Package: emcAdr (via r-universe)

February 27, 2025

Type Package Title Evolutionary Version of the Metropolis-Hastings Algorithm Version 1.2 Date 2025-01-31 Author Jules Bangard [aut, cre] (<https://orcid.org/0009-0007-4670-7860>) Maintainer Jules Bangard <jules.bangard@etu.unistra.fr> Description Provides computational methods for detecting adverse high-order drug interactions from individual case safety reports using statistical techniques, allowing the exploration of higher-order interactions among drug cocktails. License GPL-3 **Imports** Rcpp (>= 1.0.7), ggplot2, dplyr, umap, dbscan, stats LinkingTo Rcpp, RcppArmadillo RoxygenNote 7.2.3 LazyData true Suggests knitr, rmarkdown, gridExtra VignetteBuilder knitr NeedsCompilation yes **Depends** R (>= 3.5.0) **Repository** CRAN Date/Publication 2025-02-27 17:00:02 UTC Config/pak/sysreqs libpng-dev libssl-dev python3

Contents

emcAdr-package	2
ATCtoNumeric	3
ATC_Tree_UpperBound_2024	3
calculate_divergence	4

all second se
clustering_genetic_algorithm
computeMetrics_size2
compute_hypergeom_on_list
compute_RR_on_list
csv_to_population
DistributionApproximation
FAERS_myopathy 11
GeneticAlgorithm
get_dissimilarity_from_cocktail_list
get_dissimilarity_from_genetic_results
get_dissimilarity_from_txt_file
hclust genetic solution
histogramToDitribution
hyperparam test genetic algorithm
int cocktail to string cocktail
OutsandingScoreToDistribution
plot evolution
plot frequency
print csv
p value cocktails
p value csv file
p value genetic results
p value on sampled
a plot output
string list to int cocktails
trueDistributionDrugs 29
trueDistributionSizeTwoCocktail
32

Index

emcAdr-package

Evolutionary Version of the Metropolis-Hastings Algorithm

Description

Provides computational methods for detecting adverse high-order drug interactions from individual case safety reports using statistical techniques, allowing the exploration of higher-order interactions among drug cocktails.

Author(s)

Jules Bangard [aut, cre] (<https://orcid.org/0009-0007-4670-7860>) Maintainer: Jules Bangard <jules.bangard@etu.unistra.fr>

See Also

Rcpp, RcppArmadillo

ATCtoNumeric

Convert ATC Code for each patients to the corresponding DFS number of the ATC tree

Description

Convert ATC Code for each patients to the corresponding DFS number of the ATC tree

Usage

ATCtoNumeric(patientATC, tree)

Arguments

patientATC	: patients observations, for each patient we got a string containing taken medi- cations (ATC code)
tree	: ATC tree (we assume that there is a column 'ATCCode')

Value

a matrix of the same size as patientATC but containing integer that are the index of the corresponding ATC code.

Examples

```
ATC_code <- c('A01AA30 A01AB03', 'A10AC30')
ATCtoNumeric(ATC_code, ATC_Tree_UpperBound_2024)</pre>
```

ATC_Tree_UpperBound_2024

ATC Tree Upper Bound 2024

Description

Example dataset representing the ATC tree structure, sourced from the WHO website (2024-02-23). This dataset is provided for demonstration and testing purposes with the package.

Usage

ATC_Tree_UpperBound_2024

Format

A data frame with 4 variables:

ATCCode The code of ATC nodesName The name of ATC nodesATC_length The number of characters in the ATCCodeupperBound The index of the last child node in the tree

Source

World Health Organization, ATC classification register

calculate_divergence	Calculate the divergence between 2 distributions (the true Distribution
	and the learned one)

Description

Calculate the divergence between 2 distributions (the true Distribution and the learned one)

Usage

```
calculate_divergence(
  empirical_distribution,
  true_distribution,
  method = "TV",
  Filtered = FALSE
)
```

