Package 'evolqg'

Title: Evolutionary Quantitative Genetics
Description: Provides functions for covariance matrix comparisons, estimation of repeatabilities in measurements and matrices, and general evolutionary quantitative genetics tools. Melo D, Garcia G, Hubbe A, Assis A P, Marroig G. (2016) <doi:10.12688/f1000research.7082.3>.
Authors: Diogo Melo [aut, cre] , Ana Paula Assis [aut], Edgar Zanella [ctb], Fabio Andrade Machado [aut] , Guilherme Garcia [aut], Alex Hubbe [rev] , Gabriel Marroig [ths]
Maintainer: Diogo Melo <[email protected]>
License: MIT + file LICENSE
Version: 0.3-4
Built: 2024-12-30 08:28:44 UTC
Source: CRAN

Help Index


Alpha repeatability

Description

Calculates the matrix repeatability using the equation in Cheverud 1996 Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology 9, 5-42.

Usage

AlphaRep(cor.matrix, sample.size)

Arguments

cor.matrix

Correlation matrix

sample.size

Sample size used in matrix estimation

Value

Alpha repeatability for correlation matrix

Author(s)

Diogo Melo, Guilherme Garcia

References

Cheverud 1996 Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology 9, 5-42.

See Also

MonteCarloStat, BootstrapRep

Examples

#For single matrices
cor.matrix <- RandomMatrix(10)
AlphaRep(cor.matrix, 10)
AlphaRep(cor.matrix, 100)
#For many matrices
mat.list <- RandomMatrix(10, 100)
sample.sizes <- floor(runif(100, 20, 50))
unlist(Map(AlphaRep, mat.list, sample.sizes))

Calculate Covariance Matrix from a linear model fitted with lm() using different estimators

Description

Calculates covariance matrix using the maximum likelihood estimator, the maximum a posteriori (MAP) estimator under a regularized Wishart prior, and if the sample is large enough can give samples from the posterior and the median posterior estimator.

Usage

BayesianCalculateMatrix(linear.m, samples = NULL, ..., nu = NULL, S_0 = NULL)

Arguments

linear.m

Linear model adjusted for original data

samples

number os samples to be generated from the posterior. Requires sample size to be at least as large as the number of dimensions

...

additional arguments, currently ignored

nu

degrees of freedom in prior distribution, defaults to the number of traits (this can be a too strong prior)

S_0

cross product matrix of the prior. Default is to use the observed variances and zero covariance

Value

Estimated covariance matrices and posterior samples

Author(s)

Diogo Melo, Fabio Machado

References

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Schafer, J., e Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical applications in genetics and molecular biology, 4(1).

Examples

data(iris)
iris.lm = lm(as.matrix(iris[,1:4])~iris[,5])
matrices <- BayesianCalculateMatrix(iris.lm, nu = 0.1, samples = 100)

R2 confidence intervals by bootstrap resampling

Description

Random populations are generated by resampling the suplied data or residuals. R2 is calculated on all the random population's correlation matrices, provinding a distribution based on the original data.

Usage

BootstrapR2(ind.data, iterations = 1000, parallel = FALSE)

Arguments

ind.data

Matrix of residuals or indiviual measurments

iterations

Number of resamples to take

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Value

returns a vector with the R2 for all populations

Author(s)

Diogo Melo Guilherme Garcia

See Also

BootstrapRep, AlphaRep

Examples

r2.dist <- BootstrapR2(iris[,1:4], 30)
quantile(r2.dist)

Bootstrap analysis via resampling

Description

Calculates the repeatability of the covariance matrix of the supplied data via bootstrap resampling

Usage

BootstrapRep(
  ind.data,
  ComparisonFunc,
  iterations = 1000,
  sample.size = dim(ind.data)[1],
  correlation = FALSE,
  parallel = FALSE
)

Arguments

ind.data

Matrix of residuals or individual measurements

ComparisonFunc

comparison function

iterations

Number of resamples to take

sample.size

Size of resamples, default is the same size as ind.data

correlation

If TRUE, correlation matrix is used, else covariance matrix.

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Details

Samples with replacement are taken from the full population, a statistic calculated and compared to the full population statistic.

Value

returns the mean repeatability, that is, the mean value of comparisons from samples to original statistic.

Author(s)

Diogo Melo, Guilherme Garcia

See Also

MonteCarloStat, AlphaRep

Examples

BootstrapRep(iris[,1:4], MantelCor, iterations = 5, correlation = TRUE)
             
BootstrapRep(iris[,1:4], RandomSkewers, iterations = 50)

BootstrapRep(iris[,1:4], KrzCor, iterations = 50, correlation = TRUE)

BootstrapRep(iris[,1:4], PCAsimilarity, iterations = 50)

#Multiple threads can be used with some foreach backend library, like doMC or doParallel
#library(doParallel)
##Windows:
#cl <- makeCluster(2)
#registerDoParallel(cl)
##Mac and Linux:
#registerDoParallel(cores = 2)
#BootstrapRep(iris[,1:4], PCAsimilarity,
#             iterations = 5,
#             parallel = TRUE)

Non-Parametric population samples and statistic comparison

Description

Random populations are generated via ressampling using the suplied population. A statistic is calculated on the random population and compared to the statistic calculated on the original population.

Usage

BootstrapStat(
  ind.data,
  iterations,
  ComparisonFunc,
  StatFunc,
  sample.size = dim(ind.data)[1],
  parallel = FALSE
)

Arguments

ind.data

Matrix of residuals or indiviual measurments

iterations

Number of resamples to take

ComparisonFunc

comparison function

StatFunc

Function for calculating the statistic

sample.size

Size of ressamples, default is the same size as ind.data

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Value

returns the mean repeatability, that is, the mean value of comparisons from samples to original statistic.

Author(s)

Diogo Melo, Guilherme Garcia

See Also

BootstrapRep, AlphaRep

Examples

cov.matrix <- RandomMatrix(5, 1, 1, 10)

BootstrapStat(iris[,1:4], iterations = 50,
               ComparisonFunc = function(x, y) PCAsimilarity(x, y)[1],
               StatFunc = cov)

#Calculating R2 confidence intervals
r2.dist <- BootstrapR2(iris[,1:4], 30)
quantile(r2.dist)

#Multiple threads can be used with some foreach backend library, like doMC or doParallel
#library(doParallel)
##Windows:
#cl <- makeCluster(2)
#registerDoParallel(cl)
##Mac and Linux:
#registerDoParallel(cores = 2)
#BootstrapStat(iris[,1:4], iterations = 100,
#               ComparisonFunc = function(x, y) KrzCor(x, y)[1],
#               StatFunc = cov,
#               parallel = TRUE)

Calculates mean correlations within- and between-modules

Description

Uses a binary correlation matrix as a mask to calculate average within- and between-module correlations. Also calculates the ratio between them and the Modularity Hypothesis Index.

Usage

CalcAVG(cor.hypothesis, cor.matrix, MHI = TRUE, landmark.dim = NULL)

Arguments

cor.hypothesis

Hypothetical correlation matrix, with 1s within-modules and 0s between modules

cor.matrix

Observed empirical correlation matrix.

MHI

Indicates if Modularity Hypothesis Index should be calculated instead of AVG Ratio.

landmark.dim

Used if within-landmark correlations are to be excluded in geometric morphometric data. Either 2 for 2d data or 3 for 3d data. Default is NULL for non geometric morphomotric data.

Value

a named vector with the mean correlations and derived statistics

Examples

# Module vectors
modules = matrix(c(rep(c(1, 0, 0), each = 5),
                   rep(c(0, 1, 0), each = 5),
                   rep(c(0, 0, 1), each = 5)), 15)

# Binary modular matrix
cor.hypot = CreateHypotMatrix(modules)[[4]]

# Modular correlation matrix
hypot.mask = matrix(as.logical(cor.hypot), 15, 15)
mod.cor = matrix(NA, 15, 15)
mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules
mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules
diag(mod.cor) = 1
mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric

CalcAVG(cor.hypot, mod.cor)
CalcAVG(cor.hypot, mod.cor, MHI = TRUE)

Integration measure based on eigenvalue dispersion

Description

Calculates integration indexes based on eigenvalue dispersion of covariance or correlation matrices.

Usage

CalcEigenVar(
  matrix,
  sd = FALSE,
  rel = TRUE,
  sample = NULL,
  keep.positive = TRUE
)

Arguments

matrix

Covariance/correlation matrix

sd

Logical. Default is FALSE. If TRUE, estimates eigenvalue standard deviation. If FALSE, estimate the eigenvalue variance.

rel

Logical. If TRUE, scales eigenvalue dispersion value by the theoretical maximum.

sample

Default is NULL. If a integer is provided, function calculates the expected integration value for that particular sample size and returns value as a deviation from the expected.

keep.positive

Logical. If TRUE, non-positive eigenvalues are removed from calculation

Details

This function quantifies morphological integration as the dispersion of eigenvalues in a matrix. It takes either a covariance or a correlation matrix as input, and there is no need to discern between them.The output will depend on the combination of parameters specified during input.

As default, the function calculates the relative eigenvalue variance of the matrix, which expresses the eigenvalue variance as a ratio between the actual variance and the theoretical maximum for a matrix of the same size and same amount of variance (same trace), following Machado et al. (2019). If sd=TRUE, the dispersion is measured with the standard deviation of eigenvalues instead of the variance (Pavlicev, 2009). If the sample size is provided, the function automatically calculates the expected integration value for a matrix of the same size but with no integration (e.g. a matrix with all eigenvalues equal). In that case, the result is given as a deviation from the expected and is invariant to sample size (Wagner, 1984).

Value

Integration index based on eigenvalue dispersion.

Author(s)

Fabio Andrade Machado

Diogo Melo

References

Machado, Fabio A., Alex Hubbe, Diogo Melo, Arthur Porto, and Gabriel Marroig. 2019. "Measuring the magnitude of morphological integration: The effect of differences in morphometric representations and the inclusion of size." Evolution 33:402–411.

Pavlicev, Mihaela, James M. Cheverud, and Gunter P. Wagner. 2009. "Measuring Morphological Integration Using Eigenvalue Variance." Evolutionary Biology 36(1):157-170.

Wagner, Gunther P. 1984. "On the eigenvalue distribution of genetic and phenotypic dispersion matrices: evidence for a nonrandom organization of quantitative character variation." Journal of Mathematical Biology 21(1):77–95.

See Also

CalcR2, CalcICV

Examples

cov.matrix <- RandomMatrix(10, 1, 1, 10)
# calculates the relative eigenvalue variance of a covariance matrix
CalcEigenVar(cov.matrix)

# calculates the relative eigenvalue variance of a correlation matrix
CalcEigenVar(cov2cor(cov.matrix))

# calculates the relative eigenvalue standard deviation of a covariance 
# matrix
CalcEigenVar(cov.matrix, sd=TRUE)

# calculates the absolute eigenvalue variance of a covariance matrix
CalcEigenVar(cov.matrix, rel=FALSE)

# to evaluate the effect of sampling error on integration
x<-mvtnorm::rmvnorm(10, sigma=cov.matrix)
sample_cov.matrix<-var(x)

# to contrast values of integration obtained from population covariance 
# matrix
CalcEigenVar(cov.matrix)
# with the sample integration
CalcEigenVar(sample_cov.matrix)
# and with the integration measured corrected for sampling error
CalcEigenVar(sample_cov.matrix,sample=10)

Calculates the ICV of a covariance matrix.

Description

Calculates the coefficient of variation of the eigenvalues of a covariance matrix, a measure of integration comparable to the R^2 in correlation matrices.

Usage

CalcICV(cov.matrix)

Arguments

cov.matrix

Covariance matrix.

Details

Warning: CalcEigenVar is strongly preferred and should probably be used in place of this function.

