
Package: essentials (via r-universe)
October 10, 2024

Type Package

Title Essential Functions not Included in Base R

Version 0.1.0

Author Andrew Simmons

Maintainer Andrew Simmons <akwsimmo@gmail.com>

Description Functions for converting objects to scalars (vectors of
length 1) and a more inclusive definition of data that can be
interpreted as numbers (numeric and complex alike).

License MIT + file LICENSE

Depends methods

Encoding UTF-8

LazyData true

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-01-29 08:50:07 UTC

Contents

essentials-package . 2
as.scalar . 3
aslength1 . 4
hypot . 5
numbers . 6
numbers-class . 7

Index 8

1

2 essentials-package

essentials-package Essential Functions not Included in Base R

Description

Functions for converting objects to scalars (vectors of length 1) and a more inclusive definition of
data that can be interpreted as numbers (numeric and complex alike).

Details

The four most important functions from this package are as.numbers, is.numbers, as.scalar
and aslength1.

as.numbers coerces its argument to type double or complex. is.numbers tests if its argument is
interpretable as numbers.

as.scalar coerces its argument to an scalar (an atomic vector of length 1). It strips attributes
including names.

aslength1 coerces its argument to a vector of length 1 (not necessarily atomic). It strips attributes
from arguments that are not vectors, but preserves names for arguments that are vectors.

Author(s)

Andrew Simmons

Maintainer: Andrew Simmons <akwsimmo@gmail.com>

Examples

as.numbers("4")
as.numbers("4+0i") # imaginary component is removed
as.numbers("4+1i")

is.numbers(4L)
is.numbers(4)
is.numbers(4+1i)

as.scalar(1:100)
as.scalar(as.list(1:100)) # coerced to NA_character_ since argument isn't atomic

aslength1(1:100) # identical to as.scalar(1:100)
aslength1(as.list(1:100)) # returns a list of length 1

as.scalar 3

as.scalar Scalars

Description

Coerce objects to scalars (vectors of length 1).

Usage

as.scalar(x)

as.scalar.logical(x)

as.scalar.integer(x)

as.scalar.real(x)
as.scalar.double(x)
as.scalar.numeric(x)

as.scalar.complex(x)

as.scalar.number(x, strict = TRUE)

as.scalar.string(x)
as.scalar.character(x)

Arguments

x object to be coerced.

strict TRUE or FALSE, should a complex number that is strictly real (real component is
NA or NaN or imaginary component is NA or NaN or 0) be converted to a real
number?

Details

as.scalar.logical coerces an object to a vector of type “logical” of length 1.

as.scalar.integer coerces an object to a vector of type “integer” of length 1.

as.scalar.real, as.scalar.double and as.scalar.numeric coerces an object to a vector of
type “numeric” of length 1.

as.scalar.complex coerces an object to a vector of type “complex” of length 1.

as.scalar.number coerces an object to a vector of type “numeric” or “complex” of length 1.

as.scalar.string and as.scalar.character coerces an object to a vector of type “character”
of length 1.

as.scalar coerces an object to a vector of length 1.

4 aslength1

Value

a vector of length 1

Examples

if the type converting from and converting to are identical, as.scalar is a
much shorter way of writing what you intend.
as.scalar(c(TRUE, FALSE, NA))
as.scalar(1:100)
as.scalar(1:10 + 0.5)
as.scalar(exp((0+1i) * 6 * (-4:4)))
as.scalar(letters)

if the type converting from and converting to are not identical, it is better
to specify the type converting to.
as.scalar.logical(c(TRUE, FALSE, NA))
as.scalar.integer(c(TRUE, FALSE, NA))
as.scalar.numeric(c(TRUE, FALSE, NA))
as.scalar.complex(c(TRUE, FALSE, NA))
as.scalar.character(c(TRUE, FALSE, NA))

aslength1 Subset the First Element of a Vector

Description

Subset the first element of a vector.

Usage

aslength1(x)

Arguments

x vector (or an object which can be coerced) with at least one element.

Details

Vectors of length one return themselves. Vectors of length greater than one return the first element
with a warning. Vectors of length zero raise an error. If x is a vector (determined by is.vector),
names will be preserved.