Arguments

empirical_distr	ibution
	A numeric vector of values representing the empirical distribution (return value of DistributionAproximation function)
true_distributi	on
	A numeric vector of values representing the true distribution computed by the trueDistributionSizeTwoCocktail function
method	A string, either "TV" or "KL" to respectively use the total variation distance or the Kullback-Leibler divergence. (default = "TV")
Filtered	Should we use the filtered distribution or the normal one

Value

A numeric value representing the divergence of the 2 distributions

Examples

clustering_genetic_algorithm Clustering of the solutions of the genetic algorithm using the hclust algorithm

Description

Clustering of the solutions of the genetic algorithm using the hclust algorithm

Usage

```
clustering_genetic_algorithm(
  genetic_results,
  ATCtree,
  dist.normalize = TRUE,
  umap_config = NULL
)
```

Arguments

genetic_results		
	A list of cocktails in the form of integer vector	
ATCtree	ATC tree with upper bound of the DFS	
dist.normalize	Do we normalize the distance (so it belongs to [0;1])	
umap_config	The configuration to use in order to project the cocktails in a smaller s (umap::umap.defaults by default)	

Value

A dataframe containing UMAP 1/2 the two coordinates of each cocktails in the plane as well as the cluster number of each cocktails

Examples

computeMetrics_size2 Function used in the reference article to compare diverse Disproportionality Analysis metrics

Description

Function used in the reference article to compare diverse Disproportionality Analysis metrics

Usage

```
computeMetrics_size2(CocktailList, ATCtree, observations, num_thread = 1L)
```

Arguments

CocktailList	: A list of cocktails on which the Disproportionality analysis metrics should be computed
ATCtree	: ATC tree with upper bound of the DFS (without the root)
observations	: observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second) on which we want to compute the risk distribution
num_thread	: Number of thread to run in parallel if openMP is available, 1 by default

Value

Multiple DA metrics computed on CocktailList cocktails

Examples

6

```
compute_hypergeom_on_list
```

Function used to compute the Hypergeometric score on a list of cocktails

Description

Function used to compute the Hypergeometric score on a list of cocktails

Usage

```
compute_hypergeom_on_list(cocktails, ATCtree, observations, num_thread = 1L)
```

Arguments

cocktails	: A list containing cocktails in the form of vector of integers (ATC index)	
ATCtree	: ATC tree with upper bound of the DFS (without the root)	
observations	: observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second) on which we want to compute the risk distribution	
num_thread	: Number of thread to run in parallel if openMP is available, 1 by default	

Value

Hypergeometric score among "cocktails" parameters

compute_RR_on_list Function used to compute the Relative Risk on a list of cocktails

Description

Function used to compute the Relative Risk on a list of cocktails

Usage

```
compute_RR_on_list(cocktails, ATCtree, observations, num_thread = 1L)
```

Arguments

cocktails	: A list containing cocktails in the form of vector of integers (ATC index)	
ATCtree	: ATC tree with upper bound of the DFS (without the root)	
observations	: observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second) on which we want to compute the risk distribution	
num_thread	: Number of thread to run in parallel if openMP is available, 1 by default	

Value

RR score among "cocktails" parameters

Examples

csv_to_population	Function used to convert your genetic algorithm results that are stored
	into a .csv file to a Data structure that can be used by the clustering
	algorithm

Description

Function used to convert your genetic algorithm results that are stored into a .csv file to a Data structure that can be used by the clustering algorithm

Usage

```
csv_to_population(ATC_name, filename, sep = ";")
```

Arguments

ATC_name	the ATC_name column of the ATC tree	
filename	Name of the file where the results are located	
sep	the separator to use when opening the csv file (';' by default)	

Value

An R List that can be used by other algorithms (e.g. clustering algorithm)

Examples

DistributionApproximation	
The MCMC m in order to est Smax.	ethod that runs the random walk on a single cocktail imate the distribution of score among cocktails of size

Description

The MCMC method that runs the random walk on a single cocktail in order to estimate the distribution of score among cocktails of size Smax.

