
Package: evclass (via r-universe)
September 4, 2024

Type Package

Title Evidential Distance-Based Classification

Version 2.0.2

Date 2023-11-9

Author Thierry Denoeux

Maintainer Thierry Denoeux <tdenoeux@utc.fr>

Description Different evidential classifiers, which provide outputs in
the form of Dempster-Shafer mass functions. The methods are:
the evidential K-nearest neighbor rule, the evidential neural
network, radial basis function neural networks, logistic
regression, feed-forward neural networks.

License GPL-3

Depends R (>= 3.1.0)

Imports FNN, ibelief, R.utils

LazyData TRUE

Encoding UTF-8

RoxygenNote 7.2.3

VignetteBuilder knitr

Suggests knitr,rmarkdown,datasets,stats,nnet

NeedsCompilation no

Repository CRAN

Date/Publication 2023-11-09 11:00:02 UTC

Contents
calcAB . 2
calcm . 3
decision . 5
EkNNfit . 7
EkNNinit . 8

1

2 calcAB

EkNNval . 10
evclass . 11
glass . 12
ionosphere . 13
proDSfit . 13
proDSinit . 15
proDSval . 16
RBFfit . 18
RBFinit . 19
RBFval . 20
vehicles . 21

Index 23

calcAB Determination of optimal coefficients for computing weights of evi-
dence in logistic regression

Description

calcAB computes optimal coefficients alpha and beta needed to transform coefficients from logistic
regression (or connections weights between the last hidden layer and the output layer of multilayer
neural networks) into weights of evidence. These weights of evidence can then be used to express
the outputs of logistic regression or multilayer neural networks as "latent" mass functions.

Usage

calcAB(W, mu = NULL)

Arguments

W Vector of coefficients of length (d+1), where d is the number of features, in the
case of M=2 classes, or (d+1,M) matrix of coefficients (or connection weights)
in the case of M>2 classes.

mu Optional vector containing the means of the d features.

Value

A list with two elements:

A Vector of length d (M=2) or matrix of size (d,M) (for M>2) of coefficients alpha.

B Vector of length d (M=2) or matrix of size (d,M) (for M>2) of coefficients beta.

Author(s)

Thierry Denoeux.

calcm 3

References

T. Denoeux. Logistic Regression, Neural Networks and Dempster-Shafer Theory: a New Perspec-
tive. Knowledge-Based Systems, Vol. 176, Pages 54–67, 2019.

See Also

calcm

Examples

Example with 2 classes and logistic regression
data(ionosphere)
x<-ionosphere$x[,-2]
y<-ionosphere$y-1
fit<-glm(y ~ x,family='binomial')
AB<-calcAB(fit$coefficients,colMeans(x))
AB
Example with K>2 classes and multilayer neural network
library(nnet)
data(glass)
K<-max(glass$y)
d<-ncol(glass$x)
n<-nrow(x)
x<-scale(glass$x)
y<-as.factor(glass$y)
p<-3 # number of hidden units
fit<-nnet(y~x,size=p) # training a neural network with 3 hidden units
W1<-matrix(fit$wts[1:(p*(d+1))],d+1,p) # Input-to-hidden weights
W2<-matrix(fit$wts[(p*(d+1)+1):(p*(d+1) + K*(p+1))],p+1,K) # hidden-to-output weights
a1<-cbind(rep(1,n),x)%*%W1 # hidden unit activations
o1<-1/(1+exp(-a1)) # hidden unit outputs
AB<-calcAB(W2,colMeans(o1))
AB

calcm Determination of optimal coefficients for computing weights of evi-
dence in logistic regression

Description

calcAB transforms coefficients alpha and beta computed by calcm into weights of evidence, and
then into mass and contour (plausibility) functions. These mass functions can be used to express
uncertainty about the prediction of logistic regression or multilayer neural network classifiers (See
Denoeux, 2019).

Usage

calcm(x, A, B)

4 calcm

Arguments

x Matrix (n,d) of feature values, where d is the number of features, and n is the
number of observations. Can be a vector if $d=1$.

A Vector of length d (for M=2) or matrix of size (d,M) (for M>2) of coefficients
alpha.