Value

coefficient of variation of the eigenvalues of a covariance matrix

Author(s)

Diogo Melo

References

Shirai, Leila T, and Gabriel Marroig. 2010. "Skull Modularity in Neotropical Marsupials and Monkeys: Size Variation and Evolutionary Constraint and Flexibility." Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 314 B (8): 663-83. doi:10.1002/jez.b.21367.

Porto, Arthur, Leila Teruko Shirai, Felipe Bandoni de Oliveira, and Gabriel Marroig. 2013. "Size Variation, Growth Strategies, and the Evolution of Modularity in the Mammalian Skull." Evolution 67 (July): 3305-22. doi:10.1111/evo.12177.

See Also

CalcR2

Examples

cov.matrix <- RandomMatrix(10, 1, 1, 10)
CalcICV(cov.matrix)

Mean Squared Correlations

Description

Calculates the mean squared correlation of a covariance or correlation matrix. Measures integration.

Usage

CalcR2(c.matrix)

Arguments

c.matrix

Covariance or correlation matrix.

Details

Warning: CalcEigenVar is strongly preferred and should probably be used in place of this function.

Value

Mean squared value of off diagonal elements of correlation matrix

Author(s)

Diogo Melo, Guilherme Garcia

References

Porto, Arthur, Felipe B. de Oliveira, Leila T. Shirai, Valderes de Conto, and Gabriel Marroig. 2009. "The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes." Evolutionary Biology 36 (1): 118-35. doi:10.1007/s11692-008-9038-3.

Porto, Arthur, Leila Teruko Shirai, Felipe Bandoni de Oliveira, and Gabriel Marroig. 2013. "Size Variation, Growth Strategies, and the Evolution of Modularity in the Mammalian Skull." Evolution 67 (July): 3305-22. doi:10.1111/evo.12177.

See Also

Flexibility

Examples

cov.matrix <- RandomMatrix(10, 1, 1, 10)

# both of the following calls are equivalent,
# CalcR2 converts covariance matrices to correlation matrices internally
CalcR2(cov.matrix)
CalcR2(cov2cor(cov.matrix))

Corrected integration value

Description

Calculates the Young correction for integration, using bootstrap resampling Warning: CalcEigenVar is strongly preferred and should probably be used in place of this function..

Usage

CalcR2CvCorrected(ind.data, ...)

## Default S3 method:
CalcR2CvCorrected(
  ind.data,
  cv.level = 0.06,
  iterations = 1000,
  parallel = FALSE,
  ...
)

## S3 method for class 'lm'
CalcR2CvCorrected(ind.data, cv.level = 0.06, iterations = 1000, ...)

Arguments

ind.data

Matrix of individual measurments, or adjusted linear model

...

additional arguments passed to other methods

cv.level

Coefficient of variation level chosen for integration index adjustment in linear model. Defaults to 0.06.

iterations

Number of resamples to take

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Value

List with adjusted integration indexes, fitted models and simulated distributions of integration indexes and mean coefficient of variation.

Author(s)

Diogo Melo, Guilherme Garcia

References

Young, N. M., Wagner, G. P., and Hallgrimsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3400-5. doi:10.1073/pnas.0911856107

See Also

MeanMatrixStatistics, CalcR2

Examples

## Not run: 
integration.dist = CalcR2CvCorrected(iris[,1:4])

#adjusted values
integration.dist[[1]]

#ploting models
library(ggplot2)
ggplot(integration.dist$dist, aes(r2, mean_cv)) + geom_point() +
       geom_smooth(method = 'lm', color= 'black') + theme_bw()

ggplot(integration.dist$dist, aes(eVals_cv, mean_cv)) + geom_point() +
       geom_smooth(method = 'lm', color= 'black') + theme_bw()

## End(Not run)

Parametric per trait repeatabilities

Description

Estimates the variance in the sample not due to measurement error

Usage

CalcRepeatability(ID, ind.data)

Arguments

ID

identity of individuals

ind.data

individual measurements

Value

vector of repeatabilities

Note

Requires at least two observations per individual

Author(s)

Guilherme Garcia

References

Lessels, C. M., and Boag, P. T. (1987). Unrepeatable repeatabilities: a common mistake. The Auk, 2(January), 116-121.

Examples

num.ind = length(iris[,1])
ID = rep(1:num.ind, 2)
ind.data = rbind(iris[,1:4], iris[,1:4]+array(rnorm(num.ind*4, 0, 0.1), dim(iris[,1:4])))
CalcRepeatability(ID, ind.data)

Calculate Covariance Matrix from a linear model fitted with lm()

Description

Calculates covariance matrix using the maximum likelihood estimator and the model residuals.

Usage

CalculateMatrix(linear.m)

Arguments

linear.m

Linear model adjusted for original data.

Value

Estimated covariance matrix.

Author(s)

Diogo Melo, Fabio Machado

References

https://github.com/lem-usp/evolqg/wiki/

Examples

data(iris)
old <- options(contrasts=c("contr.sum","contr.poly"))
iris.lm = lm(as.matrix(iris[,1:4])~iris[,5])
cov.matrix <- CalculateMatrix(iris.lm)
options(old)  

#To obtain a corrlation matrix, use:
cor.matrix <- cov2cor(cov.matrix)

Centered jacobian residuals

Description

Calculates mean jacobian matrix for a set of jacobian matrices describing a local aspect of shape deformation for a given set of volumes, returning log determinants of deviations from mean jacobian (Woods, 2003).

Usage

Center2MeanJacobianFast(jacobArray)

Arguments

jacobArray

Arrays of Jacobian calculated in the JacobianArray function

Value

array of centered residual jacobians

Author(s)

Guilherme Garcia

Diogo Melo

References

Woods, Roger P. 2003. “Characterizing Volume and Surface Deformations in an Atlas Framework: Theory, Applications, and Implementation.” NeuroImage 18 (3):769-88.


Generic Comparison Map functions for creating parallel list methods Internal functions for making eficient comparisons.

Description

Generic Comparison Map functions for creating parallel list methods Internal functions for making eficient comparisons.

Usage

ComparisonMap(
  matrix.list,
  MatrixCompFunc,
  ...,
  repeat.vector = NULL,
  parallel = FALSE
)

Arguments

matrix.list

list of matrices being compared

MatrixCompFunc

Function used to compare pair of matrices, must output a vector: comparisons and probabilities

...

Aditional arguments to MatrixCompFunc

repeat.vector

Vector of repeatabilities for correlation correction.

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Value

Matrix of comparisons, matrix of probabilities.

Author(s)

Diogo Melo

See Also

MantelCor, KrzCor,RandomSkewers


Creates binary correlation matrices

Description

Takes a binary vector or column matrix and generates list of binary correlation matrices representing the partition in the vectors.

Usage

CreateHypotMatrix(modularity.hypot)

Arguments

modularity.hypot

Matrix of hypothesis. Each line represents a trait and each column a module. if modularity.hypot[i,j] == 1, trait i is in module j.

Value

binary matrix or list of binary matrices. If a matrix is passed, all the vectors are combined in the last binary matrix (total hypothesis of full integration hypothesis).

Examples

rand.hypots <- matrix(sample(c(1, 0), 30, replace=TRUE), 10, 3)
CreateHypotMatrix(rand.hypots)

Compare matrices via the correlation between response vectors

Description

Compares the expected response to selection for two matrices for a specific set of selection gradients (not random gradients like in the RandomSkewers method)

Usage

DeltaZCorr(cov.x, cov.y, skewers, ...)

## Default S3 method:
DeltaZCorr(cov.x, cov.y, skewers, ...)

## S3 method for class 'list'
DeltaZCorr(cov.x, cov.y = NULL, skewers, parallel = FALSE, ...)

Arguments

cov.x

Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is supplied, all matrices are compared. If cov.y is supplied, all matrices in list are compared to it.

cov.y

First argument is compared to cov.y. Optional if cov.x is a list.

skewers

matrix of column vectors to be used as gradients

...

additional arguments passed to other methods.

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Value

vector of vector correlations between the expected responses for the two matrices for each supplied vector

Author(s)

Diogo Melo, Guilherme Garcia

References

Cheverud, J. M., and Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461-469.

See Also

KrzCor,MantelCor,,RandomSkewers

Examples

x <- RandomMatrix(10, 1, 1, 10)
y <- RandomMatrix(10, 1, 1, 10)

n_skewers = 10
skewers = matrix(rnorm(10*n_skewers), 10, n_skewers)
DeltaZCorr(x, y, skewers)

Example multivariate data set

Description

Simulated example of 4 continuous bone lengths from 5 species.

Usage

data(dentus)

Format

A data frame with 300 rows and 5 variables

Details

  • humerus

  • ulna

  • femur

  • tibia

  • species


Tree for dentus example species

Description

Hypothetical tree for the species in the dentus data set.

Usage

data(dentus.tree)

Format

ape tree object


Test drift hypothesis

Description

Given a set of covariance matrices and means for terminals, test the hypothesis that observed divergence is larger/smaller than expected by drift alone using a regression of the between-group variances on the within-group eigenvalues.

Usage

DriftTest(means, cov.matrix, show.plot = TRUE)

Arguments

means

list or array of species means being compared. array must have means in the rows.

cov.matrix

ancestral covariance matrix for all populations

show.plot

Logical. If TRUE, plot of eigenvalues of ancestral matrix by between group variance is showed.

Value

list of results containing:

regression: the linear regression between the log of the eigenvalues of the ancestral matrix and the log of the between group variance (projected on the eigenvectors of the ancestral matrix)

coefficient_CI_95: confidence intervals for the regression coefficients

log.between_group_variance: log of the between group variance (projected on the ancestral matrix eigenvectors)

log.W_eVals: log of the ancestral matrix eigenvalues

plot: plot of the regression using ggplot2

Note

If the regression coefficient is significantly different to one, the null hypothesis of drift is rejected.

Author(s)

Ana Paula Assis, Diogo Melo

References

Marroig, G., and Cheverud, J. M. (2004). Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? The American Naturalist, 163(3), 417-428. doi:10.1086/381693

Proa, M., O'Higgins, P. and Monteiro, L. R. (2013), Type I error rates for testing genetic drift with phenotypic covariance matrices: A simulation study. Evolution, 67: 185-195. doi: 10.1111/j.1558-5646.2012.01746.x

Examples

#Input can be an array with means in each row or a list of mean vectors
means = array(rnorm(40*10), c(10, 40)) 
cov.matrix = RandomMatrix(40, 1, 1, 10)
DriftTest(means, cov.matrix)

Eigentensor Decomposition

Description

This function performs eigentensor decomposition on a set of covariance matrices.

Usage

EigenTensorDecomposition(matrices, return.projection = TRUE, ...)

## S3 method for class 'list'
EigenTensorDecomposition(matrices, return.projection = TRUE, ...)

## Default S3 method:
EigenTensorDecomposition(matrices, return.projection = TRUE, ...)

Arguments

matrices

k x k x m array of m covariance matrices with k traits;

return.projection

Should we project covariance matrices into estimated eigentensors? Defaults to TRUE

...

additional arguments for methods

Details

The number of estimated eigentensors is the minimum between the number of data points (m) and the number of independent variables (k(k + 1)/2) minus one, in a similar manner to the usual principal component analysis.

Value

List with the following components:

mean mean covariance matrices used to center the sample (obtained from MeanMatrix)

mean.sqrt square root of mean matrix (saved for use in other functions, such as ProjectMatrix and RevertMatrix)

values vector of ordered eigenvalues associated with eigentensors;

matrices array of eigentensor in matrix form;

projection matrix of unstandardized projected covariance matrices over eigentensors.

Author(s)

Guilherme Garcia, Diogo Melo

References

Basser P. J., Pajevic S. 2007. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing. 87:220-236.

Hine E., Chenoweth S. F., Rundle H. D., Blows M. W. 2009. Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 364:1567-78.

