parallel = FALSE )
ComparisonMap( matrix.list, MatrixCompFunc, ..., repeat.vector = NULL, parallel = FALSE )
matrix.list |
list of matrices being compared |
MatrixCompFunc |
Function used to compare pair of matrices, must output a vector: comparisons and probabilities |
... |
Aditional arguments to MatrixCompFunc |
repeat.vector |
Vector of repeatabilities for correlation correction. |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
Matrix of comparisons, matrix of probabilities.
Diogo Melo
MantelCor
, KrzCor
,RandomSkewers
Takes a binary vector or column matrix and generates list of binary correlation matrices representing the partition in the vectors.
CreateHypotMatrix(modularity.hypot)
CreateHypotMatrix(modularity.hypot)
modularity.hypot |
Matrix of hypothesis. Each line represents a trait and each column a module. if modularity.hypot[i,j] == 1, trait i is in module j. |
binary matrix or list of binary matrices. If a matrix is passed, all the vectors are combined in the last binary matrix (total hypothesis of full integration hypothesis).
rand.hypots <- matrix(sample(c(1, 0), 30, replace=TRUE), 10, 3) CreateHypotMatrix(rand.hypots)
rand.hypots <- matrix(sample(c(1, 0), 30, replace=TRUE), 10, 3) CreateHypotMatrix(rand.hypots)
Compares the expected response to selection for two matrices for a specific set of selection gradients (not random gradients like in the RandomSkewers method)
DeltaZCorr(cov.x, cov.y, skewers, ...) ## Default S3 method: DeltaZCorr(cov.x, cov.y, skewers, ...) ## S3 method for class 'list' DeltaZCorr(cov.x, cov.y = NULL, skewers, parallel = FALSE, ...)
DeltaZCorr(cov.x, cov.y, skewers, ...) ## Default S3 method: DeltaZCorr(cov.x, cov.y, skewers, ...) ## S3 method for class 'list' DeltaZCorr(cov.x, cov.y = NULL, skewers, parallel = FALSE, ...)
cov.x |
Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is supplied, all matrices are compared. If cov.y is supplied, all matrices in list are compared to it. |
cov.y |
First argument is compared to cov.y. Optional if cov.x is a list. |
skewers |
matrix of column vectors to be used as gradients |
... |
additional arguments passed to other methods. |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
vector of vector correlations between the expected responses for the two matrices for each supplied vector
Diogo Melo, Guilherme Garcia
Cheverud, J. M., and Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461-469.
KrzCor
,MantelCor
,,RandomSkewers
x <- RandomMatrix(10, 1, 1, 10) y <- RandomMatrix(10, 1, 1, 10) n_skewers = 10 skewers = matrix(rnorm(10*n_skewers), 10, n_skewers) DeltaZCorr(x, y, skewers)
x <- RandomMatrix(10, 1, 1, 10) y <- RandomMatrix(10, 1, 1, 10) n_skewers = 10 skewers = matrix(rnorm(10*n_skewers), 10, n_skewers) DeltaZCorr(x, y, skewers)
Simulated example of 4 continuous bone lengths from 5 species.
data(dentus)
data(dentus)
A data frame with 300 rows and 5 variables
humerus
ulna
femur
tibia
species
Hypothetical tree for the species in the dentus data set.
data(dentus.tree)
data(dentus.tree)
ape tree object
Given a set of covariance matrices and means for terminals, test the hypothesis that observed divergence is larger/smaller than expected by drift alone using a regression of the between-group variances on the within-group eigenvalues.
DriftTest(means, cov.matrix, show.plot = TRUE)
DriftTest(means, cov.matrix, show.plot = TRUE)
means |
list or array of species means being compared. array must have means in the rows. |
cov.matrix |
ancestral covariance matrix for all populations |
show.plot |
Logical. If TRUE, plot of eigenvalues of ancestral matrix by between group variance is showed. |
list of results containing:
regression: the linear regression between the log of the eigenvalues of the ancestral matrix and the log of the between group variance (projected on the eigenvectors of the ancestral matrix)
coefficient_CI_95: confidence intervals for the regression coefficients
log.between_group_variance: log of the between group variance (projected on the ancestral matrix eigenvectors)
log.W_eVals: log of the ancestral matrix eigenvalues
plot: plot of the regression using ggplot2
If the regression coefficient is significantly different to one, the null hypothesis of drift is rejected.
Ana Paula Assis, Diogo Melo
Marroig, G., and Cheverud, J. M. (2004). Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? The American Naturalist, 163(3), 417-428. doi:10.1086/381693
Proa, M., O'Higgins, P. and Monteiro, L. R. (2013), Type I error rates for testing genetic drift with phenotypic covariance matrices: A simulation study. Evolution, 67: 185-195. doi: 10.1111/j.1558-5646.2012.01746.x
#Input can be an array with means in each row or a list of mean vectors means = array(rnorm(40*10), c(10, 40)) cov.matrix = RandomMatrix(40, 1, 1, 10) DriftTest(means, cov.matrix)
#Input can be an array with means in each row or a list of mean vectors means = array(rnorm(40*10), c(10, 40)) cov.matrix = RandomMatrix(40, 1, 1, 10) DriftTest(means, cov.matrix)
This function performs eigentensor decomposition on a set of covariance matrices.
EigenTensorDecomposition(matrices, return.projection = TRUE, ...) ## S3 method for class 'list' EigenTensorDecomposition(matrices, return.projection = TRUE, ...) ## Default S3 method: EigenTensorDecomposition(matrices, return.projection = TRUE, ...)
EigenTensorDecomposition(matrices, return.projection = TRUE, ...) ## S3 method for class 'list' EigenTensorDecomposition(matrices, return.projection = TRUE, ...) ## Default S3 method: EigenTensorDecomposition(matrices, return.projection = TRUE, ...)
matrices |
k x k x m array of m covariance matrices with k traits; |
return.projection |
Should we project covariance matrices into estimated eigentensors? Defaults to TRUE |
... |
additional arguments for methods |
The number of estimated eigentensors is the minimum between the number of data points (m) and the number of independent variables (k(k + 1)/2) minus one, in a similar manner to the usual principal component analysis.
List with the following components:
mean mean covariance matrices used to center the sample (obtained from MeanMatrix
)
mean.sqrt square root of mean matrix (saved for use in other functions,
such as ProjectMatrix
and RevertMatrix
)
values vector of ordered eigenvalues associated with eigentensors;
matrices array of eigentensor in matrix form;
projection matrix of unstandardized projected covariance matrices over eigentensors.
Guilherme Garcia, Diogo Melo
Basser P. J., Pajevic S. 2007. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing. 87:220-236.
Hine E., Chenoweth S. F., Rundle H. D., Blows M. W. 2009. Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 364:1567-78.
data(dentus) dentus.vcv <- daply (dentus, .(species), function(x) cov(x[,-5])) dentus.vcv <- aperm(dentus.vcv, c(2, 3, 1)) dentus.etd <- EigenTensorDecomposition(dentus.vcv, TRUE) # Plot some results oldpar <- par(mfrow = c(1,2)) plot(dentus.etd $ values, pch = 20, type = 'b', ylab = 'Eigenvalue') plot(dentus.etd $ projection [, 1:2], pch = 20, xlab = 'Eigentensor 1', ylab = 'Eigentensor 2') text(dentus.etd $ projection [, 1:2], labels = rownames (dentus.etd $ projection), pos = 2) par(oldpar) # we can also deal with posterior samples of covariance matrices using plyr dentus.models <- dlply(dentus, .(species), lm, formula = cbind(humerus, ulna, femur, tibia) ~ 1) dentus.matrices <- llply(dentus.models, BayesianCalculateMatrix, samples = 100) dentus.post.vcv <- laply(dentus.matrices, function (L) L $ Ps) dentus.post.vcv <- aperm(dentus.post.vcv, c(3, 4, 1, 2)) # this will perform one eigentensor decomposition for each set of posterior samples dentus.post.etd <- alply(dentus.post.vcv, 4, EigenTensorDecomposition) # which would allow us to observe the posterior # distribution of associated eigenvalues, for example dentus.post.eval <- laply (dentus.post.etd, function (L) L $ values) boxplot(dentus.post.eval, xlab = 'Index', ylab = 'Value', main = 'Posterior Eigenvalue Distribution')
data(dentus) dentus.vcv <- daply (dentus, .(species), function(x) cov(x[,-5])) dentus.vcv <- aperm(dentus.vcv, c(2, 3, 1)) dentus.etd <- EigenTensorDecomposition(dentus.vcv, TRUE) # Plot some results oldpar <- par(mfrow = c(1,2)) plot(dentus.etd $ values, pch = 20, type = 'b', ylab = 'Eigenvalue') plot(dentus.etd $ projection [, 1:2], pch = 20, xlab = 'Eigentensor 1', ylab = 'Eigentensor 2') text(dentus.etd $ projection [, 1:2], labels = rownames (dentus.etd $ projection), pos = 2) par(oldpar) # we can also deal with posterior samples of covariance matrices using plyr dentus.models <- dlply(dentus, .(species), lm, formula = cbind(humerus, ulna, femur, tibia) ~ 1) dentus.matrices <- llply(dentus.models, BayesianCalculateMatrix, samples = 100) dentus.post.vcv <- laply(dentus.matrices, function (L) L $ Ps) dentus.post.vcv <- aperm(dentus.post.vcv, c(3, 4, 1, 2)) # this will perform one eigentensor decomposition for each set of posterior samples dentus.post.etd <- alply(dentus.post.vcv, 4, EigenTensorDecomposition) # which would allow us to observe the posterior # distribution of associated eigenvalues, for example dentus.post.eval <- laply (dentus.post.etd, function (L) L $ values) boxplot(dentus.post.eval, xlab = 'Index', ylab = 'Value', main = 'Posterior Eigenvalue Distribution')
Calculates the extended covariance matrix estimation as described in Marroig et al. 2012
ExtendMatrix(cov.matrix, var.cut.off = 1e-04, ret.dim = NULL)
ExtendMatrix(cov.matrix, var.cut.off = 1e-04, ret.dim = NULL)
cov.matrix |
Covariance matrix |
var.cut.off |
Cut off for second derivative variance. Ignored if ret.dim is passed. |
ret.dim |
Number of retained eigenvalues |
Extended covariance matrix and second derivative variance
Covariance matrix being extended should be larger then 10x10
Diogo Melo
Marroig, G., Melo, D. A. R., and Garcia, G. (2012). Modularity, noise, and natural selection. Evolution; international journal of organic evolution, 66(5), 1506-24. doi:10.1111/j.1558-5646.2011.01555.x
cov.matrix = RandomMatrix(11, 1, 1, 100) ext.matrix = ExtendMatrix(cov.matrix, var.cut.off = 1e-6) ext.matrix = ExtendMatrix(cov.matrix, ret.dim = 6)
cov.matrix = RandomMatrix(11, 1, 1, 100) ext.matrix = ExtendMatrix(cov.matrix, var.cut.off = 1e-6) ext.matrix = ExtendMatrix(cov.matrix, ret.dim = 6)
Calculates jacobians for a given interpolation in a set of points determined from tesselation (as centroids of each tetrahedron defined, for now...)
JacobianArray(spline, tesselation, ...)
JacobianArray(spline, tesselation, ...)
spline |
Thin plate spline calculated by the TPS function |
tesselation |
matrix of landmarks. |
... |
Additional arguments to some function |
array of jacobians calculated at the centroids
Jacobians are calculated on the row centroids of the tesselation matrix.
Guilherme Garcia
Calculates covariance matrix correlation via Krzanowski Correlation
KrzCor(cov.x, cov.y, ...) ## Default S3 method: KrzCor(cov.x, cov.y, ret.dim = NULL, ...) ## S3 method for class 'list' KrzCor( cov.x, cov.y = NULL, ret.dim = NULL, repeat.vector = NULL, parallel = FALSE, ... ) ## S3 method for class 'mcmc_sample' KrzCor(cov.x, cov.y, ret.dim = NULL, parallel = FALSE, ...)
KrzCor(cov.x, cov.y, ...) ## Default S3 method: KrzCor(cov.x, cov.y, ret.dim = NULL, ...) ## S3 method for class 'list' KrzCor( cov.x, cov.y = NULL, ret.dim = NULL, repeat.vector = NULL, parallel = FALSE, ... ) ## S3 method for class 'mcmc_sample' KrzCor(cov.x, cov.y, ret.dim = NULL, parallel = FALSE, ...)
cov.x |
Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is suplied, all matrices are compared to each other. If cov.y is supplied, all matrices in list are compared to it. |
cov.y |
First argument is compared to cov.y. Optional if cov.x is a list. |
... |
additional arguments passed to other methods |
ret.dim |
number of retained dimensions in the comparison, default for nxn matrix is n/2-1 |
repeat.vector |
Vector of repeatabilities for correlation correction. |
parallel |
if TRUE and a list is passed, computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
If cov.x and cov.y are passed, returns Krzanowski correlation
If cov.x is a list and cov.y is passed, same as above, but for all matrices in cov.x.