B Vector of length d (for M=2) or matrix of size (d,M) (for M>2) of coefficients
beta

Details

An error may occur if the absolute values of some coefficients are too high. It is then advised to
recompute these coefficients by training the logistic regression or neural network classifier with L2
regularization. With M classes, the output mass functions have 2^M focal sets. Using this function
with large M may cause memory issues.

Value

A list with six elements:

F Matrix (2^M,M) of focal sets.

mass Matrix (n,2^M) of mass functions (one in each row).

pl Matrix (n,M) containing the plausibilities of singletons.

bel Matrix (n,M) containing the degrees of belief of singletons.

prob Matrix (n,M) containing the normalized plausibilities of singletons.

conf Vector of length n containing the degrees of conflict.

Author(s)

Thierry Denoeux.

References

T. Denoeux. Logistic Regression, Neural Networks and Dempster-Shafer Theory: a New Perspec-
tive. Knowledge-Based Systems, Vol. 176, Pages 54–67, 2019.

See Also

calcAB

Examples

Example with 2 classes and logistic regression
data(ionosphere)
x<-ionosphere$x[,-2]
y<-ionosphere$y-1
fit<-glm(y ~ x,family='binomial')
AB<-calcAB(fit$coefficients,colMeans(x))
Bel<-calcm(x,ABA,ABB)

decision 5

Bel$focal
Bel$mass[1:5,]
Bel$pl[1:5,]
Bel$conf[1:5]
Example with K>2 classes and multilayer neural network
library(nnet)
data(glass)
K<-max(glass$y)
d<-ncol(glass$x)
n<-nrow(x)
x<-scale(glass$x)
y<-as.factor(glass$y)
p<-3 # number of hidden units
fit<-nnet(y~x,size=p) # training a neural network with 3 hidden units
W1<-matrix(fit$wts[1:(p*(d+1))],d+1,p) # Input-to-hidden weights
W2<-matrix(fit$wts[(p*(d+1)+1):(p*(d+1) + K*(p+1))],p+1,K) # hidden-to-output weights
a1<-cbind(rep(1,n),x)%*%W1 # hidden unit activations
o1<-1/(1+exp(-a1)) # hidden unit outputs
AB<-calcAB(W2,colMeans(o1))
Bel<-calcm(o1,ABA,ABB)
Bel$focal
Bel$mass[1:5,]
Bel$pl[1:5,]
Bel$conf[1:5]

decision Decision rules for evidential classifiers

Description

decision returns decisions from a loss matrix and mass functions computed by an evidential clas-
sifier.

Usage

decision(
m,
L = 1 - diag(ncol(m) - 1),
rule = c("upper", "lower", "pignistic", "hurwicz"),
rho = 0.5

)

Arguments

m Matrix of masses for n test cases. Each row is a mass function. The first M
columns correspond to the mass assigned to each of the M classes. The last
column corresponds to the mass assigned to the whole set of classes.

L The loss matrix of dimension (M,na) or (M+1,na), where na is the number of
actions. L[k,j] is the loss incurred if action j is chosen and the true class is ωk.
If L has M+1 rows, the last row corresponds to the unknown class.

6 decision

rule Decision rule to be used. Must be one of these: ’upper’ (upper expectation),
’lower’ (lower expectations), ’pignistic’ (pignistic expectation), ’hurwicz’ (weighted
sum of the lower and upper expectations).

rho Parameter between 0 and 1. Used only is rule=’hurwicz’.

Details

This function implements the decision rules described in Denoeux (1997), with an arbitrary loss
function. The decision rules are the minimization of the lower, upper or pignistic expectation,
and Jaffray’s decision rule based on minimizing a convex combination of the lower and upper
expectations. The function also handles the case where there is an "unknown" class, in addition to
the classes represented in the training set.

Value

A n-vector with the decisions (integers between 1 and na).

Author(s)

Thierry Denoeux.

References

T. Denoeux. Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recog-
nition, 30(7):1095–1107, 1997.

See Also

EkNNval, proDSval

Examples

Example with M=2 classes
m<-matrix(c(0.9,0.1,0,0.4,0.6,0,0.1,0.1,0.8),3,3,byrow=TRUE)
Loss matrix with na=4 acts: assignment to class 1, assignment to class2,
rejection, and assignment to the unknown class.
L<-matrix(c(0,1,1,1,0,1,0.2,0.2,0.2,0.25,0.25,0),3,4)
d<-decision(m,L,'upper') ## instances 2 and 3 are rejected
d<-decision(m,L,'lower') ## instance 2 is rejected, instance 3 is
assigned to the unknown class

EkNNfit 7

EkNNfit Training of the EkNN classifier

Description

EkNNfit optimizes the parameters of the EkNN classifier.