Usage

```
DistributionApproximation(
  epochs,
  ATCtree,
  observations,
  temperature = 1L,
  nbResults = 5L,
  Smax = 2L,
  p_type1 = 0.01,
  beta = 4L,
  max_score = 500L,
  num_thread = 1L,
  verbose = FALSE
)
```

Arguments

epochs	: number of steps for the MCMC algorithm
ATCtree	: ATC tree with upper bound of the DFS (without the root, also see on the github repo for an example)
observations	: real observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second)
temperature	: starting temperature, default = 1 (denoted T in the article)
nbResults	: Number of returned solution (Cocktail of size Smax with the best oberved score during the run), 5 by default
Smax	: Size of the cocktail we approximate the distribution from
p_type1	: probability to operate type1 mutation. Note : the probability to operate the type 2 mutation is then 1 - P_type1. P_type1 must be in [0;1]. Default is .01
beta	: filter the minimum number of patients that must have taken the cocktail for his risk to be taken into account in the DistributionScoreBeta default is 4
max_score	: maximum number the score can take. Score greater than this one would be added to the distribution as the value max_score. Default is 500
num_thread	: Number of thread to run in parallel if openMP is available, 1 by default
verbose	: Output summary (default is false)

Value

I no problem, return a List containing : - ScoreDistribution : the distribution of the score as an array with each cells representing the number of risks = (index-1)/ 10 - Outstanding_score : An array of the score greater than max_score, - Best_cocktails : the nbResults bests cocktails encountered during the run. - Best_scores : Score corresponding to the bestCocktails. - FilteredDistribution : Distribution containing score for cocktails taken by at least beta patients. - Best_cocktails_beta : the nbResults bests cocktails taken by at least beta patients encountered during the run. - Best_scores_beta : Score corresponding to the bestCocktailsBeta. - cocktailSize : Smax parameter used during the run. ; Otherwise the list is empty

```
data("ATC_Tree_UpperBound_2024")
data("FAERS_myopathy")
estimation = DistributionApproximation(epochs = 10, ATCtree = ATC_Tree_UpperBound_2024,
```

```
observations = FAERS_myopathy)
```

FAERS_myopathy FAERS Myopathy Dataset

Description

Example dataset representing drug intake and adverse event reports from FAERS. This dataset is provided to demonstrate the functionality of genetic and MCMC algorithms in the package.

Usage

FAERS_myopathy

Format

A data frame with 2 columns:

patientATC Drug intake for each patient as a vector of ATC tree indicespatientADR Indicates if the patient experienced myopathy as an adverse event

Source

Food & Drug Administration Event Reporting System (FAERS)

GeneticAlgorithm	Genetic algorithm, trying to reach riskiest cocktails (the ones which
	maximize the fitness function, Hypergeometric score in our case)

Description

Genetic algorithm, trying to reach riskiest cocktails (the ones which maximize the fitness function, Hypergeometric score in our case)

Usage

```
GeneticAlgorithm(
    epochs,
    nbIndividuals,
    ATCtree,
    observations,
    num_thread = 1L,
    diversity = FALSE,
    p_crossover = 0.8,
    p_mutation = 0.01,
    nbElite = 0L,
    tournamentSize = 2L,
    alpha = 1,
    summary = TRUE
)
```

Arguments

epochs	: number of step or the algorithm
nbIndividuals	: size of the population
ATCtree	: ATC tree with upper bound of the DFS (without the root)
observations	: real observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second)
num_thread	: Number of thread to run in parallel if openMP is available, 1 by default
diversity	: enable the diversity mechanism of the algorithm (favor the diversity of cocktail in the population), default is false
p_crossover	: probability to operate a crossover on the crossover phase. Default is 80%
p_mutation	: probability to operate a mutation after the crossover phase. Default is 1%
nbElite	: number of best individual we keep from generation to generation. Default is 0
tournamentSize	: size of the tournament (select the best individual between tournamentSize sam- pled individuals)
alpha	: when making a type 1 mutation you have (alpha / size of cocktail) chance to add a drug.
summary	: print the summary of population at each steps ?