See Also

ProjectMatrix, RevertMatrix

Examples

data(dentus)

dentus.vcv <- daply (dentus, .(species), function(x) cov(x[,-5]))

dentus.vcv <- aperm(dentus.vcv, c(2, 3, 1))

dentus.etd <- EigenTensorDecomposition(dentus.vcv, TRUE)

# Plot some results
oldpar <- par(mfrow = c(1,2))  
plot(dentus.etd $ values, pch = 20, type = 'b', ylab = 'Eigenvalue')
plot(dentus.etd $ projection [, 1:2], pch = 20, 
     xlab = 'Eigentensor 1', ylab = 'Eigentensor 2')
text(dentus.etd $ projection [, 1:2],
     labels = rownames (dentus.etd $ projection), pos = 2)
par(oldpar)  


# we can also deal with posterior samples of covariance matrices using plyr

dentus.models <- dlply(dentus, .(species), 
                       lm, formula = cbind(humerus, ulna, femur, tibia) ~ 1)

dentus.matrices <- llply(dentus.models, BayesianCalculateMatrix, samples = 100)

dentus.post.vcv <- laply(dentus.matrices, function (L) L $ Ps)

dentus.post.vcv <- aperm(dentus.post.vcv, c(3, 4, 1, 2))

# this will perform one eigentensor decomposition for each set of posterior samples
dentus.post.etd <- alply(dentus.post.vcv, 4, EigenTensorDecomposition)

# which would allow us to observe the posterior 
# distribution of associated eigenvalues, for example
dentus.post.eval <- laply (dentus.post.etd, function (L) L $ values)

boxplot(dentus.post.eval, xlab = 'Index', ylab = 'Value', 
        main = 'Posterior Eigenvalue Distribution')

EvolQG

Description

The package for evolutionary quantitative genetics.


Control Inverse matrix noise with Extension

Description

Calculates the extended covariance matrix estimation as described in Marroig et al. 2012

Usage

ExtendMatrix(cov.matrix, var.cut.off = 1e-04, ret.dim = NULL)

Arguments

cov.matrix

Covariance matrix

var.cut.off

Cut off for second derivative variance. Ignored if ret.dim is passed.

ret.dim

Number of retained eigenvalues

Value

Extended covariance matrix and second derivative variance

Note

Covariance matrix being extended should be larger then 10x10

Author(s)

Diogo Melo

References

Marroig, G., Melo, D. A. R., and Garcia, G. (2012). Modularity, noise, and natural selection. Evolution; international journal of organic evolution, 66(5), 1506-24. doi:10.1111/j.1558-5646.2011.01555.x

Examples

cov.matrix = RandomMatrix(11, 1, 1, 100)
ext.matrix = ExtendMatrix(cov.matrix, var.cut.off = 1e-6)
ext.matrix = ExtendMatrix(cov.matrix, ret.dim = 6)

Local Jacobian calculation

Description

Calculates jacobians for a given interpolation in a set of points determined from tesselation (as centroids of each tetrahedron defined, for now...)

Usage

JacobianArray(spline, tesselation, ...)

Arguments

spline

Thin plate spline calculated by the TPS function

tesselation

matrix of landmarks.

...

Additional arguments to some function

Value

array of jacobians calculated at the centroids

Note

Jacobians are calculated on the row centroids of the tesselation matrix.

Author(s)

Guilherme Garcia


Compare matrices via Krzanowski Correlation

Description

Calculates covariance matrix correlation via Krzanowski Correlation

Usage

KrzCor(cov.x, cov.y, ...)

## Default S3 method:
KrzCor(cov.x, cov.y, ret.dim = NULL, ...)

## S3 method for class 'list'
KrzCor(
  cov.x,
  cov.y = NULL,
  ret.dim = NULL,
  repeat.vector = NULL,
  parallel = FALSE,
  ...
)

## S3 method for class 'mcmc_sample'
KrzCor(cov.x, cov.y, ret.dim = NULL, parallel = FALSE, ...)

Arguments

cov.x

Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is suplied, all matrices are compared to each other. If cov.y is supplied, all matrices in list are compared to it.

cov.y

First argument is compared to cov.y. Optional if cov.x is a list.

...

additional arguments passed to other methods

ret.dim

number of retained dimensions in the comparison, default for nxn matrix is n/2-1

repeat.vector

Vector of repeatabilities for correlation correction.

parallel

if TRUE and a list is passed, computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Value

If cov.x and cov.y are passed, returns Krzanowski correlation

If cov.x is a list and cov.y is passed, same as above, but for all matrices in cov.x.

If only a list is passed to cov.x, a matrix of Krzanowski correlation values. If repeat.vector is passed, comparison matrix is corrected above diagonal and repeatabilities returned in diagonal.

Author(s)

Diogo Melo, Guilherme Garcia

References

Krzanowski, W. J. (1979). Between-Groups Comparison of Principal Components. Journal of the American Statistical Association, 74(367), 703. doi:10.2307/2286995

See Also

RandomSkewers,KrzProjection,MantelCor

Examples

c1 <- RandomMatrix(10, 1, 1, 10)
c2 <- RandomMatrix(10, 1, 1, 10)
c3 <- RandomMatrix(10, 1, 1, 10)
KrzCor(c1, c2)

KrzCor(list(c1, c2, c3))

reps <- unlist(lapply(list(c1, c2, c3), MonteCarloRep, 10, KrzCor, iterations = 10))
KrzCor(list(c1, c2, c3), repeat.vector = reps)

c4 <- RandomMatrix(10)
KrzCor(list(c1, c2, c3), c4)


## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
KrzCor(list(c1, c2, c3), parallel = TRUE)

## End(Not run)

Compare matrices via Modified Krzanowski Correlation

Description

Calculates the modified Krzanowski correlation between matrices, projecting the variance in each principal components of the first matrix in to the ret.dim.2 components of the second matrix.

Usage

KrzProjection(cov.x, cov.y, ...)

## Default S3 method:
KrzProjection(cov.x, cov.y, ret.dim.1 = NULL, ret.dim.2 = NULL, ...)

## S3 method for class 'list'
KrzProjection(
  cov.x,
  cov.y = NULL,
  ret.dim.1 = NULL,
  ret.dim.2 = NULL,
  parallel = FALSE,
  full.results = FALSE,
  ...
)

Arguments

cov.x

Single covariance matrix ou list of covariance matrices. If cov.x is a single matrix is supplied, it is compared to cov.y. If cov.x is a list of matrices is supplied and no cov.y is supplied, all matrices are compared between each other. If cov.x is a list of matrices and a single cov.y matrix is supplied, all matrices in list are compared to it.

cov.y

First argument is compared to cov.y. If cov.x is a list, every element in cov.x is projected in cov.y.

...

additional arguments passed to other methods

ret.dim.1

number of retained dimensions for first matrix in comparison, default for nxn matrix is n/2-1

ret.dim.2

number of retained dimensions for second matrix in comparison, default for nxn matrix is n/2-1

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

full.results

if FALSE returns only total variance, if TRUE also per PC variance.

Value

Ratio of projected variance to total variance, and ratio of projected total in each PC

Author(s)

Diogo Melo, Guilherme Garcia

References

Krzanowski, W. J. (1979). Between-Groups Comparison of Principal Components. Journal of the American Statistical Association, 74(367), 703. doi:10.2307/2286995

See Also

RandomSkewers,MantelCor

Examples

c1 <- RandomMatrix(10)
c2 <- RandomMatrix(10)
KrzProjection(c1, c2)


m.list <- RandomMatrix(10, 3)
KrzProjection(m.list)
KrzProjection(m.list, full.results = TRUE)
KrzProjection(m.list, ret.dim.1 = 5, ret.dim.2 = 4)
KrzProjection(m.list, ret.dim.1 = 4, ret.dim.2 = 5)

KrzProjection(m.list, c1)
KrzProjection(m.list, c1, full.results = TRUE)

## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
KrzProjection(m.list, parallel = TRUE)

## End(Not run)

Krzanowski common subspaces analysis

Description

Calculates the subspace most similar across a set of covariance matrices.

Usage

KrzSubspace(cov.matrices, k = NULL)

Arguments

cov.matrices

list of covariance matrices

k

number of dimensions to be retained in calculating the subspace

Value

H shared space matrix

k_eVals_H eigen values for shared space matrix, maximum value for each is the number of matrices, representing a fully shared direction

k_eVecs_H eigen vectors of shared space matrix

angles between each population subspace and each eigen vector of shared space matrix

Note

can be used to implement the Bayesian comparison from Aguirre et al. 2014

References

Aguirre, J. D., E. Hine, K. McGuigan, and M. W. Blows. "Comparing G: multivariate analysis of genetic variation in multiple populations." Heredity 112, no. 1 (2014): 21-29.

Examples

data(dentus)
dentus.matrices = dlply(dentus, .(species), function(x) cov(x[-5]))
KrzSubspace(dentus.matrices, k = 2)

## Not run: 
# The method in Aguirre et al. 2014 can de implemented using this function as follows:

#Random input data with dimensions traits x traits x populations x MCMCsamples:
cov.matrices = aperm(aaply(1:10, 1, function(x) laply(RandomMatrix(6, 40,                    
                                                      variance = runif(6,1, 10)), 
                           identity)), 
                     c(3, 4, 1, 2))
   
Hs = alply(cov.matrices, 4, function(x) alply(x, 3)) |> llply(function(x) KrzSubspace(x, 3)$H)
avgH = Reduce("+", Hs)/length(Hs)
avgH.vec <- eigen(avgH)$vectors
MCMC.H.val = laply(Hs, function(mat) diag(t(avgH.vec) %*% mat %*% avgH.vec))

# confidence intervals for variation in shared subspace directions
library(coda)
HPDinterval(as.mcmc(MCMC.H.val))    

## End(Not run)

Quasi-Bayesian Krzanowski subspace comparison

Description

Calculates the usual Krzanowski subspace comparison using a posterior samples for a set of phenotypic covariance matrices. Then, this observed comparison is contrasted to the subspace comparison across a permutation of the original data. Residuals, which are used to calculate the observed P-matrices, are shuffled across groups. This process is repeated, creating a null distribution of subspace comparisons under the hypothesis that all P-matrices come from the same population. This method is a modification on the fully Bayesian method proposed in Aguirre et. al 2013 and improved in Morrisey et al 2019.

Usage

KrzSubspaceBootstrap(x, rep = 1, MCMCsamples = 1000, parallel = FALSE)

Arguments

x

list of linear models from which P-matrices should be calculated

rep

number of bootstrap samples to be made

MCMCsamples

number of MCMCsamples for each P-matrix posterior distribution.

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Value

A list with the observed and randomized eigenvalue distributions for the posterior Krz Subspace comparisons.

References

Aguirre, J. D., E. Hine, K. McGuigan, and M. W. Blows. 2013. “Comparing G: multivariate analysis of genetic variation in multiple populations.” Heredity 112 (February): 21–29.

Morrissey, Michael B., Sandra Hangartner, and Keyne Monro. 2019. “A Note on Simulating Null Distributions for G Matrix Comparisons.” Evolution; International Journal of Organic Evolution 73 (12): 2512–17.

See Also

KrzSubspaceDataFrame, PlotKrzSubspace

Examples

library(plyr)
data(ratones)

model_formula = paste("cbind(", paste(names(ratones)[13:20], collapse = ", "), ") ~ SEX")
lm_models = dlply(ratones, .(LIN), function(df) lm(as.formula(model_formula), data = df))
krz_comparsion = KrzSubspaceBootstrap(lm_models, rep = 100, MCMCsamples = 1000)
krz_df = KrzSubspaceDataFrame(krz_comparsion)
PlotKrzSubspace(krz_df)

Extract confidence intervals from KrzSubspaceBootstrap

Description

Returns posterior means and confidence intervals from the object produced by the KrzSubspaceBootstrap() function. Mainly used for ploting using PlotKrzSubspace. See example in the KrzSubspaceBootstrap function.