Usage

EkNNfit(
x,
y,
K,
param = NULL,
alpha = 0.95,
lambda = 1/max(as.numeric(y)),
optimize = TRUE,
options = list(maxiter = 300, eta = 0.1, gain_min = 1e-06, disp = TRUE)

)

Arguments

x Input matrix of size n x d, where n is the number of objects and d the number of
attributes.

y Vector of class labels (of length n). May be a factor, or a vector of integers from
1 to M (number of classes).

K Number of neighbors.

param Initial parameters (default: NULL).

alpha Parameter α (default: 0.95)

lambda Parameter of the cost function. If lambda=1, the cost function measures the error
between the plausibilities and the 0-1 target values. If lambda=1/M, where M is
the number of classes (default), the piginistic probabilities are considered in the
cost function. If lambda=0, the beliefs are used.

optimize Boolean. If TRUE (default), the parameters are optimized.

options A list of parameters for the optimization algorithm: maxiter (maximum num-
ber of iterations), eta (initial step of gradient variation), gain_min (minimum
gain in the optimisation loop), disp (Boolean; if TRUE, intermediate results are
displayed during the optimization).

Details

If the argument param is not supplied, the function EkNNinit is called.

8 EkNNinit

Value

A list with five elements:

param The optimized parameters.

cost Final value of the cost function.

err Leave-one-out error rate.

ypred Leave-one-out predicted class labels (coded as integers from 1 to M).

m Leave-one-out predicted mass functions. The first M columns correspond to the mass assigned
to each class. The last column corresponds to the mass assigned to the whole set of classes.

Author(s)

Thierry Denoeux.

References

T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans-
actions on Systems, Man and Cybernetics, 25(05):804–813, 1995.

L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization. IEEE
Transactions on Systems, Man and Cybernetics Part C, 28(2):263–271,1998.

See Also

EkNNinit, EkNNval

Examples

Iris dataset
data(iris)
x<-iris[,1:4]
y<-iris[,5]
fit<-EkNNfit(x,y,K=5)

EkNNinit Initialization of parameters for the EkNN classifier

Description

EkNNinit returns initial parameter values for the EkNN classifier.

Usage

EkNNinit(x, y, alpha = 0.95)

EkNNinit 9

Arguments

x Input matrix of size n x d, where n is the number of objects and d the number of
attributes.

y Vector of class lables (of length n). May be a factor, or a vector of integers from
1 to M (number of classes).

alpha Parameter α.

Details

Each parameter γk is set ot the inverse of the square root of the mean Euclidean distances wihin
class k. Note that γk here is the square root of the γk as defined in (Zouhal and Denoeux, 1998).
By default, parameter alpha is set to 0.95. This value normally does not have to be changed.

Value

A list with two elements:

gamma Vector of parameters γk, of length c, the number of classes.

alpha Parameter α, set to 0.95.

Author(s)

Thierry Denoeux.

References

T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans-
actions on Systems, Man and Cybernetics, 25(05):804–813, 1995.

L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization. IEEE
Transactions on Systems, Man and Cybernetics Part C, 28(2):263–271,1998.

See Also

EkNNfit, EkNNval

Examples

Iris dataset
data(iris)
x<-iris[,1:4]
y<-iris[,5]
param<-EkNNinit(x,y)
param

10 EkNNval

EkNNval Classification of a test set by the EkNN classifier

Description

EkNNval classifies instances in a test set using the EkNN classifier.

Usage

EkNNval(xtrain, ytrain, xtst, K, ytst = NULL, param = NULL)

Arguments

xtrain Matrix of size ntrain x d, containing the values of the d attributes for the training
data.

ytrain Vector of class labels for the training data (of length ntrain). May be a factor, or
a vector of integers from 1 to M (number of classes).

xtst Matrix of size ntst x d, containing the values of the d attributes for the test data.
K Number of neighbors.
ytst Vector of class labels for the test data (optional). May be a factor, or a vector of

integers from 1 to M (number of classes).
param Parameters, as returned by EkNNfit.