Value

A vector of length 1.

hypot 5

Examples

aslength1(1)
aslength1(1:10)
try(aslength1(integer(0)))

hypot Hypotenuse

Description

Compute the length of the hypotenuse.

Usage

hypot(x, y)

Arguments

x, y numeric vectors; the lengths of non-hypotenuse sides, the sides adjacent to the
right angle.

Details

The hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The
length of the hypotenuse is defined as:

√
(x2 + y2)

If x[i] or y[i] is infinite, the result in the i-th position will always be Inf. Otherwise, if x[i]
or y[i] is NA or NaN, the result in the i-th position will be NaN. Otherwise, if the absolute value of
x[i] is considerably larger than the absolute value of y[i], the result in the i-th position will be
the absolute value of x[i] (and vice versa). Otherwise, the value will be calculated using the above
definition.

Value

A numeric vector. If x or y is a zero-length vector the result has length zero. Otherwise, the result
has length of the maximum of the lengths of x and y.

Examples

hypot(Inf, NaN) # still positive infinity
hypot(NaN, 0) # NaN
hypot(NA_real_, 0) # NaN

numbers whose squares would overflow normally are handled well
hypot(.Machine$double.xmax, 5)

6 numbers

hypot(1e+300 , 1e+300)

hypot(3, 4) # 5

numbers Number Vectors

Description

Creates or coerces objects of type “numeric” or “complex”. is.numbers is a more general test of
an object being interpretable as numbers.

Usage

numbers(length = 0)
as.numbers(x, strict = TRUE, ...)
is.numbers(x)

Arguments

length A non-negative integer specifying the desired length. Double values will be
coerced to integer: supplying an argument of length other than one is an error.

x object to be coerced or tested.

strict TRUE or FALSE, should a vector of complex numbers where each number is
strictly real (real component is NA or NaN or imaginary component is NA or
NaN or 0) be converted to a vector of real numbers?

... further arguments passed to or from other methods. as.numbers is not a generic
function, but it can be made into one if desired. See setGeneric.

Details

numbers is identical to numeric and double (and real). It creates a double-precision vector of the
specified length with each element equal to 0.

as.numbers attempts to coerce its argument to be of double or complex type: like as.vector it
strips attributes including names.

is.numbers is a more general test of an object being considered numbers, meaning the base type
of the class is double or integer or complex and values can reasonably be regarded as numbers
(e.g., arithmetic on them makes sense, and comparison should be done via the base type).

Value

for numbers see double.

as.numbers returns either a double or complex vector.

is.numbers(x) is defined as is.numeric(x) || is.complex(x).

numbers-class 7

Examples

x <- 1:5
names(x) <- c("a", "b", "c", "d", "e")
as.numbers(x) # vector converted from integer to double, names removed

x <- x + 0i # x is now a complex vector
as.numbers(x) # vector of type double since all numbers were purely real

vector of type complex, despite being purely real
as.numbers(x, strict = FALSE)

x <- x + 1i
vector remains of type complex since numbers are not purely real
as.numbers(x)

numbers-class Class "numbers"

Description

An umbrella formal class encompassing all objects interpretable as numbers. This includes integer,
double and complex.

Extends

This class extends both "numeric" and "complex", directly.

Methods

coerce A method is defined to coerce an arbitrary object to a numbers vector by calling as.numbers.
The object is returned as is if it already extends class "numeric" or "complex".

Index

∗ classes
numbers-class, 7

∗ package
essentials-package, 2

as.numbers, 7
as.numbers (numbers), 6
as.scalar, 3
as.vector, 6
aslength1, 4

coerce,ANY,numbers-method
(numbers-class), 7

double, 6

essentials (essentials-package), 2
essentials-package, 2

hypot, 5

is.complex, 6
is.numbers (numbers), 6
is.numeric, 6
is.vector, 4

numbers, 6
numbers-class, 7
numeric, 6

scalar (as.scalar), 3
setGeneric, 6

8

	essentials-package
	as.scalar
	aslength1
	hypot
	numbers
	numbers-class
	Index