Usage

KrzSubspaceDataFrame(x, n = ncol(observed), prob = 0.95)

Arguments

x

output from KrzSubspaceBootstrap function.

n

number of eigenvalues to use

prob

Posterior probability interval. Default is 95%.

Value

Posterior intervals for the eigenvalues of the H matrix in the KrzSubspace comparison.

See Also

KrzSubspaceBootstrap, PlotKrzSubspace


L Modularity

Description

Calculates the L-Modularity (Newman-type modularity) and the partition of traits that minimizes L-Modularity. Wrapper for using correlations matrices in community detection algorithms from igraph.

Usage

LModularity(cor.matrix, method = optimal.community, ...)

Arguments

cor.matrix

correlation matrix

method

community detection function

...

Additional arguments to igraph community detection function

Details

Warning: Using modularity maximization is almost always a terrible idea. See: https://skewed.de/tiago/blog/modularity-harmful

Value

List with L-Modularity value and trait partition

Note

Community detection is done by transforming the correlation matrix into a weighted graph and using community detection algorithms on this graph. Default method is optimal but slow. See igraph documentation for other options.

If negative correlations are present, the square of the correlation matrix is used as weights.

References

Modularity and community structure in networks (2006) M. E. J. Newman, 8577-8582, doi: 10.1073/pnas.0601602103

Examples

## Not run: 
# A modular matrix:
modules = matrix(c(rep(c(1, 0, 0), each = 5),
rep(c(0, 1, 0), each = 5),
rep(c(0, 0, 1), each = 5)), 15)
cor.hypot = CreateHypotMatrix(modules)[[4]]
hypot.mask = matrix(as.logical(cor.hypot), 15, 15)
mod.cor = matrix(NA, 15, 15)
mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules
mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules
diag(mod.cor) = 1
mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric

# requires a custom igraph installation with GLPK installed in the system
LModularity(mod.cor)
## End(Not run)

Local Shape Variables

Description

Calculates the local shape variables of a set of landmarks using the sequence: - TPS transform between all shapes and the mean shape - Jacobian of the TPS transforms at the centroid of rows of the landmarks in the tesselation argument - Mean center the Jacobians using the Karcher Mean - Take the determinant of the centered jacobians

Usage

LocalShapeVariables(
  gpa = NULL,
  cs = NULL,
  landmarks = NULL,
  tesselation,
  run_parallel = FALSE
)

Arguments

gpa

Procustes aligned landmarks.

cs

Centoid sizes

landmarks

unaligned landmarks. Ignored if both gpa and cs are passed.

tesselation

matrix of rows of the landmarks. The centroid of each row is used to mark the position of the jacobians

run_parallel

Logical. If computation should be paralleled. Use with caution, can make things worse. Requires that at parallel back-end like doMC be registered

Value

List with TPS functions, jacobian matrices, local shape variables, mean shape, centroid sizes and individual IDs

Author(s)

Guilherme Garcia

Diogo Melo


Compare matrices via Mantel Correlation

Description

Calculates correlation matrix correlation and significance via Mantel test.

Usage

MantelCor(cor.x, cor.y, ...)

## Default S3 method:
MantelCor(
  cor.x,
  cor.y,
  permutations = 1000,
  ...,
  landmark.dim = NULL,
  withinLandmark = FALSE,
  mod = FALSE
)

## S3 method for class 'list'
MantelCor(
  cor.x,
  cor.y = NULL,
  permutations = 1000,
  repeat.vector = NULL,
  parallel = FALSE,
  ...
)

## S3 method for class 'mcmc_sample'
MantelCor(cor.x, cor.y, ..., parallel = FALSE)

MatrixCor(cor.x, cor.y, ...)

## Default S3 method:
MatrixCor(cor.x, cor.y, ...)

## S3 method for class 'list'
MatrixCor(
  cor.x,
  cor.y = NULL,
  permutations = 1000,
  repeat.vector = NULL,
  parallel = FALSE,
  ...
)

## S3 method for class 'mcmc_sample'
MatrixCor(cor.x, cor.y, ..., parallel = FALSE)

Arguments

cor.x

Single correlation matrix or list of correlation matrices.

If single matrix is supplied, it is compared to cor.y.

If list is supplied and no cor.y is supplied, all matrices are compared.

If cor.y is supplied, all matrices in list are compared to it.

cor.y

First argument is compared to cor.y. Optional if cor.x is a list.

...

additional arguments passed to other methods

permutations

Number of permutations used in significance calculation.

landmark.dim

Used if permutations should be performed maintaining landmark structure in geometric morphometric data. Either 2 for 2d data or 3 for 3d data. Default is NULL for non geometric morphomotric data.

withinLandmark

Logical. If TRUE within-landmark correlations are used in the calculation of matrix correlation. Only used if landmark.dim is passed, default is FALSE.

mod

Set TRUE to use mantel in testing modularity hypothesis. Should only be used in MantelModTest.

repeat.vector

Vector of repeatabilities for correlation correction.

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Value

If cor.x and cor.y are passed, returns matrix Pearson correlation coefficient and significance via Mantel permutations.

If cor.x is a list of matrices and cor.y is passed, same as above, but for all matrices in cor.x.

If only cor.x is passed, a matrix of MantelCor average values and probabilities of all comparisons. If repeat.vector is passed, comparison matrix is corrected above diagonal and repeatabilities returned in diagonal.

Note

If the significance is not needed, MatrixCor provides the correlation and skips the permutations, so it is much faster.

Author(s)

Diogo Melo, Guilherme Garcia

References

http://en.wikipedia.org/wiki/Mantel_test

See Also

KrzCor,RandomSkewers,mantel,RandomSkewers,TestModularity, MantelModTest

Examples

c1 <- RandomMatrix(10, 1, 1, 10)
c2 <- RandomMatrix(10, 1, 1, 10)
c3 <- RandomMatrix(10, 1, 1, 10)
MantelCor(cov2cor(c1), cov2cor(c2))

cov.list <- list(c1, c2, c3)
cor.list <- llply(list(c1, c2, c3), cov2cor)

MantelCor(cor.list)

# For repeatabilities we can use MatrixCor, which skips the significance calculation
reps <- unlist(lapply(cov.list, MonteCarloRep, 10, MatrixCor, correlation = TRUE))
MantelCor(cor.list, repeat.vector = reps)

c4 <- RandomMatrix(10)
MantelCor(cor.list, c4)

## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
MantelCor(cor.list, parallel = TRUE)

## End(Not run)

Test single modularity hypothesis using Mantel correlation

Description

Calculates the correlation and Mantel significance test between a hypothetical binary modularity matrix and a correlation matrix. Also gives mean correlation within- and between-modules. This function is usually only called by TestModularity.

Usage

MantelModTest(cor.hypothesis, cor.matrix, ...)

## Default S3 method:
MantelModTest(
  cor.hypothesis,
  cor.matrix,
  permutations = 1000,
  MHI = FALSE,
  ...,
  landmark.dim = NULL,
  withinLandmark = FALSE
)

## S3 method for class 'list'
MantelModTest(
  cor.hypothesis,
  cor.matrix,
  permutations = 1000,
  MHI = FALSE,
  landmark.dim = NULL,
  withinLandmark = FALSE,
  ...,
  parallel = FALSE
)

Arguments

cor.hypothesis

Hypothetical correlation matrix, with 1s within-modules and 0s between modules.

cor.matrix

Observed empirical correlation matrix.

...

additional arguments passed to MantelCor

permutations

Number of permutations used in significance calculation.

MHI

Indicates if Modularity Hypothesis Index should be calculated instead of AVG Ratio.

landmark.dim

Used if permutations should be performed maintaining landmark structure in geometric morphometric data. Either 2 for 2d data or 3 for 3d data. Default is NULL for non geometric morphometric data.

withinLandmark

Logical. If TRUE within-landmark correlation are used in calculation of correlation. Only used if landmark.dim is passed, default is FALSE.

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Details

CalcAVG can be used when a significance test is not required.

Value

Returns a vector with the matrix correlation, significance via Mantel, within- and between module correlation.

Author(s)

Diogo Melo, Guilherme Garcia

References

Porto, Arthur, Felipe B. Oliveira, Leila T. Shirai, Valderes Conto, and Gabriel Marroig. 2009. "The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes." Evolutionary Biology 36 (1): 118-35. doi:10.1007/s11692-008-9038-3.

Modularity and Morphometrics: Error Rates in Hypothesis Testing Guilherme Garcia, Felipe Bandoni de Oliveira, Gabriel Marroig bioRxiv 030874; doi: http://dx.doi.org/10.1101/030874

See Also

mantel,MantelCor,CalcAVG,TestModularity

Examples

# Create a single modularity hypothesis:
hypot = rep(c(1, 0), each = 6)
cor.hypot = CreateHypotMatrix(hypot)

# First with an unstructured matrix:
un.cor = RandomMatrix(12)
MantelModTest(cor.hypot, un.cor)

# Now with a modular matrix:
hypot.mask = matrix(as.logical(cor.hypot), 12, 12)
mod.cor = matrix(NA, 12, 12)
mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules
mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.3, 0.4) # between-modules
diag(mod.cor) = 1
mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric

MantelModTest(cor.hypot, mod.cor)

Matrix Compare

Description

Compare two matrices using all available methods. Currently RandomSkewers, MantelCor, KrzCor and PCASimilarity

Usage

MatrixCompare(cov.x, cov.y, id = ".id")

Arguments

cov.x

covariance or correlation matrix

cov.y

covariance or correlation matrix

id

name of the comparison column

Value

data.frame of comparisons

Examples

cov.x = RandomMatrix(10, 1, 1, 10)
cov.y = RandomMatrix(10, 1, 10, 20)
MatrixCompare(cov.x, cov.y)

Matrix distance

Description

Calculates Distances between covariance matrices.

Usage

MatrixDistance(cov.x, cov.y, distance, ...)

## Default S3 method:
MatrixDistance(cov.x, cov.y, distance = c("OverlapDist", "RiemannDist"), ...)

## S3 method for class 'list'
MatrixDistance(
  cov.x,
  cov.y = NULL,
  distance = c("OverlapDist", "RiemannDist"),
  ...,
  parallel = FALSE
)

Arguments

cov.x

Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is supplied, all matrices are compared. If cov.y is supplied, all matrices in list are compared to it.

cov.y

First argument is compared to cov.y. Optional if cov.x is a list.

distance

distance function for use in calculation. Currently supports "Riemann" and "Overlap".

...

additional arguments passed to other methods

parallel

if TRUE and a list is passed, computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Value

If cov.x and cov.y are passed, returns distance between them.

If is a list cov.x and cov.y are passed, same as above, but for all matrices in cov.x.

If only a list is passed to cov.x, a matrix of Distances is returned

Author(s)

Diogo Melo

See Also

RiemannDist,OverlapDist

Examples

c1 <- RandomMatrix(10)
c2 <- RandomMatrix(10)
c3 <- RandomMatrix(10)
MatrixDistance(c1, c2, "OverlapDist")
MatrixDistance(c1, c2, "RiemannDist")

# Compare multiple matrices
MatrixDistance(list(c1, c2, c3), distance = "OverlapDist")

# Compare multiple matrices to a target matrix
c4 <- RandomMatrix(10)
MatrixDistance(list(c1, c2, c3), c4)

Mean Covariance Matrix

Description

Estimate geometric mean for a set of covariance matrices

Usage

MeanMatrix(matrix.array, tol = 1e-10)

Arguments

matrix.array

k x k x m array of covariance matrices, with k traits and m matrices

tol

minimum riemannian distance between sequential iterated means for accepting an estimated matrix

Value

geometric mean covariance matrix

Author(s)

Guilherme Garcia, Diogo Melo

References

Bini, D. A., Iannazzo, B. 2013. Computing the Karcher Mean of Symmetric Positive Definite Matrices. Linear Algebra and Its Applications, 16th ILAS Conference Proceedings, Pisa 2010, 438 (4): 1700-1710. doi:10.1016/j.laa.2011.08.052.