Details

If class labels for the test set are provided, the test error rate is also returned. If parameters are not
supplied, they are given default values by EkNNinit.

Value

A list with three elements:

m Predicted mass functions for the test data. The first M columns correspond to the mass assigned
to each class. The last column corresponds to the mass assigned to the whole set of classes.

ypred Predicted class labels for the test data (coded as integers from 1 to M).
err Test error rate.

Author(s)

Thierry Denoeux.

References

T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans-
actions on Systems, Man and Cybernetics, 25(05):804–813, 1995.

L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization. IEEE
Transactions on Systems, Man and Cybernetics Part C, 28(2):263–271,1998.

evclass 11

See Also

EkNNinit, EkNNfit

Examples

Iris dataset
data(iris)
train<-sample(150,100)
xtrain<-iris[train,1:4]
ytrain<-iris[train,5]
xtst<-iris[-train,1:4]
ytst<-iris[-train,5]
K<-5
fit<-EkNNfit(xtrain,ytrain,K)
test<-EkNNval(xtrain,ytrain,xtst,K,ytst,fit$param)

evclass evclass: A package for evidential classification

Description

The evclass package currently contains functions for three evidential classifiers: the evidential K-
nearest neighbor (EK-NN) rule (Denoeux, 1995; Zouhal and Denoeux, 1998), the evidential neural
network (Denoeux, 2000) and the RBF classifier with weight-of-evidence interpretation (Denoeux,
2019; Huang et al., 2022), as well as methods to compute output mass functions from trained
logistic regression or multilayer classifiers as described in (Denoeux, 2019). In contrast with clas-
sical statistical classifiers, evidential classifiers quantify the uncertainty of the classification using
Dempster-Shafer mass functions.

Details

The main functions are: EkNNinit, EkNNfit and EkNNval for the initialization, training and evalua-
tion of the EK-NN classifier; proDSinit, proDSfit and proDSval for the evidential neural network
classifier; decision for decision-making; RBFinit, RBFfit and RBFval for the RBF classifier;
calcAB and calcm for computing output mass functions from trained logistic regression or multi-
layer classifiers.

References

T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans-
actions on Systems, Man and Cybernetics, 25(05):804–813, 1995.

T. Denoeux. Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recog-
nition, 30(7):1095–1107, 1997.

T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Sys-
tems, Man and Cybernetics A, 30(2):131–150, 2000.

L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization. IEEE
Transactions on Systems, Man and Cybernetics Part C, 28(2):263–271,1998.

12 glass

T. Denoeux. Logistic Regression, Neural Networks and Dempster-Shafer Theory: a New Perspec-
tive. Knowledge-Based Systems, Vol. 176, Pages 54–67, 2019.
L., S. Ruan, P. Decazes and T. Denoeux. Lymphoma segmentation from 3D PET-CT images using
a deep evidential network. International Journal of Approximate Reasoning, Vol. 149, Pages 39-60,
2022.

See Also

EkNNinit, EkNNfit, EkNNval, proDSinit, proDSfit, proDSval, RBFinit, RBFfit and RBFval,
decision, calcAB, calcm.

glass Glass dataset

Description

This data set contains the description of 214 fragments of glass originally collected for a study in
the context of criminal investigation. Each fragment has a measured reflectivity index and chemical
composition (weight percent of Na, Mg, Al, Si, K, Ca, Ba and Fe). As suggested by Ripley (1994),
29 instances were discarded, and the remaining 185 were re-grouped in four classes: window float
glass (70), window non-float glass (76), vehicle window glass (17) and other (22). The data set was
split randomly in a training set of size 89 and a test set of size 96.

Usage

data(glass)

Format

A list with two elements:

x The 185 x 9 object-attribute matrix.
y A 185-vector containing the class labels.

References

P. M. Murphy and D. W. Aha. UCI Reposition of machine learning databases. [Machine readable
data repository]. University of California, Departement of Information and Computer Science,
Irvine, CA.
B.D.Ripley, Flexible nonlinear approaches to classification, in "From Statistics to Neural Net-
works", V. Cherkassly, J. H. Friedman, and H. Wechsler, Eds., Berlin, Germany: Springer-Verlag,
1994, pp. 105–126.
T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Sys-
tems, Man and Cybernetics A, 30(2):131–150, 2000.