If only a list is passed to cov.x, a matrix of Krzanowski correlation values. If repeat.vector is passed, comparison matrix is corrected above diagonal and repeatabilities returned in diagonal.
Diogo Melo, Guilherme Garcia
Krzanowski, W. J. (1979). Between-Groups Comparison of Principal Components. Journal of the American Statistical Association, 74(367), 703. doi:10.2307/2286995
RandomSkewers
,KrzProjection
,MantelCor
c1 <- RandomMatrix(10, 1, 1, 10) c2 <- RandomMatrix(10, 1, 1, 10) c3 <- RandomMatrix(10, 1, 1, 10) KrzCor(c1, c2) KrzCor(list(c1, c2, c3)) reps <- unlist(lapply(list(c1, c2, c3), MonteCarloRep, 10, KrzCor, iterations = 10)) KrzCor(list(c1, c2, c3), repeat.vector = reps) c4 <- RandomMatrix(10) KrzCor(list(c1, c2, c3), c4) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) KrzCor(list(c1, c2, c3), parallel = TRUE) ## End(Not run)
c1 <- RandomMatrix(10, 1, 1, 10) c2 <- RandomMatrix(10, 1, 1, 10) c3 <- RandomMatrix(10, 1, 1, 10) KrzCor(c1, c2) KrzCor(list(c1, c2, c3)) reps <- unlist(lapply(list(c1, c2, c3), MonteCarloRep, 10, KrzCor, iterations = 10)) KrzCor(list(c1, c2, c3), repeat.vector = reps) c4 <- RandomMatrix(10) KrzCor(list(c1, c2, c3), c4) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) KrzCor(list(c1, c2, c3), parallel = TRUE) ## End(Not run)
Calculates the modified Krzanowski correlation between matrices, projecting the variance in each principal components of the first matrix in to the ret.dim.2 components of the second matrix.
KrzProjection(cov.x, cov.y, ...) ## Default S3 method: KrzProjection(cov.x, cov.y, ret.dim.1 = NULL, ret.dim.2 = NULL, ...) ## S3 method for class 'list' KrzProjection( cov.x, cov.y = NULL, ret.dim.1 = NULL, ret.dim.2 = NULL, parallel = FALSE, full.results = FALSE, ... )
KrzProjection(cov.x, cov.y, ...) ## Default S3 method: KrzProjection(cov.x, cov.y, ret.dim.1 = NULL, ret.dim.2 = NULL, ...) ## S3 method for class 'list' KrzProjection( cov.x, cov.y = NULL, ret.dim.1 = NULL, ret.dim.2 = NULL, parallel = FALSE, full.results = FALSE, ... )
cov.x |
Single covariance matrix ou list of covariance matrices. If cov.x is a single matrix is supplied, it is compared to cov.y. If cov.x is a list of matrices is supplied and no cov.y is supplied, all matrices are compared between each other. If cov.x is a list of matrices and a single cov.y matrix is supplied, all matrices in list are compared to it. |
cov.y |
First argument is compared to cov.y. If cov.x is a list, every element in cov.x is projected in cov.y. |
... |
additional arguments passed to other methods |
ret.dim.1 |
number of retained dimensions for first matrix in comparison, default for nxn matrix is n/2-1 |
ret.dim.2 |
number of retained dimensions for second matrix in comparison, default for nxn matrix is n/2-1 |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
full.results |
if FALSE returns only total variance, if TRUE also per PC variance. |
Ratio of projected variance to total variance, and ratio of projected total in each PC
Diogo Melo, Guilherme Garcia
Krzanowski, W. J. (1979). Between-Groups Comparison of Principal Components. Journal of the American Statistical Association, 74(367), 703. doi:10.2307/2286995
c1 <- RandomMatrix(10) c2 <- RandomMatrix(10) KrzProjection(c1, c2) m.list <- RandomMatrix(10, 3) KrzProjection(m.list) KrzProjection(m.list, full.results = TRUE) KrzProjection(m.list, ret.dim.1 = 5, ret.dim.2 = 4) KrzProjection(m.list, ret.dim.1 = 4, ret.dim.2 = 5) KrzProjection(m.list, c1) KrzProjection(m.list, c1, full.results = TRUE) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) KrzProjection(m.list, parallel = TRUE) ## End(Not run)
c1 <- RandomMatrix(10) c2 <- RandomMatrix(10) KrzProjection(c1, c2) m.list <- RandomMatrix(10, 3) KrzProjection(m.list) KrzProjection(m.list, full.results = TRUE) KrzProjection(m.list, ret.dim.1 = 5, ret.dim.2 = 4) KrzProjection(m.list, ret.dim.1 = 4, ret.dim.2 = 5) KrzProjection(m.list, c1) KrzProjection(m.list, c1, full.results = TRUE) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) KrzProjection(m.list, parallel = TRUE) ## End(Not run)
Calculates the subspace most similar across a set of covariance matrices.
KrzSubspace(cov.matrices, k = NULL)
KrzSubspace(cov.matrices, k = NULL)
cov.matrices |
list of covariance matrices |
k |
number of dimensions to be retained in calculating the subspace |
H shared space matrix
k_eVals_H eigen values for shared space matrix, maximum value for each is the number of matrices, representing a fully shared direction
k_eVecs_H eigen vectors of shared space matrix
angles between each population subspace and each eigen vector of shared space matrix
can be used to implement the Bayesian comparison from Aguirre et al. 2014
Aguirre, J. D., E. Hine, K. McGuigan, and M. W. Blows. "Comparing G: multivariate analysis of genetic variation in multiple populations." Heredity 112, no. 1 (2014): 21-29.
data(dentus) dentus.matrices = dlply(dentus, .(species), function(x) cov(x[-5])) KrzSubspace(dentus.matrices, k = 2) ## Not run: # The method in Aguirre et al. 2014 can de implemented using this function as follows: #Random input data with dimensions traits x traits x populations x MCMCsamples: cov.matrices = aperm(aaply(1:10, 1, function(x) laply(RandomMatrix(6, 40, variance = runif(6,1, 10)), identity)), c(3, 4, 1, 2)) Hs = alply(cov.matrices, 4, function(x) alply(x, 3)) |> llply(function(x) KrzSubspace(x, 3)$H) avgH = Reduce("+", Hs)/length(Hs) avgH.vec <- eigen(avgH)$vectors MCMC.H.val = laply(Hs, function(mat) diag(t(avgH.vec) %*% mat %*% avgH.vec)) # confidence intervals for variation in shared subspace directions library(coda) HPDinterval(as.mcmc(MCMC.H.val)) ## End(Not run)
data(dentus) dentus.matrices = dlply(dentus, .(species), function(x) cov(x[-5])) KrzSubspace(dentus.matrices, k = 2) ## Not run: # The method in Aguirre et al. 2014 can de implemented using this function as follows: #Random input data with dimensions traits x traits x populations x MCMCsamples: cov.matrices = aperm(aaply(1:10, 1, function(x) laply(RandomMatrix(6, 40, variance = runif(6,1, 10)), identity)), c(3, 4, 1, 2)) Hs = alply(cov.matrices, 4, function(x) alply(x, 3)) |> llply(function(x) KrzSubspace(x, 3)$H) avgH = Reduce("+", Hs)/length(Hs) avgH.vec <- eigen(avgH)$vectors MCMC.H.val = laply(Hs, function(mat) diag(t(avgH.vec) %*% mat %*% avgH.vec)) # confidence intervals for variation in shared subspace directions library(coda) HPDinterval(as.mcmc(MCMC.H.val)) ## End(Not run)
Calculates the usual Krzanowski subspace comparison using a posterior samples for a set of phenotypic covariance matrices. Then, this observed comparison is contrasted to the subspace comparison across a permutation of the original data. Residuals, which are used to calculate the observed P-matrices, are shuffled across groups. This process is repeated, creating a null distribution of subspace comparisons under the hypothesis that all P-matrices come from the same population. This method is a modification on the fully Bayesian method proposed in Aguirre et. al 2013 and improved in Morrisey et al 2019.
KrzSubspaceBootstrap(x, rep = 1, MCMCsamples = 1000, parallel = FALSE)
KrzSubspaceBootstrap(x, rep = 1, MCMCsamples = 1000, parallel = FALSE)
x |
list of linear models from which P-matrices should be calculated |
rep |
number of bootstrap samples to be made |
MCMCsamples |
number of MCMCsamples for each P-matrix posterior distribution. |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
A list with the observed and randomized eigenvalue distributions for the posterior Krz Subspace comparisons.
Aguirre, J. D., E. Hine, K. McGuigan, and M. W. Blows. 2013. “Comparing G: multivariate analysis of genetic variation in multiple populations.” Heredity 112 (February): 21–29.
Morrissey, Michael B., Sandra Hangartner, and Keyne Monro. 2019. “A Note on Simulating Null Distributions for G Matrix Comparisons.” Evolution; International Journal of Organic Evolution 73 (12): 2512–17.
KrzSubspaceDataFrame
, PlotKrzSubspace
library(plyr) data(ratones) model_formula = paste("cbind(", paste(names(ratones)[13:20], collapse = ", "), ") ~ SEX") lm_models = dlply(ratones, .(LIN), function(df) lm(as.formula(model_formula), data = df)) krz_comparsion = KrzSubspaceBootstrap(lm_models, rep = 100, MCMCsamples = 1000) krz_df = KrzSubspaceDataFrame(krz_comparsion) PlotKrzSubspace(krz_df)
library(plyr) data(ratones) model_formula = paste("cbind(", paste(names(ratones)[13:20], collapse = ", "), ") ~ SEX") lm_models = dlply(ratones, .(LIN), function(df) lm(as.formula(model_formula), data = df)) krz_comparsion = KrzSubspaceBootstrap(lm_models, rep = 100, MCMCsamples = 1000) krz_df = KrzSubspaceDataFrame(krz_comparsion) PlotKrzSubspace(krz_df)
Returns posterior means and confidence intervals from the object produced by the KrzSubspaceBootstrap() function. Mainly used for ploting using PlotKrzSubspace. See example in the KrzSubspaceBootstrap function.
KrzSubspaceDataFrame(x, n = ncol(observed), prob = 0.95)
KrzSubspaceDataFrame(x, n = ncol(observed), prob = 0.95)
x |
output from KrzSubspaceBootstrap function. |
n |
number of eigenvalues to use |
prob |
Posterior probability interval. Default is 95%. |
Posterior intervals for the eigenvalues of the H matrix in the KrzSubspace comparison.
KrzSubspaceBootstrap
, PlotKrzSubspace
Calculates the L-Modularity (Newman-type modularity) and the partition of traits that minimizes L-Modularity. Wrapper for using correlations matrices in community detection algorithms from igraph.
LModularity(cor.matrix, method = optimal.community, ...)
LModularity(cor.matrix, method = optimal.community, ...)
cor.matrix |
correlation matrix |
method |
community detection function |
... |
Additional arguments to igraph community detection function |
Warning: Using modularity maximization is almost always a terrible idea. See: https://skewed.de/tiago/blog/modularity-harmful
List with L-Modularity value and trait partition
Community detection is done by transforming the correlation matrix into a weighted graph and using community detection algorithms on this graph. Default method is optimal but slow. See igraph documentation for other options.
If negative correlations are present, the square of the correlation matrix is used as weights.