See Also

EigenTensorDecomposition, RiemannDist


Calculate mean values for various matrix statistics

Description

Calculates: Mean Squared Correlation, ICV, Autonomy, ConditionalEvolvability, Constraints, Evolvability, Flexibility, Pc1Percent, Respondability.

Usage

MeanMatrixStatistics(
  cov.matrix,
  iterations = 1000,
  full.results = FALSE,
  parallel = FALSE
)

Arguments

cov.matrix

A covariance matrix

iterations

Number of random vectors to be used in calculating the stochastic statistics

full.results

If TRUE, full distribution of statistics will be returned.

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Value

dist Full distribution of stochastic statistics, only if full.resuts == TRUE

mean Mean value for all statistics

Author(s)

Diogo Melo Guilherme Garcia

References

Hansen, T. F., and Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of evolutionary biology, 21(5), 1201-19. doi:10.1111/j.1420-9101.2008.01573.x

Examples

cov.matrix <- cov(iris[,1:4])
MeanMatrixStatistics(cov.matrix)

## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
MeanMatrixStatistics(cov.matrix, parallel = TRUE)

## End(Not run)

Modularity and integration analysis tool

Description

Combines and compares many modularity hypothesis to a covariance matrix. Comparison values are adjusted to the number of zeros in the hypothesis using a linear regression. Best hypothesis can be assessed using a jack-knife procedure.

Usage

MINT(
  c.matrix,
  modularity.hypot,
  significance = FALSE,
  sample.size = NULL,
  iterations = 1000
)

JackKnifeMINT(
  ind.data,
  modularity.hypot,
  n = 1000,
  leave.out = floor(dim(ind.data)[1]/10),
  ...
)

Arguments

c.matrix

Correlation or covariance matrix

modularity.hypot

Matrix of hypothesis. Each line represents a trait and each column a module. if modularity.hypot[i,j] == 1, trait i is in module j.

significance

Logical. Indicates if goodness of fit test should be performed.

sample.size

sample size in goodness of fit simulations via MonteCarlo

iterations

number os goodness of fit simulations

ind.data

Matrix of residuals or individual measurements

n

number of jackknife samples

leave.out

number of individuals to be left out of each jackknife, default is 10%

...

additional arguments to be passed to raply for the jackknife

Value

Dataframe with ranked hypothesis, ordered by the corrected gamma value Jackknife will return the best hypothesis for each sample.

Note

Hypothesis can be named as column names, and these will be used to make labels in the output.

References

Marquez, E.J. 2008. A statistical framework for testing modularity in multidimensional data. Evolution 62:2688-2708.

Parsons, K.J., Marquez, E.J., Albertson, R.C. 2012. Constraint and opportunity: the genetic basis and evolution of modularity in the cichlid mandible. The American Naturalist 179:64-78.

http://www-personal.umich.edu/~emarquez/morph/doc/mint_man.pdf

Examples

# Creating a modular matrix:
modules = matrix(c(rep(c(1, 0, 0), each = 5),
                 rep(c(0, 1, 0), each = 5),
                 rep(c(0, 0, 1), each = 5)), 15)
                 
cor.hypot = CreateHypotMatrix(modules)[[4]]
hypot.mask = matrix(as.logical(cor.hypot), 15, 15)
mod.cor = matrix(NA, 15, 15)
mod.cor[ hypot.mask] = runif(length(mod.cor[ hypot.mask]), 0.8, 0.9) # within-modules
mod.cor[!hypot.mask] = runif(length(mod.cor[!hypot.mask]), 0.1, 0.2) # between-modules
diag(mod.cor) = 1
mod.cor = (mod.cor + t(mod.cor))/2 # correlation matrices should be symmetric

# True hypothesis and a bunch of random ones.
hypothetical.modules = cbind(modules, matrix(sample(c(1, 0), 4*15, replace=TRUE), 15, 4))

# if hypothesis columns are not named they are assigned numbers
colnames(hypothetical.modules) <- letters[1:7]
 
MINT(mod.cor, hypothetical.modules)

random_var = runif(15, 1, 10)
mod.data = mvtnorm::rmvnorm(100, sigma = sqrt(outer(random_var, random_var)) * mod.cor)
out_jack = JackKnifeMINT(mod.data, hypothetical.modules, n = 50)

library(ggplot2)

ggplot(out_jack, aes(rank, corrected.gamma)) + geom_point() + 
       geom_errorbar(aes(ymin = lower.corrected, ymax = upper.corrected))

R2 confidence intervals by parametric sampling

Description

Using a multivariate normal model, random populations are generated using the suplied covariance matrix. R2 is calculated on all the random population, provinding a distribution based on the original matrix.

Usage

MonteCarloR2(cov.matrix, sample.size, iterations = 1000, parallel = FALSE)

Arguments

cov.matrix

Covariance matrix.

sample.size

Size of the random populations

iterations

Number of random populations

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Details

Since this function uses multivariate normal model to generate populations, only covariance matrices should be used.

Value

returns a vector with the R2 for all populations

Author(s)

Diogo Melo Guilherme Garcia

See Also

BootstrapRep, AlphaRep

Examples

r2.dist <- MonteCarloR2(RandomMatrix(10, 1, 1, 10), 30)
quantile(r2.dist)

Parametric repeatabilities with covariance or correlation matrices

Description

Using a multivariate normal model, random populations are generated using the suplied covariance matrix. A statistic is calculated on the random population and compared to the statistic calculated on the original matrix.

Usage

MonteCarloRep(
  cov.matrix,
  sample.size,
  ComparisonFunc,
  ...,
  iterations = 1000,
  correlation = FALSE,
  parallel = FALSE
)

Arguments

cov.matrix

Covariance matrix.

sample.size

Size of the random populations.

ComparisonFunc

comparison function.

...

Aditional arguments passed to ComparisonFunc.

iterations

Number of random populations.

correlation

If TRUE, correlation matrix is used, else covariance matrix. MantelCor and MatrixCor should always uses correlation matrix.

parallel

If is TRUE and list is passed, computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Details

Since this function uses multivariate normal model to generate populations, only covariance matrices should be used, even when computing repeatabilities for covariances matrices.

Value

returns the mean repeatability, or mean value of comparisons from samples to original statistic.

Author(s)

Diogo Melo Guilherme Garcia

See Also

BootstrapRep, AlphaRep

Examples

cov.matrix <- RandomMatrix(5, 1, 1, 10)

MonteCarloRep(cov.matrix, sample.size = 30, RandomSkewers, iterations = 20)


MonteCarloRep(cov.matrix, sample.size = 30, RandomSkewers, num.vectors = 100, 
              iterations = 20, correlation = TRUE)
MonteCarloRep(cov.matrix, sample.size = 30, MatrixCor, correlation = TRUE)
MonteCarloRep(cov.matrix, sample.size = 30, KrzCor, iterations = 20)
MonteCarloRep(cov.matrix, sample.size = 30, KrzCor, correlation = TRUE)


#Creating repeatability vector for a list of matrices
mat.list <- RandomMatrix(5, 3, 1, 10)
laply(mat.list, MonteCarloRep, 30, KrzCor, correlation = TRUE)


## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
MonteCarloRep(cov.matrix, 30, RandomSkewers, iterations = 100, parallel = TRUE)

## End(Not run)

Parametric population samples with covariance or correlation matrices

Description

Using a multivariate normal model, random populations are generated using the supplied covariance matrix. A statistic is calculated on the random population and compared to the statistic calculated on the original matrix.

Usage

MonteCarloStat(
  cov.matrix,
  sample.size,
  iterations,
  ComparisonFunc,
  StatFunc,
  parallel = FALSE
)

Arguments

cov.matrix

Covariance matrix.

sample.size

Size of the random populations

iterations

Number of random populations

ComparisonFunc

Comparison functions for the calculated statistic

StatFunc

Function for calculating the statistic

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Details

Since this function uses multivariate normal model to generate populations, only covariance matrices should be used.

Value

returns the mean repeatability, or mean value of comparisons from samples to original statistic.

Author(s)

Diogo Melo, Guilherme Garcia

See Also

BootstrapRep, AlphaRep

Examples

cov.matrix <- RandomMatrix(5, 1, 1, 10)

MonteCarloStat(cov.matrix, sample.size = 30, iterations = 50,
               ComparisonFunc = function(x, y) PCAsimilarity(x, y)[1],
               StatFunc = cov)

#Calculating R2 confidence intervals
r2.dist <- MonteCarloR2(RandomMatrix(10, 1, 1, 10), 30)
quantile(r2.dist)

## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
##Windows:
#cl <- makeCluster(2)
#registerDoParallel(cl)

##Mac and Linux:
library(doParallel)
registerDoParallel(cores = 2)

MonteCarloStat(cov.matrix, sample.size = 30, iterations = 100,
               ComparisonFunc = function(x, y) KrzCor(x, y)[1],
               StatFunc = cov,
               parallel = TRUE)

## End(Not run)

Calculate Mahalonabis distance for many vectors

Description

Calculates the Mahalanobis distance between a list of species mean, using a global covariance matrix

Usage

MultiMahalanobis(means, cov.matrix, parallel = FALSE)

Arguments

means

list or array of species means being compared. array must have means in the rows.

cov.matrix

a single covariance matrix defining the scale (or metric tensor) to be used in the distance calculation.

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Value

returns a matrix of species-species distances.

Author(s)

Diogo Melo

References

http://en.wikipedia.org/wiki/Mahalanobis_distance

See Also

mahalanobis

Examples

mean.1 <- colMeans(matrix(rnorm(30*10), 30, 10))
mean.2 <- colMeans(matrix(rnorm(30*10), 30, 10))
mean.3 <- colMeans(matrix(rnorm(30*10), 30, 10))
mean.list <- list(mean.1, mean.2, mean.3)

# If cov.matrix is the identity, calculated distance is euclidian:
euclidian <- MultiMahalanobis(mean.list, diag(10))
# Using a matrix with half the variance will give twice the distance between each mean:
half.euclidian  <- MultiMahalanobis(mean.list, diag(10)/2)

# Other covariance matrices will give different distances, measured in the scale of the matrix
non.euclidian <- MultiMahalanobis(mean.list, RandomMatrix(10))

#Input can be an array with means in each row
mean.array = array(1:36, c(9, 4))
mat = RandomMatrix(4)
MultiMahalanobis(mean.array, mat)

## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
MultiMahalanobis(mean.list, RandomMatrix(10), parallel = TRUE)

## End(Not run)

Multivariate genetic drift test for 2 populations

Description

This function estimates populations evolving through drift from an ancestral population, given an effective population size, number of generations separating them and the ancestral G-matrix. It calculates the magnitude of morphological divergence expected and compare it to the observed magnitude of morphological change.

Usage

MultivDriftTest(
  population1,
  population2,
  G,
  Ne,
  generations,
  iterations = 1000
)

Arguments

population1

data.frame with original measurements for the ancestral population

population2

data.frame with original measurements for the derived population

G

ancestral G matrix

Ne

effective population size estimated for the populations

generations

time in generations separating both populations

iterations

number of simulations to perform

Value

list with the 95 drift and the range of the observed magnitude of morphological change

Note

Each trait is estimated independently.

Author(s)

Ana Paula Assis

References

Hohenlohe, P.A ; Arnold, S.J. (2008). MIPod: a hypothesis testing framework for microevolutionary inference from patterns of divergence. American Naturalist, 171(3), 366-385. doi: 10.1086/527498

Examples

data(dentus)
A <- dentus[dentus$species== "A",-5]
B <- dentus[dentus$species== "B",-5]
G <- cov(A)
MultivDriftTest(A, B, G, Ne = 1000, generations = 250)

Normalize and Norm

Description

Norm returns the euclidian norm of a vector, Normalize returns a vector with unit norm.