Value

If no problem, return a List : - meanFitnesses : The mean score of the population at each epochs of the algorithm. - BestFitnesses : The best score of the population at each epochs of the algorithm. - FinalPopulation : The final population of the algorithm when finished (medications and corresponding scores)

Examples

get_dissimilarity_from_cocktail_list

Recover the square matrix of distance between cocktails where the index (i,j) of the matrix is the distance between cocktails i and j in an arbitrary cocktail list

Description

Recover the square matrix of distance between cocktails where the index (i,j) of the matrix is the distance between cocktails i and j in an arbitrary cocktail list

Usage

```
get_dissimilarity_from_cocktail_list(cocktails, ATCtree, normalization = TRUE)
```

Arguments

cocktails	: A list of cocktails in the form of a vector of integer
ATCtree	: ATC tree with upper bound of the DFS (without the root)
normalization	: Do we keep the distance between cocktail in the range [0;1] ?

Value

The square matrix of distances between cocktails

Examples

get_dissimilarity_from_genetic_results

Recover the square matrix of distance between cocktails where the index (i,j) of the matrix is the distance between cocktails i and j in the genetic_results list.

Description

Recover the square matrix of distance between cocktails where the index (i,j) of the matrix is the distance between cocktails i and j in the genetic_results list.

Usage

get_dissimilarity_from_genetic_results(genetic_results, ATCtree, normalization)

Arguments

genetic_results	
	the List returned by the genetic algorithm.
ATCtree	: ATC tree with upper bound of the DFS (without the root)
normalization	: Do we keep the distance between cocktail in the range $[0;1]$?

Value

The square matrix of distances between cocktails

Examples

```
data("ATC_Tree_UpperBound_2024")
data("FAERS_myopathy")
genetic_results = GeneticAlgorithm(epochs = 10, nbIndividuals = 10,
           ATCtree = ATC_Tree_UpperBound_2024,
           observations = FAERS_myopathy)
distance_matrix = get_dissimilarity_from_genetic_results(genetic_results = genetic_results,
                       ATCtree = ATC_Tree_UpperBound_2024, normalization = TRUE)
```

```
get_dissimilarity_from_txt_file
```

Recover the square matrix of distance between cocktails where the index (i,j) of the matrix is the distance between cocktails i and j in the csv file containing results of genetic algorithm

Description

Recover the square matrix of distance between cocktails where the index (i,j) of the matrix is the distance between cocktails i and j in the csv file containing results of genetic algorithm

Usage

```
get_dissimilarity_from_txt_file(filename, ATCtree, normalization = TRUE)
```

Arguments

filename	: the name of the file returned by the print_csv function.
ATCtree	: ATC tree with upper bound of the DFS (without the root)
normalization	: Do we keep the distance between cocktail in the range [0;1] ?

Value

The square matrix of distances between cocktails

14

hclust_genetic_solution

Examples

data("ATC_Tree_UpperBound_2024")

hclust_genetic_solution

Clustering of the solutions of the genetic algorithm using the hclust algorithm

Description

Clustering of the solutions of the genetic algorithm using the hclust algorithm

Usage

```
hclust_genetic_solution(
  genetic_results,
  ATCtree,
  dist.normalize = TRUE,
  method = "complete"
)
```

Arguments

genetic_results

	The return value of the genetic algorithm
ATCtree	ATC tree with upper bound of the DFS
dist.normalize	Do we normalize the distance (so it bellongs to [0;1])
method	(from hclust function) the agglomeration method to be used. This should be (an unambiguous abbreviation of) one of "ward.D", "ward.D2", "single", "com- plete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).