Modularity and community structure in networks (2006) M. E. J. Newman, 8577-8582, doi: 10.1073/pnas.0601602103
## Not run: # A modular matrix: modules = matrix(c(rep(c(1, 0, 0), each = 5), rep(c(0, 1, 0), each = 5), rep(c(0, 0, 1), each = 5)), 15) cor.hypot = CreateHypotMatrix(modules)[[4]] hypot.mask = matrix(as.logical(cor.hypot), 15, 15) mod.cor = matrix(NA, 15, 15) mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules diag(mod.cor) = 1 mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric # requires a custom igraph installation with GLPK installed in the system LModularity(mod.cor) ## End(Not run)
## Not run: # A modular matrix: modules = matrix(c(rep(c(1, 0, 0), each = 5), rep(c(0, 1, 0), each = 5), rep(c(0, 0, 1), each = 5)), 15) cor.hypot = CreateHypotMatrix(modules)[[4]] hypot.mask = matrix(as.logical(cor.hypot), 15, 15) mod.cor = matrix(NA, 15, 15) mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules diag(mod.cor) = 1 mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric # requires a custom igraph installation with GLPK installed in the system LModularity(mod.cor) ## End(Not run)
Calculates the local shape variables of a set of landmarks using the sequence: - TPS transform between all shapes and the mean shape - Jacobian of the TPS transforms at the centroid of rows of the landmarks in the tesselation argument - Mean center the Jacobians using the Karcher Mean - Take the determinant of the centered jacobians
LocalShapeVariables( gpa = NULL, cs = NULL, landmarks = NULL, tesselation, run_parallel = FALSE )
LocalShapeVariables( gpa = NULL, cs = NULL, landmarks = NULL, tesselation, run_parallel = FALSE )
gpa |
Procustes aligned landmarks. |
cs |
Centoid sizes |
landmarks |
unaligned landmarks. Ignored if both gpa and cs are passed. |
tesselation |
matrix of rows of the landmarks. The centroid of each row is used to mark the position of the jacobians |
run_parallel |
Logical. If computation should be paralleled. Use with caution, can make things worse. Requires that at parallel back-end like doMC be registered |
List with TPS functions, jacobian matrices, local shape variables, mean shape, centroid sizes and individual IDs
Guilherme Garcia
Diogo Melo
Calculates correlation matrix correlation and significance via Mantel test.
MantelCor(cor.x, cor.y, ...) ## Default S3 method: MantelCor( cor.x, cor.y, permutations = 1000, ..., landmark.dim = NULL, withinLandmark = FALSE, mod = FALSE ) ## S3 method for class 'list' MantelCor( cor.x, cor.y = NULL, permutations = 1000, repeat.vector = NULL, parallel = FALSE, ... ) ## S3 method for class 'mcmc_sample' MantelCor(cor.x, cor.y, ..., parallel = FALSE) MatrixCor(cor.x, cor.y, ...) ## Default S3 method: MatrixCor(cor.x, cor.y, ...) ## S3 method for class 'list' MatrixCor( cor.x, cor.y = NULL, permutations = 1000, repeat.vector = NULL, parallel = FALSE, ... ) ## S3 method for class 'mcmc_sample' MatrixCor(cor.x, cor.y, ..., parallel = FALSE)
MantelCor(cor.x, cor.y, ...) ## Default S3 method: MantelCor( cor.x, cor.y, permutations = 1000, ..., landmark.dim = NULL, withinLandmark = FALSE, mod = FALSE ) ## S3 method for class 'list' MantelCor( cor.x, cor.y = NULL, permutations = 1000, repeat.vector = NULL, parallel = FALSE, ... ) ## S3 method for class 'mcmc_sample' MantelCor(cor.x, cor.y, ..., parallel = FALSE) MatrixCor(cor.x, cor.y, ...) ## Default S3 method: MatrixCor(cor.x, cor.y, ...) ## S3 method for class 'list' MatrixCor( cor.x, cor.y = NULL, permutations = 1000, repeat.vector = NULL, parallel = FALSE, ... ) ## S3 method for class 'mcmc_sample' MatrixCor(cor.x, cor.y, ..., parallel = FALSE)
cor.x |
Single correlation matrix or list of correlation matrices. If single matrix is supplied, it is compared to cor.y. If list is supplied and no cor.y is supplied, all matrices are compared. If cor.y is supplied, all matrices in list are compared to it. |
cor.y |
First argument is compared to cor.y. Optional if cor.x is a list. |
... |
additional arguments passed to other methods |
permutations |
Number of permutations used in significance calculation. |
landmark.dim |
Used if permutations should be performed maintaining landmark structure in geometric morphometric data. Either 2 for 2d data or 3 for 3d data. Default is NULL for non geometric morphomotric data. |
withinLandmark |
Logical. If TRUE within-landmark correlations are used in the calculation of matrix correlation. Only used if landmark.dim is passed, default is FALSE. |
mod |
Set TRUE to use mantel in testing modularity hypothesis. Should only be used in MantelModTest. |
repeat.vector |
Vector of repeatabilities for correlation correction. |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
If cor.x and cor.y are passed, returns matrix Pearson correlation coefficient and significance via Mantel permutations.
If cor.x is a list of matrices and cor.y is passed, same as above, but for all matrices in cor.x.
If only cor.x is passed, a matrix of MantelCor average values and probabilities of all comparisons. If repeat.vector is passed, comparison matrix is corrected above diagonal and repeatabilities returned in diagonal.
If the significance is not needed, MatrixCor provides the correlation and skips the permutations, so it is much faster.
Diogo Melo, Guilherme Garcia
http://en.wikipedia.org/wiki/Mantel_test
KrzCor
,RandomSkewers
,mantel
,RandomSkewers
,TestModularity
, MantelModTest
c1 <- RandomMatrix(10, 1, 1, 10) c2 <- RandomMatrix(10, 1, 1, 10) c3 <- RandomMatrix(10, 1, 1, 10) MantelCor(cov2cor(c1), cov2cor(c2)) cov.list <- list(c1, c2, c3) cor.list <- llply(list(c1, c2, c3), cov2cor) MantelCor(cor.list) # For repeatabilities we can use MatrixCor, which skips the significance calculation reps <- unlist(lapply(cov.list, MonteCarloRep, 10, MatrixCor, correlation = TRUE)) MantelCor(cor.list, repeat.vector = reps) c4 <- RandomMatrix(10) MantelCor(cor.list, c4) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) MantelCor(cor.list, parallel = TRUE) ## End(Not run)
c1 <- RandomMatrix(10, 1, 1, 10) c2 <- RandomMatrix(10, 1, 1, 10) c3 <- RandomMatrix(10, 1, 1, 10) MantelCor(cov2cor(c1), cov2cor(c2)) cov.list <- list(c1, c2, c3) cor.list <- llply(list(c1, c2, c3), cov2cor) MantelCor(cor.list) # For repeatabilities we can use MatrixCor, which skips the significance calculation reps <- unlist(lapply(cov.list, MonteCarloRep, 10, MatrixCor, correlation = TRUE)) MantelCor(cor.list, repeat.vector = reps) c4 <- RandomMatrix(10) MantelCor(cor.list, c4) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) MantelCor(cor.list, parallel = TRUE) ## End(Not run)
Calculates the correlation and Mantel significance test between a hypothetical binary modularity matrix and a correlation matrix. Also gives mean correlation within- and between-modules. This function is usually only called by TestModularity.
MantelModTest(cor.hypothesis, cor.matrix, ...) ## Default S3 method: MantelModTest( cor.hypothesis, cor.matrix, permutations = 1000, MHI = FALSE, ..., landmark.dim = NULL, withinLandmark = FALSE ) ## S3 method for class 'list' MantelModTest( cor.hypothesis, cor.matrix, permutations = 1000, MHI = FALSE, landmark.dim = NULL, withinLandmark = FALSE, ..., parallel = FALSE )
MantelModTest(cor.hypothesis, cor.matrix, ...) ## Default S3 method: MantelModTest( cor.hypothesis, cor.matrix, permutations = 1000, MHI = FALSE, ..., landmark.dim = NULL, withinLandmark = FALSE ) ## S3 method for class 'list' MantelModTest( cor.hypothesis, cor.matrix, permutations = 1000, MHI = FALSE, landmark.dim = NULL, withinLandmark = FALSE, ..., parallel = FALSE )
cor.hypothesis |
Hypothetical correlation matrix, with 1s within-modules and 0s between modules. |
cor.matrix |
Observed empirical correlation matrix. |
... |
additional arguments passed to MantelCor |
permutations |
Number of permutations used in significance calculation. |
MHI |
Indicates if Modularity Hypothesis Index should be calculated instead of AVG Ratio. |
landmark.dim |
Used if permutations should be performed maintaining landmark structure in geometric morphometric data. Either 2 for 2d data or 3 for 3d data. Default is NULL for non geometric morphometric data. |
withinLandmark |
Logical. If TRUE within-landmark correlation are used in calculation of correlation. Only used if landmark.dim is passed, default is FALSE. |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
CalcAVG can be used when a significance test is not required.
Returns a vector with the matrix correlation, significance via Mantel, within- and between module correlation.
Diogo Melo, Guilherme Garcia
Porto, Arthur, Felipe B. Oliveira, Leila T. Shirai, Valderes Conto, and Gabriel Marroig. 2009. "The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes." Evolutionary Biology 36 (1): 118-35. doi:10.1007/s11692-008-9038-3.
Modularity and Morphometrics: Error Rates in Hypothesis Testing Guilherme Garcia, Felipe Bandoni de Oliveira, Gabriel Marroig bioRxiv 030874; doi: http://dx.doi.org/10.1101/030874
mantel
,MantelCor
,CalcAVG
,TestModularity
# Create a single modularity hypothesis: hypot = rep(c(1, 0), each = 6) cor.hypot = CreateHypotMatrix(hypot) # First with an unstructured matrix: un.cor = RandomMatrix(12) MantelModTest(cor.hypot, un.cor) # Now with a modular matrix: hypot.mask = matrix(as.logical(cor.hypot), 12, 12) mod.cor = matrix(NA, 12, 12) mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules diag(mod.cor) = 1 mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric MantelModTest(cor.hypot, mod.cor)
# Create a single modularity hypothesis: hypot = rep(c(1, 0), each = 6) cor.hypot = CreateHypotMatrix(hypot) # First with an unstructured matrix: un.cor = RandomMatrix(12) MantelModTest(cor.hypot, un.cor) # Now with a modular matrix: hypot.mask = matrix(as.logical(cor.hypot), 12, 12) mod.cor = matrix(NA, 12, 12) mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules diag(mod.cor) = 1 mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric MantelModTest(cor.hypot, mod.cor)
Compare two matrices using all available methods. Currently RandomSkewers, MantelCor, KrzCor and PCASimilarity
MatrixCompare(cov.x, cov.y, id = ".id")
MatrixCompare(cov.x, cov.y, id = ".id")
cov.x |
covariance or correlation matrix |
cov.y |
covariance or correlation matrix |
id |
name of the comparison column |
data.frame of comparisons
cov.x = RandomMatrix(10, 1, 1, 10) cov.y = RandomMatrix(10, 1, 10, 20) MatrixCompare(cov.x, cov.y)
cov.x = RandomMatrix(10, 1, 1, 10) cov.y = RandomMatrix(10, 1, 10, 20) MatrixCompare(cov.x, cov.y)
Calculates Distances between covariance matrices.
MatrixDistance(cov.x, cov.y, distance, ...) ## Default S3 method: MatrixDistance(cov.x, cov.y, distance = c("OverlapDist", "RiemannDist"), ...) ## S3 method for class 'list' MatrixDistance( cov.x, cov.y = NULL, distance = c("OverlapDist", "RiemannDist"), ..., parallel = FALSE )
MatrixDistance(cov.x, cov.y, distance, ...) ## Default S3 method: MatrixDistance(cov.x, cov.y, distance = c("OverlapDist", "RiemannDist"), ...) ## S3 method for class 'list' MatrixDistance( cov.x, cov.y = NULL, distance = c("OverlapDist", "RiemannDist"), ..., parallel = FALSE )
cov.x |
Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is supplied, all matrices are compared. If cov.y is supplied, all matrices in list are compared to it. |
cov.y |
First argument is compared to cov.y. Optional if cov.x is a list. |
distance |
distance function for use in calculation. Currently supports "Riemann" and "Overlap". |
... |
additional arguments passed to other methods |
parallel |
if TRUE and a list is passed, computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
If cov.x and cov.y are passed, returns distance between them.
If is a list cov.x and cov.y are passed, same as above, but for all matrices in cov.x.