Usage

Normalize(x)

Norm(x)

Arguments

x

Numeric vector

Value

Normalized vector or inpout vector norm.

Author(s)

Diogo Melo, Guilherme Garcia

Examples

x <- rnorm(10)
n.x <- Normalize(x)
Norm(x)
Norm(n.x)

Distribution overlap distance

Description

Calculates the overlap between two normal distributions, defined as the probability that a draw from one distribution comes from the other

Usage

OverlapDist(cov.x, cov.y, iterations = 10000)

Arguments

cov.x

covariance or correlation matrix

cov.y

covariance or correlation matrix

iterations

number of drows

Value

Overlap distance between cov.x and cov.y

References

Ovaskainen, O. (2008). A Bayesian framework for comparative quantitative genetics. Proceedings of the Royal Society B, 669-678. doi:10.1098/rspb.2007.0949


Create binary hypothesis

Description

Takes a vetor describing a trait partition and returns a binary matrix of the partitions where each line represents a trait and each column a module. In the output matrix, if modularity.hypot[i,j] == 1, trait i is in module j.

Usage

Partition2HypotMatrix(x)

Arguments

x

vector of trait partition. Each partition receive the same symbol.

Value

Matrix of hypothesis. Each line represents a trait and each column a module. if modularity.hypot[i,j] == 1, trait i is in module j.

Examples

x = sample(c(1, 2, 3), 10, replace = TRUE)
Partition2HypotMatrix(x)

Compare matrices using PCA similarity factor

Description

Compare matrices using PCA similarity factor

Usage

PCAsimilarity(cov.x, cov.y, ...)

## Default S3 method:
PCAsimilarity(cov.x, cov.y, ret.dim = NULL, ...)

## S3 method for class 'list'
PCAsimilarity(cov.x, cov.y = NULL, ..., repeat.vector = NULL, parallel = FALSE)

## S3 method for class 'mcmc_sample'
PCAsimilarity(cov.x, cov.y, ..., parallel = FALSE)

Arguments

cov.x

Single covariance matrix or list of covariance matrices. If cov.x is a single matrix, it is compared to cov.y. If cov.x is a list and no cov.y is supplied, all matrices are compared to each other. If cov.x is a list and cov.y is supplied, all matrices in cov.x are compared to cov.y.

cov.y

First argument is compared to cov.y.

...

additional arguments passed to other methods

ret.dim

number of retained dimensions in the comparison. Defaults to all.

repeat.vector

Vector of repeatabilities for correlation correction.

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Value

Ratio of projected variance to total variance

Author(s)

Edgar Zanella Alvarenga

References

Singhal, A. and Seborg, D. E. (2005), Clustering multivariate time-series data. J. Chemometrics, 19: 427-438. doi: 10.1002/cem.945

See Also

KrzProjection,KrzCor,RandomSkewers,MantelCor

Examples

c1 <- RandomMatrix(10)
c2 <- RandomMatrix(10)
PCAsimilarity(c1, c2)

m.list <- RandomMatrix(10, 3)
PCAsimilarity(m.list)

PCAsimilarity(m.list, c1)

PC Score Correlation Test

Description

Given a set of covariance matrices and means for terminals, test the hypothesis that observed divergence is larger/smaller than expected by drift alone using the correlation on principal component scores.

Usage

PCScoreCorrelation(
  means,
  cov.matrix,
  taxons = names(means),
  show.plots = FALSE
)

Arguments

means

list or array of species means being compared. array must have means in the rows.

cov.matrix

ancestral covariance matrix for all populations

taxons

names of taxons being compared. Must be in the same order of the means.

show.plots

Logical. If TRUE, plot of eigenvalues of ancestral matrix by between group variance is showed.

Value

list of results containing:

correlation matrix of principal component scores and p.values for each correlation. Lower triangle of output are correlations, and upper triangle are p.values.

if show.plots is TRUE, also returns a list of plots of all projections of the nth PCs, where n is the number of taxons.

Author(s)

Ana Paula Assis, Diogo Melo

References

Marroig, G., and Cheverud, J. M. (2004). Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? The American Naturalist, 163(3), 417-428. doi:10.1086/381693

Examples

#Input can be an array with means in each row or a list of mean vectors
means = array(rnorm(40*10), c(10, 40)) 
cov.matrix = RandomMatrix(40, 1, 1, 10)
taxons = LETTERS[1:10]
PCScoreCorrelation(means, cov.matrix, taxons)

## Not run: 
##Plots list can be displayed using plot_grid()
library(cowplot)
pc.score.output <- PCScoreCorrelation(means, cov.matrix, taxons, TRUE)
plot_grid(plotlist = pc.score.output$plots)

## End(Not run)

Compares sister groups

Description

Calculates the comparison of some statistic between sister groups along a phylogeny

Usage

PhyloCompare(tree, node.data, ComparisonFunc = PCAsimilarity, ...)

Arguments

tree

phylogenetic tree

node.data

list of node data

ComparisonFunc

comparison function, default is PCAsimilarity

...

Additional arguments passed to ComparisonFunc

Value

list with a data.frame of calculated comparisons for each node, using labels or numbers from tree; and a list of comparisons for plotting using phytools (see examples)

Note

Phylogeny must be fully resolved

Author(s)

Diogo Melo

Examples

library(ape)
data(bird.orders)
tree <- bird.orders
mat.list <- RandomMatrix(5, length(tree$tip.label))
names(mat.list) <- tree$tip.label
sample.sizes <- runif(length(tree$tip.label), 15, 20)
phylo.state <- PhyloW(tree, mat.list, sample.sizes)

phylo.comparisons <- PhyloCompare(tree, phylo.state)

# plotting results on a phylogeny:
## Not run: 
library(phytools)
plotBranchbyTrait(tree, phylo.comparisons[[2]])

## End(Not run)

Mantel test with phylogenetic permutations

Description

Performs a matrix correlation with significance given by a phylogenetic Mantel Test. Pairs of rows and columns are permuted with probability proportional to their phylogenetic distance.

Usage

PhyloMantel(
  tree,
  matrix.1,
  matrix.2,
  ...,
  permutations = 1000,
  ComparisonFunc = function(x, y) cor(x[lower.tri(x)], y[lower.tri(y)]),
  k = 1
)

Arguments

tree

phylogenetic tree. Tip labels must match names in input matrices

matrix.1

pair-wise comparison/distance matrix

matrix.2

pair-wise comparison/distance matrix

...

additional parameters, currently ignored

permutations

Number of permutations used in significance calculation

ComparisonFunc

comparison function, default is MatrixCor

k

determines the influence of the phylogeny. 1 is strong influence, and larger values converge to a traditional mantel test.

Value

returns a vector with the comparison value and the proportion of times the observed comparison is smaller than the correlations from the permutations.

Note

This method should only be used when there is no option other than representing data as pair-wise. It suffers from low power, and alternatives should be used when available.

Author(s)

Diogo Melo, adapted from Harmon & Glor 2010

References

Harmon, L. J., & Glor, R. E. (2010). Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution, 64(7), 2173-2178.

Lapointe, F. J., & Garland, Jr, T. (2001). A generalized permutation model for the analysis of cross-species data. Journal of Classification, 18(1), 109-127.

Examples

data(dentus)
data(dentus.tree)
tree = dentus.tree
cor.matrices = dlply(dentus, .(species), function(x) cor(x[-5]))
comparisons = MatrixCor(cor.matrices)

sp.means = dlply(dentus, .(species), function(x) colMeans(x[-5]))
mh.dist = MultiMahalanobis(means = sp.means, cov.matrix = PhyloW(dentus.tree, cor.matrices)$'6')
PhyloMantel(dentus.tree, comparisons, mh.dist, k = 10000)

#similar to MantelCor for large k:
## Not run: 
PhyloMantel(dentus.tree, comparisons, mh.dist, k = 10000)
MantelCor(comparisons, mh.dist)

## End(Not run)

Calculates ancestral states of some statistic

Description

Calculates weighted average of covariances matrices along a phylogeny, returning a withing-group covariance matrice for each node.

Usage

PhyloW(tree, tip.data, tip.sample.size = NULL)

Arguments

tree

phylogenetic tree

tip.data

list of tip nodes covariance matrices

tip.sample.size

vector of tip nodes sample sizes

Value

list with calculated within-group matrices, using labels or numbers from tree

Examples

library(ape)
data(dentus)
data(dentus.tree)
tree <- dentus.tree
mat.list <- dlply(dentus, 'species', function(x) cov(x[,1:4]))
sample.sizes <- runif(length(tree$tip.label), 15, 20)
PhyloW(tree, mat.list, sample.sizes)

Plot KrzSubspace boostrap comparison

Description

Shows the null and observed distribution of eigenvalues from the Krzanowski subspace comparison

Usage

PlotKrzSubspace(x)

Arguments

x

output from KrzSubspaceDataFrame() function.

Value

ggplot2 object with the observed vs. random eigenvalues mean and posterior confidence intervals


Plot Rarefaction analysis

Description

A specialized ploting function displays the results from Rarefaction functions in publication quality.

Usage

PlotRarefaction(
  comparison.list,
  y.axis = "Statistic",
  x.axis = "Number of sampled specimens"
)

Arguments

comparison.list

output from rarefaction functions can be used in ploting

y.axis

Y axis lable in plot

x.axis

Y axis lable in plot

Value

ggplot2 object with rarefaction plot

Author(s)

Diogo Melo, Guilherme Garcia

See Also

BootstrapRep

Examples

ind.data <- iris[1:50,1:4]

results.RS <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5)
results.Mantel <- Rarefaction(ind.data, MatrixCor, correlation = TRUE, num.reps = 5)
results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5)
results.PCA <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5)

#Plotting using ggplot2
a <- PlotRarefaction(results.RS, "Random Skewers")
b <- PlotRarefaction(results.Mantel, "Mantel")
c <- PlotRarefaction(results.KrzCov, "KrzCor")
d <- PlotRarefaction(results.PCA, "PCAsimilarity")

library(cowplot)
plot_grid(a, b, c, d, labels = c("RS",
                                 "Mantel Correlation",
                                 "Krzanowski Correlation",
                                 "PCA Similarity"),
                      scale = 0.9)

Plot results from TreeDriftTest

Description

Plot which labels reject drift hypothesis.

Usage

PlotTreeDriftTest(test.list, tree, ...)

Arguments

test.list

Output from TreeDriftTest

tree

phylogenetic tree

...

adition arguments to plot

Value

No return value, called for plot side effects

Author(s)

Diogo Melo

See Also

DriftTest TreeDriftTest

Examples

library(ape)
data(bird.orders)

tree <- bird.orders
mean.list <- llply(tree$tip.label, function(x) rnorm(5))
names(mean.list) <- tree$tip.label
cov.matrix.list <- RandomMatrix(5, length(tree$tip.label))
names(cov.matrix.list) <- tree$tip.label
sample.sizes <- runif(length(tree$tip.label), 15, 20)

test.list <- TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes)
PlotTreeDriftTest(test.list, tree)

Print Matrix to file

Description

Print a matrix or a list of matrices to file

Usage

PrintMatrix(x, ...)

## Default S3 method:
PrintMatrix(x, output.file, ...)

## S3 method for class 'list'
PrintMatrix(x, output.file, ...)

Arguments

x

Matrix or list of matrices

...

Additional parameters

output.file

Output file

Value

Prints coma separated matrices, with labels

Author(s)

Diogo Melo

Examples

m.list <- RandomMatrix(10, 4)
tmp = file.path(tempdir(), "matrix.csv")
PrintMatrix(m.list, output.file = tmp )

Project Covariance Matrix

Description

This function projects a given covariance matrix into the basis provided by an eigentensor decomposition.