Value

the hierarchical clustering of the results of the genetic algorithm

```
observations = FAERS_myopathy)
```

histogramToDitribution

Convert the histogram returned by the DistributionApproximation function, to a real number distribution (that can be used in a test for example)

Description

Convert the histogram returned by the DistributionApproximation function, to a real number distribution (that can be used in a test for example)

Usage

```
histogramToDitribution(vec)
```

Arguments

vec : distribution returned by the DistributionAproximationFunction

Value

A vector containing sampled risk during the MCMC algorithm

```
data("ATC_Tree_UpperBound_2024")
data("FAERS_myopathy")
```

hyperparam_test_genetic_algorithm

This function can be used in order to try different set of parameters for the genetic algorithm in a convenient way. This will run each combination of mutation_rate, nb_elite and alphas possible nb_test_desired times. For each sets of parameters, results will be saved in a file named according to the set of parameter. One can regroup the results of each run in a csv file by using the print_csv function specifying the names of each file that needs to be treated and the number of performed runs on each parameter set

Description

This function can be used in order to try different set of parameters for the genetic algorithm in a convenient way. This will run each combination of mutation_rate, nb_elite and alphas possible nb_test_desired times. For each sets of parameters, results will be saved in a file named according to the set of parameter. One can regroup the results of each run in a csv file by using the print_csv function specifying the names of each file that needs to be treated and the number of performed runs on each parameter set

Usage

```
hyperparam_test_genetic_algorithm(
   epochs,
   nb_individuals,
   ATCtree,
   observations,
   nb_test_desired,
   mutation_rate,
   nb_elite,
   alphas,
   path = "./",
   num_thread = 1L
)
```

Arguments

epochs	: the number of epochs for the genetic algorithm	
nb_individuals	: the size of the population in the genetic algorithm	
ATCtree	: ATC tree with upper bound of the DFS (without the root)	
observations	: observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second) on which we want to compute the risk distribution	
nb_test_desired		
	: number of genetic algorithm runs on each sets of parameters	
mutation_rate	: a vector with each mutation_rate to be tested	

nb_elite	: a vector with each nb_elite to be tested
alphas	: a vector with each alphas to be tested
path	: the path where the resulting files should be written
num_thread	: Number of thread to run in parallel if openMP is available, 1 by default

Value

No return value, this function should output results of the runs of the genetic algorithm in a specific format supported by function print_csv and p_value_csv_file. The files are outputed in path which is current directory by default.

Examples

```
data("ATC_Tree_UpperBound_2024")
data("FAERS_myopathy")
```

int_cocktail_to_string_cocktail

Function used to convert integer cocktails (like the one outputed by the distributionApproximation function) to string cocktail in order to make them more readable

Description

Function used to convert integer cocktails (like the one outputed by the distributionApproximation function) to string cocktail in order to make them more readable

Usage

int_cocktail_to_string_cocktail(cocktails, ATC_name)

Arguments

cocktails	cocktails vector to be converted (index in the ATC tree)
ATC_name	The ATC_name column of the ATC tree

Value

The name of integer cocktails in cocktails

Examples

```
OutsandingScoreToDistribution
```

Output the outstanding score (Outstanding_score) outputed by the MCMC algorithm in a special format

Description

Output the outstanding score (Outstanding_score) outputed by the MCMC algorithm in a special format

Usage

OutsandingScoreToDistribution(outstanding_score, max_score)

Arguments

outstanding_	score
	: Outstanding_score outputed by MCMC algorithm to be converted to the Score- Distribution format
max_score	: max_score parameter used during the MCMC algorithm

Value

outstanding_score in a format compatible with MCMC algorithm output

```
data("ATC_Tree_UpperBound_2024")
data("FAERS_myopathy")
```

 ${\tt plot_evolution}$

Description

Plot the evolution of the mean and the best value of the population used by the GeneticAlgorithm

Usage

```
plot_evolution(
    list,
    mean_color = "#F2A900",
    best_color = "#008080",
    xlab = "Epochs",
    ylab = "Score"
)
```