If only a list is passed to cov.x, a matrix of Distances is returned
Diogo Melo
c1 <- RandomMatrix(10) c2 <- RandomMatrix(10) c3 <- RandomMatrix(10) MatrixDistance(c1, c2, "OverlapDist") MatrixDistance(c1, c2, "RiemannDist") # Compare multiple matrices MatrixDistance(list(c1, c2, c3), distance = "OverlapDist") # Compare multiple matrices to a target matrix c4 <- RandomMatrix(10) MatrixDistance(list(c1, c2, c3), c4)
c1 <- RandomMatrix(10) c2 <- RandomMatrix(10) c3 <- RandomMatrix(10) MatrixDistance(c1, c2, "OverlapDist") MatrixDistance(c1, c2, "RiemannDist") # Compare multiple matrices MatrixDistance(list(c1, c2, c3), distance = "OverlapDist") # Compare multiple matrices to a target matrix c4 <- RandomMatrix(10) MatrixDistance(list(c1, c2, c3), c4)
Estimate geometric mean for a set of covariance matrices
MeanMatrix(matrix.array, tol = 1e-10)
MeanMatrix(matrix.array, tol = 1e-10)
matrix.array |
k x k x m array of covariance matrices, with k traits and m matrices |
tol |
minimum riemannian distance between sequential iterated means for accepting an estimated matrix |
geometric mean covariance matrix
Guilherme Garcia, Diogo Melo
Bini, D. A., Iannazzo, B. 2013. Computing the Karcher Mean of Symmetric Positive Definite Matrices. Linear Algebra and Its Applications, 16th ILAS Conference Proceedings, Pisa 2010, 438 (4): 1700-1710. doi:10.1016/j.laa.2011.08.052.
EigenTensorDecomposition
, RiemannDist
Calculates: Mean Squared Correlation, ICV, Autonomy, ConditionalEvolvability, Constraints, Evolvability, Flexibility, Pc1Percent, Respondability.
MeanMatrixStatistics( cov.matrix, iterations = 1000, full.results = FALSE, parallel = FALSE )
MeanMatrixStatistics( cov.matrix, iterations = 1000, full.results = FALSE, parallel = FALSE )
cov.matrix |
A covariance matrix |
iterations |
Number of random vectors to be used in calculating the stochastic statistics |
full.results |
If TRUE, full distribution of statistics will be returned. |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
dist Full distribution of stochastic statistics, only if full.resuts == TRUE
mean Mean value for all statistics
Diogo Melo Guilherme Garcia
Hansen, T. F., and Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of evolutionary biology, 21(5), 1201-19. doi:10.1111/j.1420-9101.2008.01573.x
cov.matrix <- cov(iris[,1:4]) MeanMatrixStatistics(cov.matrix) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) MeanMatrixStatistics(cov.matrix, parallel = TRUE) ## End(Not run)
cov.matrix <- cov(iris[,1:4]) MeanMatrixStatistics(cov.matrix) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) MeanMatrixStatistics(cov.matrix, parallel = TRUE) ## End(Not run)
Combines and compares many modularity hypothesis to a covariance matrix. Comparison values are adjusted to the number of zeros in the hypothesis using a linear regression. Best hypothesis can be assessed using a jack-knife procedure.
MINT( c.matrix, modularity.hypot, significance = FALSE, sample.size = NULL, iterations = 1000 ) JackKnifeMINT( ind.data, modularity.hypot, n = 1000, leave.out = floor(dim(ind.data)[1]/10), ... )
MINT( c.matrix, modularity.hypot, significance = FALSE, sample.size = NULL, iterations = 1000 ) JackKnifeMINT( ind.data, modularity.hypot, n = 1000, leave.out = floor(dim(ind.data)[1]/10), ... )
c.matrix |
Correlation or covariance matrix |
modularity.hypot |
Matrix of hypothesis. Each line represents a trait and each column a module. if modularity.hypot[i,j] == 1, trait i is in module j. |
significance |
Logical. Indicates if goodness of fit test should be performed. |
sample.size |
sample size in goodness of fit simulations via MonteCarlo |
iterations |
number os goodness of fit simulations |
ind.data |
Matrix of residuals or individual measurements |
n |
number of jackknife samples |
leave.out |
number of individuals to be left out of each jackknife, default is 10% |
... |
additional arguments to be passed to raply for the jackknife |
Dataframe with ranked hypothesis, ordered by the corrected gamma value Jackknife will return the best hypothesis for each sample.
Hypothesis can be named as column names, and these will be used to make labels in the output.
Marquez, E.J. 2008. A statistical framework for testing modularity in multidimensional data. Evolution 62:2688-2708.
Parsons, K.J., Marquez, E.J., Albertson, R.C. 2012. Constraint and opportunity: the genetic basis and evolution of modularity in the cichlid mandible. The American Naturalist 179:64-78.
http://www-personal.umich.edu/~emarquez/morph/doc/mint_man.pdf
# Creating a modular matrix: modules = matrix(c(rep(c(1, 0, 0), each = 5), rep(c(0, 1, 0), each = 5), rep(c(0, 0, 1), each = 5)), 15) cor.hypot = CreateHypotMatrix(modules)[[4]] hypot.mask = matrix(as.logical(cor.hypot), 15, 15) mod.cor = matrix(NA, 15, 15) mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.1, 0.2) # between-modules diag(mod.cor) = 1 mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric # True hypothesis and a bunch of random ones. hypothetical.modules = cbind(modules, matrix(sample(c(1, 0), 4*15, replace=TRUE), 15, 4)) # if hypothesis columns are not named they are assigned numbers colnames(hypothetical.modules) <- letters[1:7] MINT(mod.cor, hypothetical.modules) random_var = runif(15, 1, 10) mod.data = mvtnorm::rmvnorm(100, sigma = sqrt(outer(random_var, random_var)) * mod.cor) out_jack = JackKnifeMINT(mod.data, hypothetical.modules, n = 50) library(ggplot2) ggplot(out_jack, aes(rank, corrected.gamma)) + geom_point() + geom_errorbar(aes(ymin = lower.corrected, ymax = upper.corrected))
# Creating a modular matrix: modules = matrix(c(rep(c(1, 0, 0), each = 5), rep(c(0, 1, 0), each = 5), rep(c(0, 0, 1), each = 5)), 15) cor.hypot = CreateHypotMatrix(modules)[[4]] hypot.mask = matrix(as.logical(cor.hypot), 15, 15) mod.cor = matrix(NA, 15, 15) mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.1, 0.2) # between-modules diag(mod.cor) = 1 mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric # True hypothesis and a bunch of random ones. hypothetical.modules = cbind(modules, matrix(sample(c(1, 0), 4*15, replace=TRUE), 15, 4)) # if hypothesis columns are not named they are assigned numbers colnames(hypothetical.modules) <- letters[1:7] MINT(mod.cor, hypothetical.modules) random_var = runif(15, 1, 10) mod.data = mvtnorm::rmvnorm(100, sigma = sqrt(outer(random_var, random_var)) * mod.cor) out_jack = JackKnifeMINT(mod.data, hypothetical.modules, n = 50) library(ggplot2) ggplot(out_jack, aes(rank, corrected.gamma)) + geom_point() + geom_errorbar(aes(ymin = lower.corrected, ymax = upper.corrected))
Using a multivariate normal model, random populations are generated using the suplied covariance matrix. R2 is calculated on all the random population, provinding a distribution based on the original matrix.
MonteCarloR2(cov.matrix, sample.size, iterations = 1000, parallel = FALSE)
MonteCarloR2(cov.matrix, sample.size, iterations = 1000, parallel = FALSE)
cov.matrix |
Covariance matrix. |
sample.size |
Size of the random populations |
iterations |
Number of random populations |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
Since this function uses multivariate normal model to generate populations, only covariance matrices should be used.
returns a vector with the R2 for all populations
Diogo Melo Guilherme Garcia
r2.dist <- MonteCarloR2(RandomMatrix(10, 1, 1, 10), 30) quantile(r2.dist)
r2.dist <- MonteCarloR2(RandomMatrix(10, 1, 1, 10), 30) quantile(r2.dist)
Using a multivariate normal model, random populations are generated using the suplied covariance matrix. A statistic is calculated on the random population and compared to the statistic calculated on the original matrix.
MonteCarloRep( cov.matrix, sample.size, ComparisonFunc, ..., iterations = 1000, correlation = FALSE, parallel = FALSE )
MonteCarloRep( cov.matrix, sample.size, ComparisonFunc, ..., iterations = 1000, correlation = FALSE, parallel = FALSE )
cov.matrix |
Covariance matrix. |
sample.size |
Size of the random populations. |
ComparisonFunc |
comparison function. |
... |
Aditional arguments passed to ComparisonFunc. |
iterations |
Number of random populations. |
correlation |
If TRUE, correlation matrix is used, else covariance matrix. MantelCor and MatrixCor should always uses correlation matrix. |
parallel |
If is TRUE and list is passed, computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
Since this function uses multivariate normal model to generate populations, only covariance matrices should be used, even when computing repeatabilities for covariances matrices.
returns the mean repeatability, or mean value of comparisons from samples to original statistic.
Diogo Melo Guilherme Garcia
cov.matrix <- RandomMatrix(5, 1, 1, 10) MonteCarloRep(cov.matrix, sample.size = 30, RandomSkewers, iterations = 20) MonteCarloRep(cov.matrix, sample.size = 30, RandomSkewers, num.vectors = 100, iterations = 20, correlation = TRUE) MonteCarloRep(cov.matrix, sample.size = 30, MatrixCor, correlation = TRUE) MonteCarloRep(cov.matrix, sample.size = 30, KrzCor, iterations = 20) MonteCarloRep(cov.matrix, sample.size = 30, KrzCor, correlation = TRUE) #Creating repeatability vector for a list of matrices mat.list <- RandomMatrix(5, 3, 1, 10) laply(mat.list, MonteCarloRep, 30, KrzCor, correlation = TRUE) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) MonteCarloRep(cov.matrix, 30, RandomSkewers, iterations = 100, parallel = TRUE) ## End(Not run)
cov.matrix <- RandomMatrix(5, 1, 1, 10) MonteCarloRep(cov.matrix, sample.size = 30, RandomSkewers, iterations = 20) MonteCarloRep(cov.matrix, sample.size = 30, RandomSkewers, num.vectors = 100, iterations = 20, correlation = TRUE) MonteCarloRep(cov.matrix, sample.size = 30, MatrixCor, correlation = TRUE) MonteCarloRep(cov.matrix, sample.size = 30, KrzCor, iterations = 20) MonteCarloRep(cov.matrix, sample.size = 30, KrzCor, correlation = TRUE) #Creating repeatability vector for a list of matrices mat.list <- RandomMatrix(5, 3, 1, 10) laply(mat.list, MonteCarloRep, 30, KrzCor, correlation = TRUE) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) MonteCarloRep(cov.matrix, 30, RandomSkewers, iterations = 100, parallel = TRUE) ## End(Not run)
Using a multivariate normal model, random populations are generated using the supplied covariance matrix. A statistic is calculated on the random population and compared to the statistic calculated on the original matrix.
MonteCarloStat( cov.matrix, sample.size, iterations, ComparisonFunc, StatFunc, parallel = FALSE )
MonteCarloStat( cov.matrix, sample.size, iterations, ComparisonFunc, StatFunc, parallel = FALSE )
cov.matrix |
Covariance matrix. |
sample.size |
Size of the random populations |
iterations |
Number of random populations |
ComparisonFunc |
Comparison functions for the calculated statistic |
StatFunc |
Function for calculating the statistic |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
Since this function uses multivariate normal model to generate populations, only covariance matrices should be used.
returns the mean repeatability, or mean value of comparisons from samples to original statistic.
Diogo Melo, Guilherme Garcia
cov.matrix <- RandomMatrix(5, 1, 1, 10) MonteCarloStat(cov.matrix, sample.size = 30, iterations = 50, ComparisonFunc = function(x, y) PCAsimilarity(x, y)[1], StatFunc = cov) #Calculating R2 confidence intervals r2.dist <- MonteCarloR2(RandomMatrix(10, 1, 1, 10), 30) quantile(r2.dist) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel ##Windows: #cl <- makeCluster(2) #registerDoParallel(cl) ##Mac and Linux: library(doParallel) registerDoParallel(cores = 2) MonteCarloStat(cov.matrix, sample.size = 30, iterations = 100, ComparisonFunc = function(x, y) KrzCor(x, y)[1], StatFunc = cov, parallel = TRUE) ## End(Not run)
cov.matrix <- RandomMatrix(5, 1, 1, 10) MonteCarloStat(cov.matrix, sample.size = 30, iterations = 50, ComparisonFunc = function(x, y) PCAsimilarity(x, y)[1], StatFunc = cov) #Calculating R2 confidence intervals r2.dist <- MonteCarloR2(RandomMatrix(10, 1, 1, 10), 30) quantile(r2.dist) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel ##Windows: #cl <- makeCluster(2) #registerDoParallel(cl) ##Mac and Linux: library(doParallel) registerDoParallel(cores = 2) MonteCarloStat(cov.matrix, sample.size = 30, iterations = 100, ComparisonFunc = function(x, y) KrzCor(x, y)[1], StatFunc = cov, parallel = TRUE) ## End(Not run)
Calculates the Mahalanobis distance between a list of species mean, using a global covariance matrix
MultiMahalanobis(means, cov.matrix, parallel = FALSE)
MultiMahalanobis(means, cov.matrix, parallel = FALSE)
means |
list or array of species means being compared. array must have means in the rows. |
cov.matrix |
a single covariance matrix defining the scale (or metric tensor) to be used in the distance calculation. |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
returns a matrix of species-species distances.