Examples

data(glass)
table(glass$y)

ionosphere 13

ionosphere Ionosphere dataset

Description

This dataset was collected by a radar system and consists of phased array of 16 high-frequency
antennas with a total transmitted power of the order of 6.4 kilowatts. The targets were free electrons
in the ionosphere. "Good" radar returns are those showing evidence of some type of structure in the
ionosphere. "Bad" returns are those that do not. There are 351 instances and 34 numeric attributes.
The first 175 instances are training data, the rest are test data. This version of dataset was used by
Zouhal and Denoeux (1998).

Usage

data(ionosphere)

Format

A list with two elements:

x The 351 x 34 object-attribute matrix.

y A 351-vector containing the class labels.

References

P. M. Murphy and D. W. Aha. UCI Reposition of machine learning databases. [Machine readable
data repository]. University of California, Departement of Information and Computer Science,
Irvine, CA.

L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization. IEEE
Transactions on Systems, Man and Cybernetics Part C, 28(2):263–271,1998.

Examples

data(ionosphere)
table(vehicles$y)

proDSfit Training of the evidential neural network classifier

Description

proDSfit performs parameter optimization for the evidential neural network classifier.

14 proDSfit

Usage

proDSfit(
x,
y,
param,
lambda = 1/max(as.numeric(y)),
mu = 0,
optimProto = TRUE,
options = list(maxiter = 500, eta = 0.1, gain_min = 1e-04, disp = 10)

)

Arguments

x Input matrix of size n x d, where n is the number of objects and d the number of
attributes.

y Vector of class lables (of length n). May be a factor, or a vector of integers from
1 to M (number of classes).

param Initial parameters (see link{proDSinit}).

lambda Parameter of the cost function. If lambda=1, the cost function measures the error
between the plausibilities and the 0-1 target values. If lambda=1/M, where M is
the number of classes (default), the piginistic probabilities are considered in the
cost function. If lambda=0, the beliefs are used.

mu Regularization hyperparameter (default=0).

optimProto Boolean. If TRUE, the prototypes are optimized (default). Otherwise, they are
fixed.

options A list of parameters for the optimization algorithm: maxiter (maximum number
of iterations), eta (initial step of gradient variation), gain_min (minimum gain
in the optimisation loop), disp (integer; if >0, intermediate results are displayed
every disp iterations).

Details

If optimProto=TRUE (default), the prototypes are optimized. Otherwise, they are fixed to their
initial value.

Value

A list with three elements:

param Optimized network parameters.

cost Final value of the cost function.

err Training error rate.

Author(s)

Thierry Denoeux.

proDSinit 15

References

T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Sys-
tems, Man and Cybernetics A, 30(2):131–150, 2000.

See Also

proDSinit, proDSval

Examples

Glass dataset
data(glass)
xapp<-glass$x[1:89,]
yapp<-glass$y[1:89]
xtst<-glass$x[90:185,]
ytst<-glass$y[90:185]
Initialization
param0<-proDSinit(xapp,yapp,nproto=7)
Training
fit<-proDSfit(xapp,yapp,param0)

proDSinit Initialization of parameters for the evidential neural network classifier

Description

proDSinit returns initial parameter values for the evidential neural network classifier.

Usage

proDSinit(x, y, nproto, nprotoPerClass = FALSE, crisp = FALSE)

Arguments

x Input matrix of size n x d, where n is the number of objects and d the number of
attributes.

y Vector of class labels (of length n). May be a factor, or a vector of integers from
1 to M (number of classes).

nproto Number of prototypes.

nprotoPerClass Boolean. If TRUE, there are nproto prototypes per class. If FALSE (default),
the total number of prototypes is equal to nproto.

crisp Boolean. If TRUE, the prototypes have full membership to only one class.
(Available only if nprotoPerClass=TRUE).

16 proDSval

Details

The prototypes are initialized by the k-means algorithms. The initial membership values uik of each
prototype pi to class ωk are normally defined as the proportion of training samples from class ωk in
the neighborhood of prototype pi. If arguments crisp and nprotoPerClass are set to TRUE, the
prototypes are assigned to one and only one class.

Value

A list with four elements containing the initialized network parameters

alpha Vector of length r, where r is the number of prototypes.

gamma Vector of length r

beta Matrix of size (r,M), where M is the number of classes.