Arguments

list	A list with 2 elements returned by the GeneticAlgorithm: "mean" and "best", containing the numeric vectors representing the mean and best fitness of the population
mean_color	A string specifying the color of the mean values
best_color	A string specifying the color of the best values
xlab	A string specifying the label for the x-axis
ylab	A string specifying the label for the y-axis

Value

no returned value, should plot the evolution of the genetic algorithm results (mean/max score for each epoch).

```
plot_evolution(list = results)
```

plot_frequency

Description

Plot the histogram of the approximation of the RR distribution

Usage

```
plot_frequency(
   estimated,
   sqrt = FALSE,
   binwidth = 0.1,
   hist_color = "#69b3a2",
   density_color = "#FF5733",
   xlab = "Score"
)
```

Arguments

estimated	The ScoreDistribution element in the list returned by the DistributionApproxi- mation function
sqrt	A Boolean to specify whether we normalize the estimated or not, it is recommended on large random walk.
binwidth	The width of the histogram bins
hist_color	The fill color for the histogram bars
density_color	The color for the density curve
xlab	Label of X axis

Value

no returned value, should plot the histogram of the estimated distribution (estimated).

print_csv

Print every cocktails found during the genetic algorithm when used with the hyperparam_test_genetic_algorithm function. This enables to condense the solutions found in each files by collapsing similar cocktail in a single row by cocktail.

Description

Print every cocktails found during the genetic algorithm when used with the hyperparam_test_genetic_algorithm function. This enables to condense the solutions found in each files by collapsing similar cocktail in a single row by cocktail.

Usage

```
print_csv(
    input_filenames,
    observations,
    repetition,
    ATCtree,
    csv_filename = "solutions.csv"
)
```

Arguments

input_filenames

	: A List containing filename of hyperparam_test_genetic_algorithm output file
observations	: observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second) on which we want to compute the risk distribution
repetition	: The parameter nb_test_desired used in the hyperparam test function
ATCtree	: ATC tree with upper bound of the DFS (without the root)
csv_filename	: Name of the output file, "solutions.csv" by default

Value

No return value, should process the output of the genetic algorithm in files produced by hyperparam_test_genetic_algorithm and output a summary csv file. The csv file is outputed in current directory and named after the csv_filename variable (solutions.csv by default).

p_value_cocktails Used to add the p_value to each cocktail of cocktail list

Description

Used to add the p_value to each cocktail of cocktail list

Usage

```
p_value_cocktails(
  distribution_outputs,
  cocktails,
  ATCtree,
  observations,
  num_thread = 1L,
  filtred_distribution = FALSE
)
```

Arguments

distribution_ou	itputs
	A list of distribution of cocktails of different sizes in order to compute the p_value for multiple cocktail sizes
cocktails	A list containing cocktails in the form of vector of integers (ATC index)
ATCtree	ATC tree with upper bound of the DFS (without the root)
observations	observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second) on which we want to compute the risk distribution
num_thread	Number of thread to run in parallel if openMP is available, 1 by default
filtred_distrib	oution
	Does the p-values have to be computed using filtered distribution or normal distribution (filtered distribution by default)

Value

A real valued number vector representing the p-value of the inputed cocktails computed on the distribution_outputs List.

Examples

DistributionApproximationResults_size3 = DistributionApproximation(epochs = 10,

p_value_csv_file	Used to add the p_value to each cocktail of a csv_file that is an output
	of the genetic algorithm

Description

Used to add the p_value to each cocktail of a csv_file that is an output of the genetic algorithm

Usage

```
p_value_csv_file(
  distribution_outputs,
  filename,
  filtred_distribution = FALSE,
  sep = ";"
)
```

Arguments

distribution_outputs		
	A list of distribution of cocktails of different sizes in order to compute the p_value for multiple cocktail sizes	
filename	The file name of the .csv file containing the output	
filtred_distribution		
	Does the p-values have to be computed using filtered distribution or normal distribution (filtered distribution by default)	
sep	The separator used in the csv file (';' by default)	

Value

A real valued number vector representing the p-value of the inputed csv file filename, computed on the distribution_outputs List.