Diogo Melo
http://en.wikipedia.org/wiki/Mahalanobis_distance
mean.1 <- colMeans(matrix(rnorm(30*10), 30, 10)) mean.2 <- colMeans(matrix(rnorm(30*10), 30, 10)) mean.3 <- colMeans(matrix(rnorm(30*10), 30, 10)) mean.list <- list(mean.1, mean.2, mean.3) # If cov.matrix is the identity, calculated distance is euclidian: euclidian <- MultiMahalanobis(mean.list, diag(10)) # Using a matrix with half the variance will give twice the distance between each mean: half.euclidian <- MultiMahalanobis(mean.list, diag(10)/2) # Other covariance matrices will give different distances, measured in the scale of the matrix non.euclidian <- MultiMahalanobis(mean.list, RandomMatrix(10)) #Input can be an array with means in each row mean.array = array(1:36, c(9, 4)) mat = RandomMatrix(4) MultiMahalanobis(mean.array, mat) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) MultiMahalanobis(mean.list, RandomMatrix(10), parallel = TRUE) ## End(Not run)
mean.1 <- colMeans(matrix(rnorm(30*10), 30, 10)) mean.2 <- colMeans(matrix(rnorm(30*10), 30, 10)) mean.3 <- colMeans(matrix(rnorm(30*10), 30, 10)) mean.list <- list(mean.1, mean.2, mean.3) # If cov.matrix is the identity, calculated distance is euclidian: euclidian <- MultiMahalanobis(mean.list, diag(10)) # Using a matrix with half the variance will give twice the distance between each mean: half.euclidian <- MultiMahalanobis(mean.list, diag(10)/2) # Other covariance matrices will give different distances, measured in the scale of the matrix non.euclidian <- MultiMahalanobis(mean.list, RandomMatrix(10)) #Input can be an array with means in each row mean.array = array(1:36, c(9, 4)) mat = RandomMatrix(4) MultiMahalanobis(mean.array, mat) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) MultiMahalanobis(mean.list, RandomMatrix(10), parallel = TRUE) ## End(Not run)
This function estimates populations evolving through drift from an ancestral population, given an effective population size, number of generations separating them and the ancestral G-matrix. It calculates the magnitude of morphological divergence expected and compare it to the observed magnitude of morphological change.
MultivDriftTest( population1, population2, G, Ne, generations, iterations = 1000 )
MultivDriftTest( population1, population2, G, Ne, generations, iterations = 1000 )
population1 |
data.frame with original measurements for the ancestral population |
population2 |
data.frame with original measurements for the derived population |
G |
ancestral G matrix |
Ne |
effective population size estimated for the populations |
generations |
time in generations separating both populations |
iterations |
number of simulations to perform |
list with the 95 drift and the range of the observed magnitude of morphological change
Each trait is estimated independently.
Ana Paula Assis
Hohenlohe, P.A ; Arnold, S.J. (2008). MIPod: a hypothesis testing framework for microevolutionary inference from patterns of divergence. American Naturalist, 171(3), 366-385. doi: 10.1086/527498
data(dentus) A <- dentus[dentus$species== "A",-5] B <- dentus[dentus$species== "B",-5] G <- cov(A) MultivDriftTest(A, B, G, Ne = 1000, generations = 250)
data(dentus) A <- dentus[dentus$species== "A",-5] B <- dentus[dentus$species== "B",-5] G <- cov(A) MultivDriftTest(A, B, G, Ne = 1000, generations = 250)
Norm returns the euclidian norm of a vector, Normalize returns a vector with unit norm.
Normalize(x) Norm(x)
Normalize(x) Norm(x)
x |
Numeric vector |
Normalized vector or inpout vector norm.
Diogo Melo, Guilherme Garcia
x <- rnorm(10) n.x <- Normalize(x) Norm(x) Norm(n.x)
x <- rnorm(10) n.x <- Normalize(x) Norm(x) Norm(n.x)
Calculates the overlap between two normal distributions, defined as the probability that a draw from one distribution comes from the other
OverlapDist(cov.x, cov.y, iterations = 10000)
OverlapDist(cov.x, cov.y, iterations = 10000)
cov.x |
covariance or correlation matrix |
cov.y |
covariance or correlation matrix |
iterations |
number of drows |
Overlap distance between cov.x and cov.y
Ovaskainen, O. (2008). A Bayesian framework for comparative quantitative genetics. Proceedings of the Royal Society B, 669-678. doi:10.1098/rspb.2007.0949
Takes a vetor describing a trait partition and returns a binary matrix of the partitions where each line represents a trait and each column a module. In the output matrix, if modularity.hypot[i,j] == 1, trait i is in module j.
Partition2HypotMatrix(x)
Partition2HypotMatrix(x)
x |
vector of trait partition. Each partition receive the same symbol. |
Matrix of hypothesis. Each line represents a trait and each column a module. if modularity.hypot[i,j] == 1, trait i is in module j.
x = sample(c(1, 2, 3), 10, replace = TRUE) Partition2HypotMatrix(x)
x = sample(c(1, 2, 3), 10, replace = TRUE) Partition2HypotMatrix(x)
Compare matrices using PCA similarity factor
PCAsimilarity(cov.x, cov.y, ...) ## Default S3 method: PCAsimilarity(cov.x, cov.y, ret.dim = NULL, ...) ## S3 method for class 'list' PCAsimilarity(cov.x, cov.y = NULL, ..., repeat.vector = NULL, parallel = FALSE) ## S3 method for class 'mcmc_sample' PCAsimilarity(cov.x, cov.y, ..., parallel = FALSE)
PCAsimilarity(cov.x, cov.y, ...) ## Default S3 method: PCAsimilarity(cov.x, cov.y, ret.dim = NULL, ...) ## S3 method for class 'list' PCAsimilarity(cov.x, cov.y = NULL, ..., repeat.vector = NULL, parallel = FALSE) ## S3 method for class 'mcmc_sample' PCAsimilarity(cov.x, cov.y, ..., parallel = FALSE)
cov.x |
Single covariance matrix or list of covariance matrices. If cov.x is a single matrix, it is compared to cov.y. If cov.x is a list and no cov.y is supplied, all matrices are compared to each other. If cov.x is a list and cov.y is supplied, all matrices in cov.x are compared to cov.y. |
cov.y |
First argument is compared to cov.y. |
... |
additional arguments passed to other methods |
ret.dim |
number of retained dimensions in the comparison. Defaults to all. |
repeat.vector |
Vector of repeatabilities for correlation correction. |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
Ratio of projected variance to total variance
Edgar Zanella Alvarenga
Singhal, A. and Seborg, D. E. (2005), Clustering multivariate time-series data. J. Chemometrics, 19: 427-438. doi: 10.1002/cem.945
KrzProjection
,KrzCor
,RandomSkewers
,MantelCor
c1 <- RandomMatrix(10) c2 <- RandomMatrix(10) PCAsimilarity(c1, c2) m.list <- RandomMatrix(10, 3) PCAsimilarity(m.list) PCAsimilarity(m.list, c1)
c1 <- RandomMatrix(10) c2 <- RandomMatrix(10) PCAsimilarity(c1, c2) m.list <- RandomMatrix(10, 3) PCAsimilarity(m.list) PCAsimilarity(m.list, c1)
Given a set of covariance matrices and means for terminals, test the hypothesis that observed divergence is larger/smaller than expected by drift alone using the correlation on principal component scores.
PCScoreCorrelation( means, cov.matrix, taxons = names(means), show.plots = FALSE )
PCScoreCorrelation( means, cov.matrix, taxons = names(means), show.plots = FALSE )
means |
list or array of species means being compared. array must have means in the rows. |
cov.matrix |
ancestral covariance matrix for all populations |
taxons |
names of taxons being compared. Must be in the same order of the means. |
show.plots |
Logical. If TRUE, plot of eigenvalues of ancestral matrix by between group variance is showed. |
list of results containing:
correlation matrix of principal component scores and p.values for each correlation. Lower triangle of output are correlations, and upper triangle are p.values.
if show.plots is TRUE, also returns a list of plots of all projections of the nth PCs, where n is the number of taxons.
Ana Paula Assis, Diogo Melo
Marroig, G., and Cheverud, J. M. (2004). Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? The American Naturalist, 163(3), 417-428. doi:10.1086/381693
#Input can be an array with means in each row or a list of mean vectors means = array(rnorm(40*10), c(10, 40)) cov.matrix = RandomMatrix(40, 1, 1, 10) taxons = LETTERS[1:10] PCScoreCorrelation(means, cov.matrix, taxons) ## Not run: ##Plots list can be displayed using plot_grid() library(cowplot) pc.score.output <- PCScoreCorrelation(means, cov.matrix, taxons, TRUE) plot_grid(plotlist = pc.score.output$plots) ## End(Not run)
#Input can be an array with means in each row or a list of mean vectors means = array(rnorm(40*10), c(10, 40)) cov.matrix = RandomMatrix(40, 1, 1, 10) taxons = LETTERS[1:10] PCScoreCorrelation(means, cov.matrix, taxons) ## Not run: ##Plots list can be displayed using plot_grid() library(cowplot) pc.score.output <- PCScoreCorrelation(means, cov.matrix, taxons, TRUE) plot_grid(plotlist = pc.score.output$plots) ## End(Not run)
Calculates the comparison of some statistic between sister groups along a phylogeny
PhyloCompare(tree, node.data, ComparisonFunc = PCAsimilarity, ...)
PhyloCompare(tree, node.data, ComparisonFunc = PCAsimilarity, ...)
tree |
phylogenetic tree |
node.data |
list of node data |
ComparisonFunc |
comparison function, default is PCAsimilarity |
... |
Additional arguments passed to ComparisonFunc |
list with a data.frame of calculated comparisons for each node, using labels or numbers from tree; and a list of comparisons for plotting using phytools (see examples)
Phylogeny must be fully resolved
Diogo Melo
library(ape) data(bird.orders) tree <- bird.orders mat.list <- RandomMatrix(5, length(tree$tip.label)) names(mat.list) <- tree$tip.label sample.sizes <- runif(length(tree$tip.label), 15, 20) phylo.state <- PhyloW(tree, mat.list, sample.sizes) phylo.comparisons <- PhyloCompare(tree, phylo.state) # plotting results on a phylogeny: ## Not run: library(phytools) plotBranchbyTrait(tree, phylo.comparisons[[2]]) ## End(Not run)
library(ape) data(bird.orders) tree <- bird.orders mat.list <- RandomMatrix(5, length(tree$tip.label)) names(mat.list) <- tree$tip.label sample.sizes <- runif(length(tree$tip.label), 15, 20) phylo.state <- PhyloW(tree, mat.list, sample.sizes) phylo.comparisons <- PhyloCompare(tree, phylo.state) # plotting results on a phylogeny: ## Not run: library(phytools) plotBranchbyTrait(tree, phylo.comparisons[[2]]) ## End(Not run)
Performs a matrix correlation with significance given by a phylogenetic Mantel Test. Pairs of rows and columns are permuted with probability proportional to their phylogenetic distance.
PhyloMantel( tree, matrix.1, matrix.2, ..., permutations = 1000, ComparisonFunc = function(x, y) cor(x[lower.tri(x)], y[lower.tri(y)]), k = 1 )
PhyloMantel( tree, matrix.1, matrix.2, ..., permutations = 1000, ComparisonFunc = function(x, y) cor(x[lower.tri(x)], y[lower.tri(y)]), k = 1 )
tree |
phylogenetic tree. Tip labels must match names in input matrices |
matrix.1 |
pair-wise comparison/distance matrix |
matrix.2 |
pair-wise comparison/distance matrix |
... |
additional parameters, currently ignored |
permutations |
Number of permutations used in significance calculation |
ComparisonFunc |
comparison function, default is MatrixCor |
k |
determines the influence of the phylogeny. 1 is strong influence, and larger values converge to a traditional mantel test. |
returns a vector with the comparison value and the proportion of times the observed comparison is smaller than the correlations from the permutations.
This method should only be used when there is no option other than representing data as pair-wise. It suffers from low power, and alternatives should be used when available.
Diogo Melo, adapted from Harmon & Glor 2010
Harmon, L. J., & Glor, R. E. (2010). Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution, 64(7), 2173-2178.