W Matrix of size (r,d), containing the prototype coordinates.

Author(s)

Thierry Denoeux.

References

T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Sys-
tems, Man and Cybernetics A, 30(2):131–150, 2000.

See Also

proDSfit, proDSval

Examples

Glass dataset
data(glass)
xapp<-glass$x[1:89,]
yapp<-glass$y[1:89]
param0<-proDSinit(xapp,yapp,nproto=7)
param0

proDSval Classification of a test set by the evidential neural network classifier

Description

proDSval classifies instances in a test set using the evidential neural network classifier.

Usage

proDSval(x, param, y = NULL)

proDSval 17

Arguments

x Matrix of size n x d, containing the values of the d attributes for the test data.

param Neural network parameters, as provided by proDSfit.

y Optional vector of class labels for the test data. May be a factor, or a vector of
integers from 1 to M (number of classes).

Details

If class labels for the test set are provided, the test error rate is also returned.

Value

A list with three elements:

m Predicted mass functions for the test data. The first M columns correspond to the mass assigned
to each class. The last column corresponds to the mass assigned to the whole set of classes.

ypred Predicted class labels for the test data.

err Test error rate (if the class label of test data has been provided).

Author(s)

Thierry Denoeux.

References

T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Sys-
tems, Man and Cybernetics A, 30(2):131–150, 2000.

See Also

proDSinit, proDSfit

Examples

Glass dataset
data(glass)
xapp<-glass$x[1:89,]
yapp<-glass$y[1:89]
xtst<-glass$x[90:185,]
ytst<-glass$y[90:185]
Initialization
param0<-proDSinit(xapp,yapp,nproto=7)
Training
fit<-proDSfit(xapp,yapp,param0)
Test
val<-proDSval(xtst,fit$param,ytst)
Confusion matrix
table(ytst,val$ypred)

18 RBFfit

RBFfit Training of a radial basis function classifier

Description

RBFfit performs parameter optimization for a radial basis function (RBF) classifier.

Usage

RBFfit(
x,
y,
param,
lambda = 0,
control = list(fnscale = -1, trace = 2, maxit = 1000),
optimProto = TRUE

)

Arguments

x Input matrix of size n x d, where n is the number of objects and d the number of
attributes.

y Vector of class labels (of length n). May be a factor, or a vector of integers from
1 to M (number of classes).

param Initial parameters (see RBFinit).
lambda Regularization hyperparameter (default=0).
control Parameters passed to function optim.
optimProto Boolean. If TRUE, the prototypes are optimized (default). Otherwise, they are

fixed.

Details

The RBF neural network is trained by maximizing the conditional log-likelihood (or, equivalently,
by minimizing the cross-entropy loss function). The optimization procedure is the BFGS algorithm
implemented in function optim.

Value

A list with three elements:

param Optimized network parameters.
loglik Final value of the log-likelihood objective function.
err Training error rate.

Author(s)

Thierry Denoeux.

RBFinit 19

See Also

proDSinit, proDSval

Examples

Glass dataset
data(glass)
xapp<-glass$x[1:89,]
yapp<-glass$y[1:89]
Initialization
param0<-RBFinit(xapp,yapp,nproto=7)
Training
fit<-RBFfit(xapp,yapp,param0,control=list(fnscale=-1,trace=2))

RBFinit Initialization of parameters for a Radial Basis Function classifier

Description

RBFinit returns initial parameter values for a Radial Basis Function classifier.

Usage

RBFinit(x, y, nproto)

Arguments

x Input matrix of size n x d, where n is the number of objects and d the number of
attributes.

y Vector of class labels (of length n). May be a factor, or a vector of integers from
1 to M (number of classes).

nproto Number of prototypes

Details

The prototypes are initialized by the k-means algorithms. The hidden-to-output weights are ini-
tialized by linear regression. The scale parameter for each prototype is computed as the inverse of
the square root of the mean squared distances to this prototype. The final number of prototypes
may be different from the desired number nproto depending on the result of the k-means clustering
(clusters composed of only one input vector are discarded).

Value

A list with three elements containing the initialized network parameters

P Matrix of size (R,d), containing the R prototype coordinates.

Gamma Vector of length R, containing the scale parameters.

W Matrix of size (R,M), containing the hidden-to-output weights.