Examples

p_value_genetic_results

Used to add the p_value to each cocktail of an output of the genetic algorithm

Description

Used to add the p_value to each cocktail of an output of the genetic algorithm

Usage

```
p_value_genetic_results(
   distribution_outputs,
   genetic_results,
   filtred_distribution = FALSE
)
```

Arguments

distribution_outputs

A list of distribution of cocktails of different sizes in order to compute the p_value for multiple cocktail sizes

```
genetic_results
```

outputs of the genetic algorithm

filtred_distribution

Does the p-values have to be computed using filtered distribution or normal distribution (filtered distribution by default)

Value

A real valued number vector representing the p-value of the inputed genetic algorithm results (genetic_results) computed on the distribution_outputs List.

Examples

p_value_on_sampled Calculate p-value of sampled value

Description

Calculate p-value of sampled value

Usage

```
p_value_on_sampled(
  empirical_distribution,
  sampled_values,
  isFiltered = FALSE,
  includeZeroValue = FALSE
)
```

Arguments

empirical_distribution		
	A numeric vector of values representing the empirical distribution (return value of DistributionAproximation function)	
sampled_values	A scalar or a vector of real valued number representing the sampled value (score to be tested)	
isFiltered	A boolean representing if we want to use the filtered distribution or the distribu- tion as is (False by default)	
includeZeroValue		
	A boolean that indicate if you want to take into account the null score (False by default)	

qq_plot_output

Value

A numeric value representing the empirical p-value

Examples

```
sampled_values = Hypergeom_of_cocktails)
```

qq_plot_output	Make a Quantile-Quantile diagram from the output of the MCMC al-
	gorithm (DistributionAproximation) and the algorithm that exhaus- tively calculates the distribution

Description

Make a Quantile-Quantile diagram from the output of the MCMC algorithm (DistributionAproximation) and the algorithm that exhaustively calculates the distribution

Usage

```
qq_plot_output(estimated, true, filtered = FALSE, color = "steelblue")
```

Arguments

estimated	Outputed object of DistributionApproximation function
true	Outputed object of either DistributionApproximation function or True distribution computation function
filtered	Make use of the classic distribution estimation or of the filtred one (number of patient taking the cocktail > beta)
color	The color of the dashed line of the qq-plot

Value

no returned value, should plot the quantile-quantile plot of the estimated distribution (estimated) vs the true distribution (true).

Examples

```
true = true_score_distribution)
```

string_list_to_int_cocktails

Function used to convert a string vector of drugs in form "drug1:drug2" to a vector of index of the ATC tree ex: c(ATC_index(drug1), ATC_index(drugs2))

Description

Function used to convert a string vector of drugs in form "drug1:drug2" to a vector of index of the ATC tree ex: c(ATC_index(drug1), ATC_index(drugs2))

Usage

```
string_list_to_int_cocktails(ATC_name, lines)
```

Arguments

ATC_name	the ATC_name column of the ATC tree
lines	A string vector of drugs cocktail in the form "drug1:drug2::drug_n"

Value

An R List that can be used by other algorithms (e.g. clustering algorithm)

trueDistributionDrugs

Examples

trueDistributionDrugs The true distribution of the score among every single nodes of the ATC

Description

The true distribution of the score among every single nodes of the ATC

Usage

```
trueDistributionDrugs(
   ATCtree,
   observations,
   beta,
   max_score = 1000L,
   nbResults = 100L,
   num_thread = 1L
)
```

Arguments

ATCtree	: ATC tree with upper bound of the DFS (without the root)
observations	: observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second) on which we want to compute the risk distribution
beta	: minimum number of person taking the cocktails in order to consider it in the beta score distribution
max_score	: maximum number the score can take. Score greater than this one would be added to the distribution as the value max_score. Default is 1000
nbResults	: Number of returned solution (Cocktail with the best oberved score during the run), 100 by default
num_thread	: Number of thread to run in parallel if openMP is available, 1 by default