Lapointe, F. J., & Garland, Jr, T. (2001). A generalized permutation model for the analysis of cross-species data. Journal of Classification, 18(1), 109-127.
data(dentus) data(dentus.tree) tree = dentus.tree cor.matrices = dlply(dentus, .(species), function(x) cor(x[-5])) comparisons = MatrixCor(cor.matrices) sp.means = dlply(dentus, .(species), function(x) colMeans(x[-5])) mh.dist = MultiMahalanobis(means = sp.means, cov.matrix = PhyloW(dentus.tree, cor.matrices)$'6') PhyloMantel(dentus.tree, comparisons, mh.dist, k = 10000) #similar to MantelCor for large k: ## Not run: PhyloMantel(dentus.tree, comparisons, mh.dist, k = 10000) MantelCor(comparisons, mh.dist) ## End(Not run)
data(dentus) data(dentus.tree) tree = dentus.tree cor.matrices = dlply(dentus, .(species), function(x) cor(x[-5])) comparisons = MatrixCor(cor.matrices) sp.means = dlply(dentus, .(species), function(x) colMeans(x[-5])) mh.dist = MultiMahalanobis(means = sp.means, cov.matrix = PhyloW(dentus.tree, cor.matrices)$'6') PhyloMantel(dentus.tree, comparisons, mh.dist, k = 10000) #similar to MantelCor for large k: ## Not run: PhyloMantel(dentus.tree, comparisons, mh.dist, k = 10000) MantelCor(comparisons, mh.dist) ## End(Not run)
Calculates weighted average of covariances matrices along a phylogeny, returning a withing-group covariance matrice for each node.
PhyloW(tree, tip.data, tip.sample.size = NULL)
PhyloW(tree, tip.data, tip.sample.size = NULL)
tree |
phylogenetic tree |
tip.data |
list of tip nodes covariance matrices |
tip.sample.size |
vector of tip nodes sample sizes |
list with calculated within-group matrices, using labels or numbers from tree
library(ape) data(dentus) data(dentus.tree) tree <- dentus.tree mat.list <- dlply(dentus, 'species', function(x) cov(x[,1:4])) sample.sizes <- runif(length(tree$tip.label), 15, 20) PhyloW(tree, mat.list, sample.sizes)
library(ape) data(dentus) data(dentus.tree) tree <- dentus.tree mat.list <- dlply(dentus, 'species', function(x) cov(x[,1:4])) sample.sizes <- runif(length(tree$tip.label), 15, 20) PhyloW(tree, mat.list, sample.sizes)
Shows the null and observed distribution of eigenvalues from the Krzanowski subspace comparison
PlotKrzSubspace(x)
PlotKrzSubspace(x)
x |
output from KrzSubspaceDataFrame() function. |
ggplot2 object with the observed vs. random eigenvalues mean and posterior confidence intervals
A specialized ploting function displays the results from Rarefaction functions in publication quality.
PlotRarefaction( comparison.list, y.axis = "Statistic", x.axis = "Number of sampled specimens" )
PlotRarefaction( comparison.list, y.axis = "Statistic", x.axis = "Number of sampled specimens" )
comparison.list |
output from rarefaction functions can be used in ploting |
y.axis |
Y axis lable in plot |
x.axis |
Y axis lable in plot |
ggplot2 object with rarefaction plot
Diogo Melo, Guilherme Garcia
ind.data <- iris[1:50,1:4] results.RS <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5) results.Mantel <- Rarefaction(ind.data, MatrixCor, correlation = TRUE, num.reps = 5) results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5) results.PCA <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5) #Plotting using ggplot2 a <- PlotRarefaction(results.RS, "Random Skewers") b <- PlotRarefaction(results.Mantel, "Mantel") c <- PlotRarefaction(results.KrzCov, "KrzCor") d <- PlotRarefaction(results.PCA, "PCAsimilarity") library(cowplot) plot_grid(a, b, c, d, labels = c("RS", "Mantel Correlation", "Krzanowski Correlation", "PCA Similarity"), scale = 0.9)
ind.data <- iris[1:50,1:4] results.RS <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5) results.Mantel <- Rarefaction(ind.data, MatrixCor, correlation = TRUE, num.reps = 5) results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5) results.PCA <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5) #Plotting using ggplot2 a <- PlotRarefaction(results.RS, "Random Skewers") b <- PlotRarefaction(results.Mantel, "Mantel") c <- PlotRarefaction(results.KrzCov, "KrzCor") d <- PlotRarefaction(results.PCA, "PCAsimilarity") library(cowplot) plot_grid(a, b, c, d, labels = c("RS", "Mantel Correlation", "Krzanowski Correlation", "PCA Similarity"), scale = 0.9)
Plot which labels reject drift hypothesis.
PlotTreeDriftTest(test.list, tree, ...)
PlotTreeDriftTest(test.list, tree, ...)
test.list |
Output from TreeDriftTest |
tree |
phylogenetic tree |
... |
adition arguments to plot |
No return value, called for plot side effects
Diogo Melo
DriftTest TreeDriftTest
library(ape) data(bird.orders) tree <- bird.orders mean.list <- llply(tree$tip.label, function(x) rnorm(5)) names(mean.list) <- tree$tip.label cov.matrix.list <- RandomMatrix(5, length(tree$tip.label)) names(cov.matrix.list) <- tree$tip.label sample.sizes <- runif(length(tree$tip.label), 15, 20) test.list <- TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes) PlotTreeDriftTest(test.list, tree)
library(ape) data(bird.orders) tree <- bird.orders mean.list <- llply(tree$tip.label, function(x) rnorm(5)) names(mean.list) <- tree$tip.label cov.matrix.list <- RandomMatrix(5, length(tree$tip.label)) names(cov.matrix.list) <- tree$tip.label sample.sizes <- runif(length(tree$tip.label), 15, 20) test.list <- TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes) PlotTreeDriftTest(test.list, tree)
Print a matrix or a list of matrices to file
PrintMatrix(x, ...) ## Default S3 method: PrintMatrix(x, output.file, ...) ## S3 method for class 'list' PrintMatrix(x, output.file, ...)
PrintMatrix(x, ...) ## Default S3 method: PrintMatrix(x, output.file, ...) ## S3 method for class 'list' PrintMatrix(x, output.file, ...)
x |
Matrix or list of matrices |
... |
Additional parameters |
output.file |
Output file |
Prints coma separated matrices, with labels
Diogo Melo
m.list <- RandomMatrix(10, 4) tmp = file.path(tempdir(), "matrix.csv") PrintMatrix(m.list, output.file = tmp )
m.list <- RandomMatrix(10, 4) tmp = file.path(tempdir(), "matrix.csv") PrintMatrix(m.list, output.file = tmp )
This function projects a given covariance matrix into the basis provided by an eigentensor decomposition.
ProjectMatrix(matrix, etd)
ProjectMatrix(matrix, etd)
matrix |
A symmetric covariance matrix for k traits |
etd |
Eigentensor decomposition of m covariance matrices for k traits
(obtained from |
Vector of scores of given covariance matrix onto eigentensor basis.
Guilherme Garcia, Diogo Melo
Basser P. J., Pajevic S. 2007. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing. 87:220-236.
Hine E., Chenoweth S. F., Rundle H. D., Blows M. W. 2009. Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 364:1567-78.
EigenTensorDecomposition
, RevertMatrix
# this function is useful for projecting posterior samples for a set of # covariance matrices onto the eigentensor decomposition done # on their estimated means data(dentus) dentus.models <- dlply(dentus, .(species), lm, formula = cbind(humerus, ulna, femur, tibia) ~ 1) dentus.matrices <- llply(dentus.models, BayesianCalculateMatrix, samples = 100) dentus.post.vcv <- laply(dentus.matrices, function (L) L $ Ps) dentus.post.vcv <- aperm(dentus.post.vcv, c(3, 4, 1, 2)) dentus.mean.vcv <- aaply(dentus.post.vcv, 3, MeanMatrix) dentus.mean.vcv <- aperm(dentus.mean.vcv, c(2, 3, 1)) dentus.mean.etd <- EigenTensorDecomposition(dentus.mean.vcv) dentus.mean.proj <- data.frame('species' = LETTERS [1:5], dentus.mean.etd $ projection) dentus.post.proj <- adply(dentus.post.vcv, c(3, 4), ProjectMatrix, etd = dentus.mean.etd) colnames(dentus.post.proj) [1:2] <- c('species', 'sample') levels(dentus.post.proj $ species) <- LETTERS[1:5] require(ggplot2) ggplot() + geom_point(aes(x = ET1, y = ET2, color = species), data = dentus.mean.proj, shape = '+', size = 8) + geom_point(aes(x = ET1, y = ET2, color = species), data = dentus.post.proj, shape = '+', size = 3) + theme_bw()
# this function is useful for projecting posterior samples for a set of # covariance matrices onto the eigentensor decomposition done # on their estimated means data(dentus) dentus.models <- dlply(dentus, .(species), lm, formula = cbind(humerus, ulna, femur, tibia) ~ 1) dentus.matrices <- llply(dentus.models, BayesianCalculateMatrix, samples = 100) dentus.post.vcv <- laply(dentus.matrices, function (L) L $ Ps) dentus.post.vcv <- aperm(dentus.post.vcv, c(3, 4, 1, 2)) dentus.mean.vcv <- aaply(dentus.post.vcv, 3, MeanMatrix) dentus.mean.vcv <- aperm(dentus.mean.vcv, c(2, 3, 1)) dentus.mean.etd <- EigenTensorDecomposition(dentus.mean.vcv) dentus.mean.proj <- data.frame('species' = LETTERS [1:5], dentus.mean.etd $ projection) dentus.post.proj <- adply(dentus.post.vcv, c(3, 4), ProjectMatrix, etd = dentus.mean.etd) colnames(dentus.post.proj) [1:2] <- c('species', 'sample') levels(dentus.post.proj $ species) <- LETTERS[1:5] require(ggplot2) ggplot() + geom_point(aes(x = ET1, y = ET2, color = species), data = dentus.mean.proj, shape = '+', size = 8) + geom_point(aes(x = ET1, y = ET2, color = species), data = dentus.post.proj, shape = '+', size = 3) + theme_bw()
Internal function for generating random correlation matrices. Use RandomMatrix() instead.
RandCorr(num.traits, ke = 10^-3)
RandCorr(num.traits, ke = 10^-3)
num.traits |
Number of traits in random matrix |
ke |
Parameter for correlation matrix generation. Involves check for positive defitness |
Random Matrix
Diogo Melo Edgar Zanella
Provides random covariance/correlation matrices for quick tests. Should not be used for statistics or hypothesis testing.
RandomMatrix( num.traits, num.matrices = 1, min.var = 1, max.var = 1, variance = NULL, ke = 10^-3, LKJ = FALSE, shape = 2 )
RandomMatrix( num.traits, num.matrices = 1, min.var = 1, max.var = 1, variance = NULL, ke = 10^-3, LKJ = FALSE, shape = 2 )
num.traits |
Number of traits in random matrix |
num.matrices |
Number of matrices to be generated. If greater than 1, a list is returned. |
min.var |
Lower value for random variance in covariance matrices |
max.var |
Upper value for random variance in covariance matrices |
variance |
Variance vector. If present will be used in all matrices |
ke |
Parameter for correlation matrix generation. Involves check for positive definiteness |
LKJ |
logical. Use LKJ distribution for generating correlation matrices. |
shape |
Shape parameter for the LKJ distribution. Values closer to zero leads to a more uniform distribution correlations. Higher values lead to correlations closer to zero. |
Returns either a single matrix, or a list of matrices of equal dimension
Diogo Melo Edgar Zanella
# single 10x10 correlation matrix RandomMatrix(10) # single 5x5 covariance matrix, variances between 3 and 4 RandomMatrix(5, 1, 3, 4) # two 3x3 covariance matrices, with shared variances RandomMatrix(3, 2, variance= c(3, 4, 5)) # large 10x10 matrix list, with wide range of variances RandomMatrix(10, 100, 1, 300)
# single 10x10 correlation matrix RandomMatrix(10) # single 5x5 covariance matrix, variances between 3 and 4 RandomMatrix(5, 1, 3, 4) # two 3x3 covariance matrices, with shared variances RandomMatrix(3, 2, variance= c(3, 4, 5)) # large 10x10 matrix list, with wide range of variances RandomMatrix(10, 100, 1, 300)
Calculates covariance matrix correlation via random skewers
RandomSkewers(cov.x, cov.y, ...) ## Default S3 method: RandomSkewers(cov.x, cov.y, num.vectors = 10000, ...) ## S3 method for class 'list' RandomSkewers( cov.x, cov.y = NULL, num.vectors = 10000, repeat.vector = NULL, parallel = FALSE, ... ) ## S3 method for class 'mcmc_sample' RandomSkewers(cov.x, cov.y, num.vectors = 10000, parallel = FALSE, ...)