Usage

ProjectMatrix(matrix, etd)

Arguments

matrix

A symmetric covariance matrix for k traits

etd

Eigentensor decomposition of m covariance matrices for k traits (obtained from EigenTensorDecomposition)

Value

Vector of scores of given covariance matrix onto eigentensor basis.

Author(s)

Guilherme Garcia, Diogo Melo

References

Basser P. J., Pajevic S. 2007. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing. 87:220-236.

Hine E., Chenoweth S. F., Rundle H. D., Blows M. W. 2009. Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 364:1567-78.

See Also

EigenTensorDecomposition, RevertMatrix

Examples

# this function is useful for projecting posterior samples for a set of 
# covariance matrices onto the eigentensor decomposition done 
# on their estimated means

data(dentus)

dentus.models <- dlply(dentus, .(species), lm, 
                       formula = cbind(humerus, ulna, femur, tibia) ~ 1)

dentus.matrices <- llply(dentus.models, BayesianCalculateMatrix, samples = 100)

dentus.post.vcv <- laply(dentus.matrices, function (L) L $ Ps)
dentus.post.vcv <- aperm(dentus.post.vcv, c(3, 4, 1, 2))

dentus.mean.vcv <- aaply(dentus.post.vcv, 3, MeanMatrix)
dentus.mean.vcv <- aperm(dentus.mean.vcv, c(2, 3, 1))

dentus.mean.etd <- EigenTensorDecomposition(dentus.mean.vcv)
dentus.mean.proj <- data.frame('species' = LETTERS [1:5], dentus.mean.etd $ projection)

dentus.post.proj <- adply(dentus.post.vcv, c(3, 4), ProjectMatrix, etd = dentus.mean.etd)
colnames(dentus.post.proj) [1:2] <- c('species', 'sample')
levels(dentus.post.proj $ species) <- LETTERS[1:5]

require(ggplot2)
ggplot() +
  geom_point(aes(x = ET1, y = ET2, color = species), 
     data = dentus.mean.proj, shape = '+', size = 8) +
  geom_point(aes(x = ET1, y = ET2, color = species), 
     data = dentus.post.proj, shape = '+', size = 3) +
  theme_bw()

Random correlation matrix

Description

Internal function for generating random correlation matrices. Use RandomMatrix() instead.

Usage

RandCorr(num.traits, ke = 10^-3)

Arguments

num.traits

Number of traits in random matrix

ke

Parameter for correlation matrix generation. Involves check for positive defitness

Value

Random Matrix

Author(s)

Diogo Melo Edgar Zanella


Random matrices for tests

Description

Provides random covariance/correlation matrices for quick tests. Should not be used for statistics or hypothesis testing.

Usage

RandomMatrix(
  num.traits,
  num.matrices = 1,
  min.var = 1,
  max.var = 1,
  variance = NULL,
  ke = 10^-3,
  LKJ = FALSE,
  shape = 2
)

Arguments

num.traits

Number of traits in random matrix

num.matrices

Number of matrices to be generated. If greater than 1, a list is returned.

min.var

Lower value for random variance in covariance matrices

max.var

Upper value for random variance in covariance matrices

variance

Variance vector. If present will be used in all matrices

ke

Parameter for correlation matrix generation. Involves check for positive definiteness

LKJ

logical. Use LKJ distribution for generating correlation matrices.

shape

Shape parameter for the LKJ distribution. Values closer to zero leads to a more uniform distribution correlations. Higher values lead to correlations closer to zero.

Value

Returns either a single matrix, or a list of matrices of equal dimension

Author(s)

Diogo Melo Edgar Zanella

Examples

# single 10x10 correlation matrix
RandomMatrix(10)

# single 5x5 covariance matrix, variances between 3 and 4
RandomMatrix(5, 1, 3, 4)

# two 3x3 covariance matrices, with shared variances
RandomMatrix(3, 2, variance= c(3, 4, 5))

# large 10x10 matrix list, with wide range of variances
RandomMatrix(10, 100, 1, 300)

Compare matrices via RandomSkewers

Description

Calculates covariance matrix correlation via random skewers

Usage

RandomSkewers(cov.x, cov.y, ...)

## Default S3 method:
RandomSkewers(cov.x, cov.y, num.vectors = 10000, ...)

## S3 method for class 'list'
RandomSkewers(
  cov.x,
  cov.y = NULL,
  num.vectors = 10000,
  repeat.vector = NULL,
  parallel = FALSE,
  ...
)

## S3 method for class 'mcmc_sample'
RandomSkewers(cov.x, cov.y, num.vectors = 10000, parallel = FALSE, ...)

Arguments

cov.x

Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is supplied, all matrices are compared. If cov.y is supplied, all matrices in list are compared to it.

cov.y

First argument is compared to cov.y. Optional if cov.x is a list.

...

additional arguments passed to other methods.

num.vectors

Number of random vectors used in comparison.

repeat.vector

Vector of repeatabilities for correlation correction.

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Value

If cov.x and cov.y are passed, returns average value of response vectors correlation ('correlation'), significance ('probability') and standard deviation of response vectors correlation ('correlation_sd')

If cov.x and cov.y are passed, same as above, but for all matrices in cov.x.

If only a list is passed to cov.x, a matrix of RandomSkewers average values and probabilities of all comparisons. If repeat.vector is passed, comparison matrix is corrected above diagonal and repeatabilities returned in diagonal.

Author(s)

Diogo Melo, Guilherme Garcia

References

Cheverud, J. M., and Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30, 461-469.

See Also

KrzCor,MantelCor,DeltaZCorr

Examples

c1 <- RandomMatrix(10, 1, 1, 10)
c2 <- RandomMatrix(10, 1, 1, 10)
c3 <- RandomMatrix(10, 1, 1, 10)
RandomSkewers(c1, c2)

RandomSkewers(list(c1, c2, c3))

reps <- unlist(lapply(list(c1, c2, c3), MonteCarloRep, sample.size = 10,
                                        RandomSkewers, num.vectors = 100,
                                        iterations = 10))
RandomSkewers(list(c1, c2, c3), repeat.vector = reps)

c4 <- RandomMatrix(10)
RandomSkewers(list(c1, c2, c3), c4)

## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
RandomSkewers(list(c1, c2, c3), parallel = TRUE)

## End(Not run)

Rarefaction analysis via resampling

Description

Calculates the repeatability of a statistic of the data, such as correlation or covariance matrix, via bootstrap resampling with varying sample sizes, from 2 to the size of the original data.

Usage

Rarefaction(
  ind.data,
  ComparisonFunc,
  ...,
  num.reps = 10,
  correlation = FALSE,
  replace = FALSE,
  parallel = FALSE
)

Arguments

ind.data

Matrix of residuals or individual measurments

ComparisonFunc

comparison function

...

Additional arguments passed to ComparisonFunc

num.reps

number of populations sampled per sample size

correlation

If TRUE, correlation matrix is used, else covariance matrix. MantelCor always uses correlation matrix.

replace

If true, samples are taken with replacement

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Details

Samples of various sizes, with replacement, are taken from the full population, a statistic calculated and compared to the full population statistic.

A specialized plotting function displays the results in publication quality.

Bootstraping may be misleading with very small sample sizes. Use with caution if original sample sizes are small.

Value

returns the mean value of comparisons from samples to original statistic, for all sample sizes.

Author(s)

Diogo Melo, Guilherme Garcia

See Also

BootstrapRep

Examples

ind.data <- iris[1:50,1:4]

results.RS <- Rarefaction(ind.data, RandomSkewers, num.reps = 5)
#' #Easy parsing of results
library(reshape2)
melt(results.RS)

# or :

results.Mantel <- Rarefaction(ind.data, MatrixCor, correlation = TRUE, num.reps = 5)
results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5)
results.PCA <- Rarefaction(ind.data, PCAsimilarity, num.reps = 5)


## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
results.KrzCov <- Rarefaction(ind.data, KrzCor, num.reps = 5, parallel = TRUE)

## End(Not run)

Non-Parametric rarefacted population samples and statistic comparison

Description

Calculates the repeatability of a statistic of the data, such as correlation or covariance matrix, via resampling with varying sample sizes, from 2 to the size of the original data.

Usage

RarefactionStat(
  ind.data,
  StatFunc,
  ComparisonFunc,
  ...,
  num.reps = 10,
  replace = FALSE,
  parallel = FALSE
)

Arguments

ind.data

Matrix of residuals or indiviual measurments

StatFunc

Function for calculating the statistic

ComparisonFunc

comparison function

...

Aditional arguments passed to ComparisonFunc

num.reps

number of populations sampled per sample size

replace

If true, samples are taken with replacement

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Details

Samples of various sizes, without replacement, are taken from the full population, a statistic calculated and compared to the full population statistic.

A specialized ploting function displays the results in publication quality.

Bootstraping may be misleading with very small sample sizes. Use with caution.

Value

returns the mean value of comparisons from samples to original statistic, for all sample sizes.

Author(s)

Diogo Melo, Guilherme Garcia

See Also

BootstrapRep

Examples

ind.data <- iris[1:50,1:4]

#Can be used to calculate any statistic via Rarefaction, not just comparisons
#Integration, for example:
results.R2 <- RarefactionStat(ind.data, cor, function(x, y) CalcR2(y), num.reps = 5)

#Easy access
library(reshape2)
melt(results.R2)

## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
results.R2 <- RarefactionStat(ind.data, cor, function(x, y) CalcR2(y), parallel = TRUE)

## End(Not run)

Linear distances for five mouse lines

Description

Skull distances measured from landmarks in 5 mice lines: 4 body weight selection lines and 1 control line. Originally published in Penna, A., Melo, D. et. al (2017) 10.1111/evo.13304

Usage

data(ratones)

Format

data.frame

Source

Dryad Archive

References

Penna, A., Melo, D., Bernardi, S., Oyarzabal, M.I. and Marroig, G. (2017), The evolution of phenotypic integration: How directional selection reshapes covariation in mice. Evolution, 71: 2370-2380. https://doi.org/10.1111/evo.13304 (PubMed)

Examples

data(ratones)
   
# Estimating a W matrix, controlling for line and sex
model_formula = paste0("cbind(", 
                       paste(names(ratones)[13:47], collapse = ", "),
                       ") ~ SEX + LIN")
ratones_W_model = lm(model_formula, data = ratones)
W_matrix = CalculateMatrix(ratones_W_model)

# Estimating the divergence between the two direction of selection
delta_Z = colMeans(ratones[ratones$selection == "upwards", 13:47]) -
          colMeans(ratones[ratones$selection == "downwards", 13:47])
          
 # Reconstructing selection gradients with and without noise control         
Beta = solve(W_matrix, delta_Z)
Beta_non_noise = solve(ExtendMatrix(W_matrix, ret.dim = 10)$ExtMat, delta_Z)

# Comparing the selection gradients to the observed divergence
Beta %*% delta_Z /(Norm(Beta) * Norm(delta_Z))
Beta_non_noise %*% delta_Z /(Norm(Beta_non_noise) * Norm(delta_Z))

Relative Eigenanalysis

Description

Computes relative eigenvalues and eigenvectors between a pair of covariance matrices.

Usage

RelativeEigenanalysis(cov.x, cov.y, symmetric = FALSE)

Arguments

cov.x

covariance matrix

cov.y

covariance matrix

symmetric

Logical. If TRUE, computes symmetric eigenanalysis.

Value

list with two objects: eigenvalues and eigenvectors

Author(s)

Guilherme Garcia, Diogo Melo

References

Bookstein, F. L., and P. Mitteroecker, P. "Comparing Covariance Matrices by Relative Eigenanalysis, with Applications to Organismal Biology." Evolutionary Biology 41, no. 2 (June 1, 2014): 336-350. doi:10.1007/s11692-013-9260-5.