Value

Return a List containing : - ScoreDistribution : the distribution of the score as an array with each cells representing the number of risks = (index-1)/ 10 - Filtered_score_distribution : Distribution containing score for cocktails taken by at least beta patients. - Outstanding_score : An array of the score greater than max_score, - Best_cocktails : the nbResults bests cocktails encountered during

the run. - Best_cocktails_beta : the nbResults bests cocktails taken by at least beta patients encountered during the run. - Best_scores : Score corresponding to the Best_cocktails. - Best_scores_beta : Score corresponding to the Best_cocktails_beta.

Examples

```
data("ATC_Tree_UpperBound_2024")
data("FAERS_myopathy")
```

trueDistributionSizeTwoCocktail

The true distribution of the score among every size-two cocktails

Description

The true distribution of the score among every size-two cocktails

Usage

```
trueDistributionSizeTwoCocktail(
  ATCtree,
  observations,
  beta,
  max_score = 100L,
  nbResults = 100L,
  num_thread = 1L
)
```

Arguments

ATCtree	: ATC tree with upper bound of the DFS (without the root)
observations	: observation of the AE based on the medications of each patients (a DataFrame containing the medication on the first column and the ADR (boolean) on the second) on which we want to compute the risk distribution
beta	: minimum number of person taking the cocktails in order to consider it in the beta score distribution
max_score	: maximum number the score can take. Score greater than this one would be added to the distribution as the value max_score. Default is 1000
nbResults	: Number of returned solution (Cocktail with the best oberved score during the run), 100 by default
num_thread	: Number of thread to run in parallel if openMP is available, 1 by default

30

Value

Return a List containing : - ScoreDistribution : the distribution of the score as an array with each cells representing the number of risks = (index-1)/ 10 - Filtered_score_distribution : Distribution containing score for cocktails taken by at least beta patients. - Outstanding_score : An array of the score greater than max_score, - Best_cocktails : the nbResults bests cocktails encountered during the run. - Best_cocktails_beta : the nbResults bests cocktails taken by at least beta patients encountered during the run. - Best_scores : Score corresponding to the Best_cocktails. - Best_scores_beta : Score corresponding to the Best_cocktails. - Best_scores_beta

Examples

```
data("ATC_Tree_UpperBound_2024")
data("FAERS_myopathy")
```

Index

* datasets ATC_Tree_UpperBound_2024, 3 FAERS_myopathy, 11 * package emcAdr-package, 2 ATC_Tree_UpperBound_2024, 3 ATCtoNumeric, 3 calculate_divergence, 4 clustering_genetic_algorithm, 5 compute_hypergeom_on_list,7 compute_RR_on_list, 8 computeMetrics_size2, 6 csv_to_population, 8 DistributionApproximation, 9 emcAdr (emcAdr-package), 2 emcAdr-package, 2 FAERS_myopathy, 11 $\texttt{GeneticAlgorithm}, \textcolor{red}{11}$ get_dissimilarity_from_cocktail_list, 12 get_dissimilarity_from_genetic_results, 13 get_dissimilarity_from_txt_file, 14 hclust_genetic_solution, 15 histogramToDitribution, 16 hyperparam_test_genetic_algorithm, 17 int_cocktail_to_string_cocktail, 18 OutsandingScoreToDistribution, 19 p_value_cocktails, 23 p_value_csv_file, 24 p_value_genetic_results, 25

p_value_on_sampled, 26
plot_evolution, 20
plot_frequency, 21
print_csv, 22

qq_plot_output, 27

Rcpp, 2 RcppArmadillo, 2

string_list_to_int_cocktails, 28

trueDistributionDrugs, 29
trueDistributionSizeTwoCocktail, 30