RandomSkewers(cov.x, cov.y, ...) ## Default S3 method: RandomSkewers(cov.x, cov.y, num.vectors = 10000, ...) ## S3 method for class 'list' RandomSkewers( cov.x, cov.y = NULL, num.vectors = 10000, repeat.vector = NULL, parallel = FALSE, ... ) ## S3 method for class 'mcmc_sample' RandomSkewers(cov.x, cov.y, num.vectors = 10000, parallel = FALSE, ...)
cov.x |
Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is supplied, all matrices are compared. If cov.y is supplied, all matrices in list are compared to it. |
cov.y |
First argument is compared to cov.y. Optional if cov.x is a list. |
... |
additional arguments passed to other methods. |
num.vectors |
Number of random vectors used in comparison. |
repeat.vector |
Vector of repeatabilities for correlation correction. |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
If cov.x and cov.y are passed, returns average value of response vectors correlation ('correlation'), significance ('probability') and standard deviation of response vectors correlation ('correlation_sd')
If cov.x and cov.y are passed, same as above, but for all matrices in cov.x.
If only a list is passed to cov.x, a matrix of RandomSkewers average values and probabilities of all comparisons. If repeat.vector is passed, comparison matrix is corrected above diagonal and repeatabilities returned in diagonal.
Diogo Melo, Guilherme Garcia
Cheverud, J. M., and Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461-469.
c1 <- RandomMatrix(10, 1, 1, 10) c2 <- RandomMatrix(10, 1, 1, 10) c3 <- RandomMatrix(10, 1, 1, 10) RandomSkewers(c1, c2) RandomSkewers(list(c1, c2, c3)) reps <- unlist(lapply(list(c1, c2, c3), MonteCarloRep, sample.size = 10, RandomSkewers, num.vectors = 100, iterations = 10)) RandomSkewers(list(c1, c2, c3), repeat.vector = reps) c4 <- RandomMatrix(10) RandomSkewers(list(c1, c2, c3), c4) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) RandomSkewers(list(c1, c2, c3), parallel = TRUE) ## End(Not run)
c1 <- RandomMatrix(10, 1, 1, 10) c2 <- RandomMatrix(10, 1, 1, 10) c3 <- RandomMatrix(10, 1, 1, 10) RandomSkewers(c1, c2) RandomSkewers(list(c1, c2, c3)) reps <- unlist(lapply(list(c1, c2, c3), MonteCarloRep, sample.size = 10, RandomSkewers, num.vectors = 100, iterations = 10)) RandomSkewers(list(c1, c2, c3), repeat.vector = reps) c4 <- RandomMatrix(10) RandomSkewers(list(c1, c2, c3), c4) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) RandomSkewers(list(c1, c2, c3), parallel = TRUE) ## End(Not run)
Calculates the repeatability of a statistic of the data, such as correlation or covariance matrix, via bootstrap resampling with varying sample sizes, from 2 to the size of the original data.
Rarefaction( ind.data, ComparisonFunc, ..., num.reps = 10, correlation = FALSE, replace = FALSE, parallel = FALSE )
Rarefaction( ind.data, ComparisonFunc, ..., num.reps = 10, correlation = FALSE, replace = FALSE, parallel = FALSE )
ind.data |
Matrix of residuals or individual measurments |
ComparisonFunc |
comparison function |
... |
Additional arguments passed to ComparisonFunc |
num.reps |
number of populations sampled per sample size |
correlation |
If TRUE, correlation matrix is used, else covariance matrix. MantelCor always uses correlation matrix. |
replace |
If true, samples are taken with replacement |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
Samples of various sizes, with replacement, are taken from the full population, a statistic calculated and compared to the full population statistic.
A specialized plotting function displays the results in publication quality.
Bootstraping may be misleading with very small sample sizes. Use with caution if original sample sizes are small.
returns the mean value of comparisons from samples to original statistic, for all sample sizes.
Diogo Melo, Guilherme Garcia
ind.data <- iris[1:50,1:4] results.RS <- Rarefaction(ind.data, RandomSkewers, num.reps = 5) #' #Easy parsing of results library(reshape2) melt(results.RS) # or : results.Mantel <- Rarefaction(ind.data, MatrixCor, correlation = TRUE, num.reps = 5) results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5) results.PCA <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5, parallel = TRUE) ## End(Not run)
ind.data <- iris[1:50,1:4] results.RS <- Rarefaction(ind.data, RandomSkewers, num.reps = 5) #' #Easy parsing of results library(reshape2) melt(results.RS) # or : results.Mantel <- Rarefaction(ind.data, MatrixCor, correlation = TRUE, num.reps = 5) results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5) results.PCA <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5, parallel = TRUE) ## End(Not run)
Calculates the repeatability of a statistic of the data, such as correlation or covariance matrix, via resampling with varying sample sizes, from 2 to the size of the original data.
RarefactionStat( ind.data, StatFunc, ComparisonFunc, ..., num.reps = 10, replace = FALSE, parallel = FALSE )
RarefactionStat( ind.data, StatFunc, ComparisonFunc, ..., num.reps = 10, replace = FALSE, parallel = FALSE )
ind.data |
Matrix of residuals or indiviual measurments |
StatFunc |
Function for calculating the statistic |
ComparisonFunc |
comparison function |
... |
Aditional arguments passed to ComparisonFunc |
num.reps |
number of populations sampled per sample size |
replace |
If true, samples are taken with replacement |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
Samples of various sizes, without replacement, are taken from the full population, a statistic calculated and compared to the full population statistic.
A specialized ploting function displays the results in publication quality.
Bootstraping may be misleading with very small sample sizes. Use with caution.
returns the mean value of comparisons from samples to original statistic, for all sample sizes.
Diogo Melo, Guilherme Garcia
ind.data <- iris[1:50,1:4] #Can be used to calculate any statistic via Rarefaction, not just comparisons #Integration, for example: results.R2 <- RarefactionStat(ind.data, cor, function(x, y) CalcR2(y), num.reps = 5) #Easy access library(reshape2) melt(results.R2) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) results.R2 <- RarefactionStat(ind.data, cor, function(x, y) CalcR2(y), parallel = TRUE) ## End(Not run)
ind.data <- iris[1:50,1:4] #Can be used to calculate any statistic via Rarefaction, not just comparisons #Integration, for example: results.R2 <- RarefactionStat(ind.data, cor, function(x, y) CalcR2(y), num.reps = 5) #Easy access library(reshape2) melt(results.R2) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) results.R2 <- RarefactionStat(ind.data, cor, function(x, y) CalcR2(y), parallel = TRUE) ## End(Not run)
Skull distances measured from landmarks in 5 mice lines: 4 body weight selection lines and 1 control line. Originally published in Penna, A., Melo, D. et. al (2017) 10.1111/evo.13304
data(ratones)
data(ratones)
data.frame
Penna, A., Melo, D., Bernardi, S., Oyarzabal, M.I. and Marroig, G. (2017), The evolution of phenotypic integration: How directional selection reshapes covariation in mice. Evolution, 71: 2370-2380. https://doi.org/10.1111/evo.13304 (PubMed)
data(ratones) # Estimating a W matrix, controlling for line and sex model_formula = paste0("cbind(", paste(names(ratones)[13:47], collapse = ", "), ") ~ SEX + LIN") ratones_W_model = lm(model_formula, data = ratones) W_matrix = CalculateMatrix(ratones_W_model) # Estimating the divergence between the two direction of selection delta_Z = colMeans(ratones[ratones$selection == "upwards", 13:47]) - colMeans(ratones[ratones$selection == "downwards", 13:47]) # Reconstructing selection gradients with and without noise control Beta = solve(W_matrix, delta_Z) Beta_non_noise = solve(ExtendMatrix(W_matrix, ret.dim = 10)$ExtMat, delta_Z) # Comparing the selection gradients to the observed divergence Beta %*% delta_Z /(Norm(Beta) * Norm(delta_Z)) Beta_non_noise %*% delta_Z /(Norm(Beta_non_noise) * Norm(delta_Z))
data(ratones) # Estimating a W matrix, controlling for line and sex model_formula = paste0("cbind(", paste(names(ratones)[13:47], collapse = ", "), ") ~ SEX + LIN") ratones_W_model = lm(model_formula, data = ratones) W_matrix = CalculateMatrix(ratones_W_model) # Estimating the divergence between the two direction of selection delta_Z = colMeans(ratones[ratones$selection == "upwards", 13:47]) - colMeans(ratones[ratones$selection == "downwards", 13:47]) # Reconstructing selection gradients with and without noise control Beta = solve(W_matrix, delta_Z) Beta_non_noise = solve(ExtendMatrix(W_matrix, ret.dim = 10)$ExtMat, delta_Z) # Comparing the selection gradients to the observed divergence Beta %*% delta_Z /(Norm(Beta) * Norm(delta_Z)) Beta_non_noise %*% delta_Z /(Norm(Beta_non_noise) * Norm(delta_Z))
Computes relative eigenvalues and eigenvectors between a pair of covariance matrices.
RelativeEigenanalysis(cov.x, cov.y, symmetric = FALSE)
RelativeEigenanalysis(cov.x, cov.y, symmetric = FALSE)
cov.x |
covariance matrix |
cov.y |
covariance matrix |
symmetric |
Logical. If TRUE, computes symmetric eigenanalysis. |
list with two objects: eigenvalues and eigenvectors
Guilherme Garcia, Diogo Melo
Bookstein, F. L., and P. Mitteroecker, P. "Comparing Covariance Matrices by Relative Eigenanalysis, with Applications to Organismal Biology." Evolutionary Biology 41, no. 2 (June 1, 2014): 336-350. doi:10.1007/s11692-013-9260-5.
data(dentus) dentus.vcv <- dlply(dentus, .(species), function(df) var(df[, -5])) dentus.eigrel <- RelativeEigenanalysis(dentus.vcv [[1]], dentus.vcv[[5]])
data(dentus) dentus.vcv <- dlply(dentus, .(species), function(df) var(df[, -5])) dentus.eigrel <- RelativeEigenanalysis(dentus.vcv [[1]], dentus.vcv[[5]])
Removes first principal component effect in a covariance matrix.
RemoveSize(cov.matrix)
RemoveSize(cov.matrix)
cov.matrix |
Covariance matrix |
Function sets the first eigenvalue to zero.
Altered covariance matrix with no variation on former first principal component
Diogo Melo, Guilherme Garcia
cov.matrix <- RandomMatrix(10, 1, 1, 10) no.size.cov.matrix <- RemoveSize(cov.matrix) eigen(cov.matrix) eigen(no.size.cov.matrix)
cov.matrix <- RandomMatrix(10, 1, 1, 10) no.size.cov.matrix <- RemoveSize(cov.matrix) eigen(cov.matrix) eigen(no.size.cov.matrix)
Constructs a covariance matrix based on scores over covariance matrix eigentensors.
RevertMatrix(values, etd, scaled = TRUE)
RevertMatrix(values, etd, scaled = TRUE)
values |
vector of values to build matrix, each value corresponding to a score on the ordered set of eigentensors (up to the maximum number of eigentensors on the target decomposition); if there are less values than eigentensors provided in etd (see below), the function will assume zero as the value for the score in remaining eigentensors |
etd |
Eigentensor decomposition of m covariance matrices for
k traits (obtained from |
scaled |
should we treat each score as a value given in standard deviations for each eigentensor? Defaults to TRUE |
A symmetric covariance matrix with k traits
Basser P. J., Pajevic S. 2007. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing. 87:220-236.
Hine E., Chenoweth S. F., Rundle H. D., Blows M. W. 2009. Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 364:1567-78.