Examples

data(dentus)
dentus.vcv <- dlply(dentus, .(species), function(df) var(df[, -5]))

dentus.eigrel <- RelativeEigenanalysis(dentus.vcv [[1]], dentus.vcv[[5]])

Remove Size Variation

Description

Removes first principal component effect in a covariance matrix.

Usage

RemoveSize(cov.matrix)

Arguments

cov.matrix

Covariance matrix

Details

Function sets the first eigenvalue to zero.

Value

Altered covariance matrix with no variation on former first principal component

Author(s)

Diogo Melo, Guilherme Garcia

Examples

cov.matrix <- RandomMatrix(10, 1, 1, 10)
no.size.cov.matrix <- RemoveSize(cov.matrix)
eigen(cov.matrix)
eigen(no.size.cov.matrix)

Revert Matrix

Description

Constructs a covariance matrix based on scores over covariance matrix eigentensors.

Usage

RevertMatrix(values, etd, scaled = TRUE)

Arguments

values

vector of values to build matrix, each value corresponding to a score on the ordered set of eigentensors (up to the maximum number of eigentensors on the target decomposition); if there are less values than eigentensors provided in etd (see below), the function will assume zero as the value for the score in remaining eigentensors

etd

Eigentensor decomposition of m covariance matrices for k traits (obtained from EigenTensorDecomposition)

scaled

should we treat each score as a value given in standard deviations for each eigentensor? Defaults to TRUE

Value

A symmetric covariance matrix with k traits

References

Basser P. J., Pajevic S. 2007. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing. 87:220-236.

Hine E., Chenoweth S. F., Rundle H. D., Blows M. W. 2009. Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 364:1567-78.

Examples

## we can use RevertMatrix to represent eigentensors using SRD to compare two matrices
## which differ with respect to their projections on a single directions

data(dentus)

dentus.vcv <- daply (dentus, .(species), function(x) cov(x[,-5]))

dentus.vcv <- aperm(dentus.vcv, c(2, 3, 1))

dentus.etd <- EigenTensorDecomposition(dentus.vcv, TRUE)

## calling RevertMatrix with a single value will use this value as the score
## on the first eigentensor and use zero as the value of remaining scores

low.et1 <- RevertMatrix(-1.96, dentus.etd, TRUE)
upp.et1 <- RevertMatrix(1.96, dentus.etd, TRUE)

srd.et1 <- SRD(low.et1, upp.et1)
 
plot(srd.et1)

## we can also look at the second eigentensor, by providing each call 
## of RevertMatrix with a vector of two values, the first being zero

low.et2 <- RevertMatrix(c(0, -1.96), dentus.etd, TRUE)
upp.et2 <- RevertMatrix(c(0, 1.96), dentus.etd, TRUE)

srd.et2 <- SRD(low.et2, upp.et2)
 
plot(srd.et2)

Matrix Riemann distance

Description

Return distance between two covariance matrices

Usage

RiemannDist(cov.x, cov.y)

Arguments

cov.x

covariance or correlation matrix

cov.y

covariance or correlation matrix

Value

Riemann distance between cov.x and cov.y

Author(s)

Edgar Zanella

References

Mitteroecker, P., & Bookstein, F. (2009). The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution, 63(3), 727-737. doi:10.1111/j.1558-5646.2008.00587.x


Midline rotate

Description

Returns the rotation matrix that aligns a specimen sagital line to plane y = 0 (2D) or z = 0 (3D)

Usage

Rotate2MidlineMatrix(X, midline)

Arguments

X

shape array

midline

rows for the midline landmarks

Value

Rotation matrix

Author(s)

Guilherme Garcia


Random Skewers projection

Description

Uses Bayesian posterior samples of a set of covariance matrices to identify directions of the morphospace in which these matrices differ in their amount of genetic variance.

Usage

RSProjection(cov.matrix.array, p = 0.95, num.vectors = 1000)

PlotRSprojection(rs_proj, cov.matrix.array, p = 0.95, ncols = 5)

Arguments

cov.matrix.array

Array with dimensions traits x traits x populations x MCMCsamples

p

significance threshold for comparison of variation in each random direction

num.vectors

number of random vectors

rs_proj

output from RSProjection

ncols

number of columns in plot

Value

projection of all matrices in all random vectors

set of random vectors and confidence intervals for the projections

eigen decomposition of the random vectors in directions with significant differences of variations

References

Aguirre, J. D., E. Hine, K. McGuigan, and M. W. Blows. "Comparing G: multivariate analysis of genetic variation in multiple populations." Heredity 112, no. 1 (2014): 21-29.

Examples

# small MCMCsample to reduce run time, acctual sample should be larger
data(dentus)
cov.matrices = dlply(dentus, .(species), function(x) lm(as.matrix(x[,1:4])~1)) |>
               laply(function(x) BayesianCalculateMatrix(x, samples = 50)$Ps)
cov.matrices = aperm(cov.matrices, c(3, 4, 1, 2))

rs_proj = RSProjection(cov.matrices, p = 0.8)
PlotRSprojection(rs_proj, cov.matrices, ncol = 5)

Generic Single Comparison Map functions for creating parallel list methods Internal functions for making efficient comparisons.

Description

Generic Single Comparison Map functions for creating parallel list methods Internal functions for making efficient comparisons.

Usage

SingleComparisonMap(matrix.list, y.mat, MatrixCompFunc, ..., parallel = FALSE)

Arguments

matrix.list

list of matrices being compared

y.mat

single matrix being compared to list

MatrixCompFunc

Function used to compare pair of matrices, must output a vector: comparisons and probabilities

...

Additional arguments to MatrixCompFunc

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Value

Matrix of comparisons, matrix of probabilities.

Author(s)

Diogo Melo

See Also

MantelCor, KrzCor,RandomSkewers


Compare matrices via Selection Response Decomposition

Description

Based on Random Skewers technique, selection response vectors are expanded in direct and indirect components by trait and compared via vector correlations.

Usage

SRD(cov.x, cov.y, ...)

## Default S3 method:
SRD(cov.x, cov.y, iterations = 1000, ...)

## S3 method for class 'list'
SRD(cov.x, cov.y = NULL, iterations = 1000, parallel = FALSE, ...)

## S3 method for class 'SRD'
plot(x, matrix.label = "", ...)

Arguments

cov.x

Covariance matrix being compared. cov.x can be a matrix or a list.

cov.y

Covariance matrix being compared. Ignored if cov.x is a list.

...

additional parameters passed to other methods

iterations

Number of random vectors used in comparison

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

x

Output from SRD function, used in plotting

matrix.label

Plot label

Details

Output can be plotted using PlotSRD function

Value

List of SRD scores means, confidence intervals, standard deviations, centered means e centered standard deviations

pc1 scored along the pc1 of the mean/SD correlation matrix

model List of linear model results from mean/SD correlation. Quantiles, interval and divergent traits

Note

If input is a list, output is a symmetric list array with pairwise comparisons.

Author(s)

Diogo Melo, Guilherme Garcia

References

Marroig, G., Melo, D., Porto, A., Sebastiao, H., and Garcia, G. (2011). Selection Response Decomposition (SRD): A New Tool for Dissecting Differences and Similarities Between Matrices. Evolutionary Biology, 38(2), 225-241. doi:10.1007/s11692-010-9107-2

See Also

RandomSkewers

Examples

cov.matrix.1 <- cov(matrix(rnorm(30*10), 30, 10))
cov.matrix.2 <- cov(matrix(rnorm(30*10), 30, 10))
colnames(cov.matrix.1) <- colnames(cov.matrix.2) <- sample(letters, 10)
rownames(cov.matrix.1) <- rownames(cov.matrix.2) <- colnames(cov.matrix.1)
srd.output <- SRD(cov.matrix.1, cov.matrix.2)

#lists
m.list <- RandomMatrix(10, 4)
srd.array.result = SRD(m.list)

#divergent traits
colnames(cov.matrix.1)[as.logical(srd.output$model$code)]

#Plot
plot(srd.output)

## For the array generated by SRD(m.list) you must index the idividual positions for plotting:
plot(srd.array.result[1,2][[1]])
plot(srd.array.result[3,4][[1]])

## Not run: 
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
library(doMC)
registerDoMC(cores = 2)
SRD(m.list, parallel = TRUE)

## End(Not run)

Test modularity hypothesis

Description

Tests modularity hypothesis using cor.matrix matrix and trait groupings

Usage

TestModularity(
  cor.matrix,
  modularity.hypot,
  permutations = 1000,
  MHI = FALSE,
  ...,
  landmark.dim = NULL,
  withinLandmark = FALSE
)

Arguments

cor.matrix

Correlation matrix

modularity.hypot

Matrix of hypothesis. Each line represents a trait and each column a module. if modularity.hypot[i,j] == 1, trait i is in module j.

permutations

Number of permutations, to be passed to MantelModTest

MHI

Indicates if test should use Modularity Hypothesis Index instead of AVG Ratio

...

additional arguments passed to MantelModTest

landmark.dim

Used if permutations should be performed maintaining landmark structure in geometric morphometric data. Either 2 for 2d data or 3 for 3d data. Default is NULL for non geometric morphometric data.

withinLandmark

Logical. If TRUE within-landmark correlations are used in the calculation of matrix correlation. Only used if landmark.dim is passed, default is FALSE.

Value

Returns mantel correlation and associated probability for each modularity hypothesis, along with AVG+, AVG-, AVG Ratio for each module. A total hypothesis combining all hypothesis is also tested.

Author(s)

Diogo Melo, Guilherme Garcia

References

Porto, Arthur, Felipe B. Oliveira, Leila T. Shirai, Valderes Conto, and Gabriel Marroig. 2009. "The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes." Evolutionary Biology 36 (1): 118-35. doi:10.1007/s11692-008-9038-3.

See Also

MantelModTest

Examples

cor.matrix <- RandomMatrix(10)
rand.hypots <- matrix(sample(c(1, 0), 30, replace=TRUE), 10, 3)
mod.test <- TestModularity(cor.matrix, rand.hypots)

cov.matrix <- RandomMatrix(10, 1, 1, 10)
cov.mod.test <- TestModularity(cov.matrix, rand.hypots, MHI = TRUE)
nosize.cov.mod.test <- TestModularity(RemoveSize(cov.matrix), rand.hypots, MHI = TRUE)

TPS transform

Description

Calculates the Thin Plate Spline transform between a reference shape and a target shape

Usage

TPS(target.shape, reference.shape)

Arguments

target.shape

Target shape

reference.shape

Reference shape

Value

A list with the transformation parameters and a function that gives the value of the TPS function at each point for numerical differentiation

Author(s)

Guilherme Garcia


Drift test along phylogeny

Description

Performs a regression drift test along a phylogeny using DriftTest function.

Usage

TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes = NULL)

Arguments

tree

phylogenetic tree

mean.list

list of tip node means. Names must match tip node labels.

cov.matrix.list

list of tip node covariance matrices. Names must match tip node labels.

sample.sizes

vector of tip nodes sample sizes

Value

A list of regression drift tests performed in nodes with over 4 descendant tips.

Author(s)

Diogo Melo

See Also

DriftTest PlotTreeDriftTest

Examples

library(ape)
data(bird.orders)

tree <- bird.orders
mean.list <- llply(tree$tip.label, function(x) rnorm(5))
names(mean.list) <- tree$tip.label
cov.matrix.list <- RandomMatrix(5, length(tree$tip.label))
names(cov.matrix.list) <- tree$tip.label
sample.sizes <- runif(length(tree$tip.label), 15, 20)

test.list <- TreeDriftTest(tree, mean.list, cov.matrix.list, sample.sizes)

#Ancestral node plot:
test.list[[length(test.list)]]$plot