20 RBFval

Author(s)

Thierry Denoeux.

See Also

RBFfit, RBFval

Examples

Glass dataset
data(glass)
xapp<-glass$x[1:89,]
yapp<-glass$y[1:89]
param0<-RBFinit(xapp,yapp,nproto=7)
param0

RBFval Classification of a test set by a radial basis function classifier

Description

RBFval classifies instances in a test set using a radial basis function classifier. Function calcm is
called for computing output belief functions. It is recommended to set calc.belief=FALSE when
the number of classes is very large, to avoid memory problems.

Usage

RBFval(x, param, y = NULL, calc.belief = TRUE)

Arguments

x Matrix of size n x d, containing the values of the d attributes for the test data.
param Neural network parameters, as provided by RBFfit.
y Optional vector of class labels for the test data. May be a factor, or a vector of

integers from 1 to M (number of classes).
calc.belief If TRUE (default), output belief functions are calculated.

Details

If class labels for the test set are provided, the test error rate is also returned.

Value

A list with four elements:

ypred Predicted class labels for the test data.
err Test error rate (if the class label of test data has been provided).
Prob Output probabilities.
Belief If calc.belief=TRUE, output belief function, provided as a list output by function calcm.

vehicles 21

Author(s)

Thierry Denoeux.

References

T. Denoeux. Logistic Regression, Neural Networks and Dempster-Shafer Theory: a New Perspec-
tive. Knowledge-Based Systems, Vol. 176, Pages 54–67, 2019.

Ling Huang, Su Ruan, Pierre Decazes and Thierry Denoeux. Lymphoma segmentation from 3D
PET-CT images using a deep evidential network. International Journal of Approximate Reasoning,
Vol. 149, Pages 39-60, 2022.

See Also

RBFinit, RBFfit, calcm

Examples

Glass dataset
data(glass)
xapp<-glass$x[1:89,]
yapp<-glass$y[1:89]
xtst<-glass$x[90:185,]
ytst<-glass$y[90:185]
Initialization
param0<-RBFinit(xapp,yapp,nproto=7)
Training
fit<-RBFfit(xapp,yapp,param0)
Test
val<-RBFval(xtst,fit$param,ytst)
Confusion matrix
table(ytst,val$ypred)

vehicles Vehicles dataset

Description

This dataset was collected from silhouettes by the HIPS (Hierarchical Image Processing System)
extension BINATTS Four model vehicles were used for the experiment: bus, Chevrolet van, Saab
9000 and Opel Manta. The data were used to distinguish 3D objects within a 2-D silhouette of the
objects. There are 846 instances and 18 numeric attributes. The first 564 objects are training data,
the rest are test data. This version of dataset was used by Zouhal and Denoeux (1998).

Usage

data(vehicles)

22 vehicles

Format

A list with two elements:

x The 846 x 18 object-attribute matrix.

y A 846-vector containing the class labels.

References

P. M. Murphy and D. W. Aha. UCI Reposition of machine learning databases. [Machine readable
data repository]. University of California, Departement of Information and Computer Science,
Irvine, CA.

L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization. IEEE
Transactions on Systems, Man and Cybernetics Part C, 28(2):263–271,1998.

Examples

data(vehicles)
table(vehicles$y)

Index

∗ datasets
glass, 12
ionosphere, 13
vehicles, 21

calcAB, 2, 4, 11, 12
calcm, 3, 3, 11, 12, 20, 21

decision, 5, 11, 12

EkNNfit, 7, 9–12
EkNNinit, 7, 8, 8, 10–12
EkNNval, 6, 8, 9, 10, 11, 12
evclass, 11

glass, 12

ionosphere, 13

optim, 18

proDSfit, 11, 12, 13, 16, 17
proDSinit, 11, 12, 15, 15, 17, 19
proDSval, 6, 11, 12, 15, 16, 16, 19

RBFfit, 11, 12, 18, 20, 21
RBFinit, 11, 12, 18, 19, 21
RBFval, 11, 12, 20, 20

vehicles, 21

23

	calcAB
	calcm
	decision
	EkNNfit
	EkNNinit
	EkNNval
	evclass
	glass
	ionosphere
	proDSfit
	proDSinit
	proDSval
	RBFfit
	RBFinit
	RBFval
	vehicles
	Index