## we can use RevertMatrix to represent eigentensors using SRD to compare two matrices ## which differ with respect to their projections on a single directions data(dentus) dentus.vcv <- daply (dentus, .(species), function(x) cov(x[,-5])) dentus.vcv <- aperm(dentus.vcv, c(2, 3, 1)) dentus.etd <- EigenTensorDecomposition(dentus.vcv, TRUE) ## calling RevertMatrix with a single value will use this value as the score ## on the first eigentensor and use zero as the value of remaining scores low.et1 <- RevertMatrix(-1.96, dentus.etd, TRUE) upp.et1 <- RevertMatrix(1.96, dentus.etd, TRUE) srd.et1 <- SRD(low.et1, upp.et1) plot(srd.et1) ## we can also look at the second eigentensor, by providing each call ## of RevertMatrix with a vector of two values, the first being zero low.et2 <- RevertMatrix(c(0, -1.96), dentus.etd, TRUE) upp.et2 <- RevertMatrix(c(0, 1.96), dentus.etd, TRUE) srd.et2 <- SRD(low.et2, upp.et2) plot(srd.et2)
## we can use RevertMatrix to represent eigentensors using SRD to compare two matrices ## which differ with respect to their projections on a single directions data(dentus) dentus.vcv <- daply (dentus, .(species), function(x) cov(x[,-5])) dentus.vcv <- aperm(dentus.vcv, c(2, 3, 1)) dentus.etd <- EigenTensorDecomposition(dentus.vcv, TRUE) ## calling RevertMatrix with a single value will use this value as the score ## on the first eigentensor and use zero as the value of remaining scores low.et1 <- RevertMatrix(-1.96, dentus.etd, TRUE) upp.et1 <- RevertMatrix(1.96, dentus.etd, TRUE) srd.et1 <- SRD(low.et1, upp.et1) plot(srd.et1) ## we can also look at the second eigentensor, by providing each call ## of RevertMatrix with a vector of two values, the first being zero low.et2 <- RevertMatrix(c(0, -1.96), dentus.etd, TRUE) upp.et2 <- RevertMatrix(c(0, 1.96), dentus.etd, TRUE) srd.et2 <- SRD(low.et2, upp.et2) plot(srd.et2)
Return distance between two covariance matrices
RiemannDist(cov.x, cov.y)
RiemannDist(cov.x, cov.y)
cov.x |
covariance or correlation matrix |
cov.y |
covariance or correlation matrix |
Riemann distance between cov.x and cov.y
Edgar Zanella
Mitteroecker, P., & Bookstein, F. (2009). The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution, 63(3), 727-737. doi:10.1111/j.1558-5646.2008.00587.x
Returns the rotation matrix that aligns a specimen sagital line to plane y = 0 (2D) or z = 0 (3D)
Rotate2MidlineMatrix(X, midline)
Rotate2MidlineMatrix(X, midline)
X |
shape array |
midline |
rows for the midline landmarks |
Rotation matrix
Guilherme Garcia
Uses Bayesian posterior samples of a set of covariance matrices to identify directions of the morphospace in which these matrices differ in their amount of genetic variance.
RSProjection(cov.matrix.array, p = 0.95, num.vectors = 1000) PlotRSprojection(rs_proj, cov.matrix.array, p = 0.95, ncols = 5)
RSProjection(cov.matrix.array, p = 0.95, num.vectors = 1000) PlotRSprojection(rs_proj, cov.matrix.array, p = 0.95, ncols = 5)
cov.matrix.array |
Array with dimensions traits x traits x populations x MCMCsamples |
p |
significance threshold for comparison of variation in each random direction |
num.vectors |
number of random vectors |
rs_proj |
output from RSProjection |
ncols |
number of columns in plot |
projection of all matrices in all random vectors
set of random vectors and confidence intervals for the projections
eigen decomposition of the random vectors in directions with significant differences of variations
Aguirre, J. D., E. Hine, K. McGuigan, and M. W. Blows. "Comparing G: multivariate analysis of genetic variation in multiple populations." Heredity 112, no. 1 (2014): 21-29.
# small MCMCsample to reduce run time, acctual sample should be larger data(dentus) cov.matrices = dlply(dentus, .(species), function(x) lm(as.matrix(x[,1:4])~1)) |> laply(function(x) BayesianCalculateMatrix(x, samples = 50)$Ps) cov.matrices = aperm(cov.matrices, c(3, 4, 1, 2)) rs_proj = RSProjection(cov.matrices, p = 0.8) PlotRSprojection(rs_proj, cov.matrices, ncol = 5)
# small MCMCsample to reduce run time, acctual sample should be larger data(dentus) cov.matrices = dlply(dentus, .(species), function(x) lm(as.matrix(x[,1:4])~1)) |> laply(function(x) BayesianCalculateMatrix(x, samples = 50)$Ps) cov.matrices = aperm(cov.matrices, c(3, 4, 1, 2)) rs_proj = RSProjection(cov.matrices, p = 0.8) PlotRSprojection(rs_proj, cov.matrices, ncol = 5)
Generic Single Comparison Map functions for creating parallel list methods Internal functions for making efficient comparisons.
SingleComparisonMap(matrix.list, y.mat, MatrixCompFunc, ..., parallel = FALSE)
SingleComparisonMap(matrix.list, y.mat, MatrixCompFunc, ..., parallel = FALSE)
matrix.list |
list of matrices being compared |
y.mat |
single matrix being compared to list |
MatrixCompFunc |
Function used to compare pair of matrices, must output a vector: comparisons and probabilities |
... |
Additional arguments to MatrixCompFunc |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
Matrix of comparisons, matrix of probabilities.
Diogo Melo
MantelCor
, KrzCor
,RandomSkewers
Based on Random Skewers technique, selection response vectors are expanded in direct and indirect components by trait and compared via vector correlations.
SRD(cov.x, cov.y, ...) ## Default S3 method: SRD(cov.x, cov.y, iterations = 1000, ...) ## S3 method for class 'list' SRD(cov.x, cov.y = NULL, iterations = 1000, parallel = FALSE, ...) ## S3 method for class 'SRD' plot(x, matrix.label = "", ...)
SRD(cov.x, cov.y, ...) ## Default S3 method: SRD(cov.x, cov.y, iterations = 1000, ...) ## S3 method for class 'list' SRD(cov.x, cov.y = NULL, iterations = 1000, parallel = FALSE, ...) ## S3 method for class 'SRD' plot(x, matrix.label = "", ...)
cov.x |
Covariance matrix being compared. cov.x can be a matrix or a list. |
cov.y |
Covariance matrix being compared. Ignored if cov.x is a list. |
... |
additional parameters passed to other methods |
iterations |
Number of random vectors used in comparison |
parallel |
if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC. |
x |
Output from SRD function, used in plotting |
matrix.label |
Plot label |
Output can be plotted using PlotSRD function
List of SRD scores means, confidence intervals, standard deviations, centered means e centered standard deviations
pc1 scored along the pc1 of the mean/SD correlation matrix
model List of linear model results from mean/SD correlation. Quantiles, interval and divergent traits
If input is a list, output is a symmetric list array with pairwise comparisons.
Diogo Melo, Guilherme Garcia
Marroig, G., Melo, D., Porto, A., Sebastiao, H., and Garcia, G. (2011). Selection Response Decomposition (SRD): A New Tool for Dissecting Differences and Similarities Between Matrices. Evolutionary Biology, 38(2), 225-241. doi:10.1007/s11692-010-9107-2
cov.matrix.1 <- cov(matrix(rnorm(30*10), 30, 10)) cov.matrix.2 <- cov(matrix(rnorm(30*10), 30, 10)) colnames(cov.matrix.1) <- colnames(cov.matrix.2) <- sample(letters, 10) rownames(cov.matrix.1) <- rownames(cov.matrix.2) <- colnames(cov.matrix.1) srd.output <- SRD(cov.matrix.1, cov.matrix.2) #lists m.list <- RandomMatrix(10, 4) srd.array.result = SRD(m.list) #divergent traits colnames(cov.matrix.1)[as.logical(srd.output$model$code)] #Plot plot(srd.output) ## For the array generated by SRD(m.list) you must index the idividual positions for plotting: plot(srd.array.result[1,2][[1]]) plot(srd.array.result[3,4][[1]]) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) SRD(m.list, parallel = TRUE) ## End(Not run)
cov.matrix.1 <- cov(matrix(rnorm(30*10), 30, 10)) cov.matrix.2 <- cov(matrix(rnorm(30*10), 30, 10)) colnames(cov.matrix.1) <- colnames(cov.matrix.2) <- sample(letters, 10) rownames(cov.matrix.1) <- rownames(cov.matrix.2) <- colnames(cov.matrix.1) srd.output <- SRD(cov.matrix.1, cov.matrix.2) #lists m.list <- RandomMatrix(10, 4) srd.array.result = SRD(m.list) #divergent traits colnames(cov.matrix.1)[as.logical(srd.output$model$code)] #Plot plot(srd.output) ## For the array generated by SRD(m.list) you must index the idividual positions for plotting: plot(srd.array.result[1,2][[1]]) plot(srd.array.result[3,4][[1]]) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) SRD(m.list, parallel = TRUE) ## End(Not run)
Tests modularity hypothesis using cor.matrix matrix and trait groupings
TestModularity( cor.matrix, modularity.hypot, permutations = 1000, MHI = FALSE, ..., landmark.dim = NULL, withinLandmark = FALSE )
TestModularity( cor.matrix, modularity.hypot, permutations = 1000, MHI = FALSE, ..., landmark.dim = NULL, withinLandmark = FALSE )
cor.matrix |
Correlation matrix |
modularity.hypot |
Matrix of hypothesis. Each line represents a trait and each column a module. if modularity.hypot[i,j] == 1, trait i is in module j. |
permutations |
Number of permutations, to be passed to MantelModTest |
MHI |
Indicates if test should use Modularity Hypothesis Index instead of AVG Ratio |
... |
additional arguments passed to MantelModTest |
landmark.dim |
Used if permutations should be performed maintaining landmark structure in geometric morphometric data. Either 2 for 2d data or 3 for 3d data. Default is NULL for non geometric morphometric data. |
withinLandmark |
Logical. If TRUE within-landmark correlations are used in the calculation of matrix correlation. Only used if landmark.dim is passed, default is FALSE. |
Returns mantel correlation and associated probability for each modularity hypothesis, along with AVG+, AVG-, AVG Ratio for each module. A total hypothesis combining all hypothesis is also tested.
Diogo Melo, Guilherme Garcia
Porto, Arthur, Felipe B. Oliveira, Leila T. Shirai, Valderes Conto, and Gabriel Marroig. 2009. "The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes." Evolutionary Biology 36 (1): 118-35. doi:10.1007/s11692-008-9038-3.
cor.matrix <- RandomMatrix(10) rand.hypots <- matrix(sample(c(1, 0), 30, replace=TRUE), 10, 3) mod.test <- TestModularity(cor.matrix, rand.hypots) cov.matrix <- RandomMatrix(10, 1, 1, 10) cov.mod.test <- TestModularity(cov.matrix, rand.hypots, MHI = TRUE) nosize.cov.mod.test <- TestModularity(RemoveSize(cov.matrix), rand.hypots, MHI = TRUE)
cor.matrix <- RandomMatrix(10) rand.hypots <- matrix(sample(c(1, 0), 30, replace=TRUE), 10, 3) mod.test <- TestModularity(cor.matrix, rand.hypots) cov.matrix <- RandomMatrix(10, 1, 1, 10) cov.mod.test <- TestModularity(cov.matrix, rand.hypots, MHI = TRUE) nosize.cov.mod.test <- TestModularity(RemoveSize(cov.matrix), rand.hypots, MHI = TRUE)
Calculates the Thin Plate Spline transform between a reference shape and a target shape
TPS(target.shape, reference.shape)
TPS(target.shape, reference.shape)
target.shape |
Target shape |
reference.shape |
Reference shape |
A list with the transformation parameters and a function that gives the value of the TPS function at each point for numerical differentiation
Guilherme Garcia
Performs a regression drift test along a phylogeny using DriftTest function.
TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes = NULL)
TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes = NULL)
tree |
phylogenetic tree |
mean.list |
list of tip node means. Names must match tip node labels. |
cov.matrix.list |
list of tip node covariance matrices. Names must match tip node labels. |
sample.sizes |
vector of tip nodes sample sizes |
A list of regression drift tests performed in nodes with over 4 descendant tips.
Diogo Melo
DriftTest PlotTreeDriftTest
library(ape) data(bird.orders) tree <- bird.orders mean.list <- llply(tree$tip.label, function(x) rnorm(5)) names(mean.list) <- tree$tip.label cov.matrix.list <- RandomMatrix(5, length(tree$tip.label)) names(cov.matrix.list) <- tree$tip.label sample.sizes <- runif(length(tree$tip.label), 15, 20) test.list <- TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes) #Ancestral node plot: test.list[[length(test.list)]]$plot
library(ape) data(bird.orders) tree <- bird.orders mean.list <- llply(tree$tip.label, function(x) rnorm(5)) names(mean.list) <- tree$tip.label cov.matrix.list <- RandomMatrix(5, length(tree$tip.label)) names(cov.matrix.list) <- tree$tip.label sample.sizes <- runif(length(tree$tip.label), 15, 20) test.list <- TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes) #Ancestral node plot: test.list[[length(test.list)]]$plot