Package 'em'

Title: Generic EM Algorithm
Description: A generic function for running the Expectation-Maximization (EM) algorithm within a maximum likelihood framework, based on Dempster, Laird, and Rubin (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x> is implemented. It can be applied after a model fitting using R's existing functions and packages.
Authors: Dongjie Wu [aut, cre, cph]
Maintainer: Dongjie Wu <[email protected]>
License: GPL (>= 3)
Version: 1.0.0
Built: 2024-12-12 07:15:07 UTC
Source: CRAN

Help Index


C-Step of EM algorithm

Description

Given the posterior probability, generate a matrix to assign each individual to a class. The assignment is based on which probability is the largest.

Usage

cstep(postpr)

Arguments

postpr

('matrix()')
The matrix of the posterior probability


A Generic EM Algorithm

Description

This is a generic EM algorithm that can work on specific models/objects. Currently, it supports 'lm', 'glm', 'gnm' in package gnm, 'clogit' in package survival and 'multinom' in package nnet. Use '?em.default' to check the manual of the default function of 'em'.

Usage

em(object, ...)

Arguments

object

the model used, e.g. 'lm', 'glm', 'gnm', 'clogit', 'multinom'

...

arguments used in the 'model'.

Value

An object of class 'em' is a list containing at least the following components: models a list of models/objects whose class are determined by a model fitting from the previous step. pi the prior probabilities. latent number of the latent classes. algorithm the algorithm used (could be either 'em', 'sem' or 'cem'). obs the number of observations. post_pr the posterior probabilities. concomitant a list of the concomitant model. It is empty if no concomitant model is used. init.method the initialization method used. call the matched call. terms the codeterms object used.

Author(s)

Dongjie Wu

Examples

fit.lm <- lm(yn ~ x, data = simreg)
results <- em(fit.lm, latent = 2, verbose = FALSE) 
fmm_fit <- predict(results)
fmm_fit_post <- predict(results, prob = "posterior")

The em function for 'survival::clogit'.

Description

The em function for 'survival::clogit'.

Usage

## S3 method for class 'clogit'
em(
  object,
  latent = 2,
  verbose = FALSE,
  init.method = c("random", "kmeans", "hc"),
  init.prob = NULL,
  algo = c("em", "cem", "sem"),
  cluster.by = NULL,
  max_iter = 500,
  abs_tol = 1e-04,
  concomitant = list(...),
  use.optim = FALSE,
  optim.start = c("random", "sample5"),
  ...
)

Arguments

object

the model used, e.g. 'lm', 'glm', 'gnm'.

latent

the number of latent classes.

verbose

'True' to print the process of convergence.

init.method

the initialization method used in the model. The default method is 'random'. 'kmeans' is K-means clustering. 'hc' is model-based agglomerative hierarchical clustering.

init.prob

the starting prior probabilities used in classification based method.

algo

the algorithm used in em: 'em' the default EM algorithm, the classification em 'cem', or the stochastic em 'sem'.

cluster.by

a variable to define the level of clustering.

max_iter

the maximum iteration for em algorithm.

abs_tol

absolute accuracy requested.

concomitant

the formula to define the concomitant part of the model. The default is NULL.

use.optim

maximize the complete log likelihood (MLE) by using 'optim' and 'rcpp' code.The default value is 'FALSE'.

optim.start

the initialization method of generating the starting value for MLE.

...

arguments used in the 'model'.

Value

An object of class 'em' is a list containing at least the following components: models a list of models/objects whose class are determined by a model fitting from the previous step. pi the prior probabilities. latent number of the latent classes. algorithm the algorithm used (could be either 'em', 'sem' or 'cem'). obs the number of observations. post_pr the posterior probabilities. concomitant a list of the concomitant model. It is empty if no concomitant model is used. init.method the initialization method used. call the matched call. terms the codeterms object used.


The default em function

Description

The default em function

Usage

## Default S3 method:
em(
  object,
  latent = 2,
  verbose = FALSE,
  init.method = c("random", "kmeans", "hc"),
  init.prob = NULL,
  algo = c("em", "cem", "sem"),
  cluster.by = NULL,
  max_iter = 500,
  abs_tol = 1e-04,
  concomitant = list(...),
  use.optim = FALSE,
  optim.start = c("random", "sample5"),
  ...
)

Arguments

object

the model used, e.g. 'lm', 'glm', 'gnm'.

latent

the number of latent classes.

verbose

'True' to print the process of convergence.

init.method

the initialization method used in the model. The default method is 'random'. 'kmeans' is K-means clustering. 'hc' is model-based agglomerative hierarchical clustering.

init.prob

the starting prior probabilities used in classification based method.

algo

the algorithm used in em: 'em' the default EM algorithm, the classification em 'cem', or the stochastic em 'sem'.

cluster.by

a variable to define the level of clustering.

max_iter

the maximum iteration for em algorithm.

abs_tol

absolute accuracy requested.

concomitant

the formula to define the concomitant part of the model. The default is NULL.

use.optim

maximize the complete log likelihood (MLE) by using 'optim' and 'rcpp' code.The default value is 'FALSE'.

optim.start

the initialization method of generating the starting value for MLE.

...

arguments used in the 'model'.

Value

An object of class 'em' is a list containing at least the following components: models a list of models/objects whose class are determined by a model fitting from the previous step. pi the prior probabilities. latent number of the latent classes. algorithm the algorithm used (could be either 'em', 'sem' or 'cem'). obs the number of observations. post_pr the posterior probabilities. concomitant a list of the concomitant model. It is empty if no concomitant model is used. init.method the initialization method used. call the matched call. terms the codeterms object used.


The default em function

Description

The default em function

Usage

## S3 method for class 'fitdist'
em(
  object,
  latent = 2,
  verbose = FALSE,
  init.method = c("random", "kmeans", "hc"),
  init.prob = NULL,
  algo = c("em", "cem", "sem"),
  max_iter = 500,
  ...
)

Arguments

object

the model used, e.g. 'lm', 'glm', 'gnm'.

latent

the number of latent classes.

verbose

'True' to print the process of convergence.

init.method

the initialization method used in the model. The default method is 'random'. 'kmeans' is K-means clustering. 'hc' is model-based agglomerative hierarchical clustering.

init.prob

the starting prior probabilities used in classification based method.

algo

the algorithm used in em: 'em' the default EM algorithm, the classification em 'cem', or the stochastic em 'sem'.

max_iter

the maximum iteration for em algorithm.

...

arguments used in the 'model'.

Value

An object of class 'em' is a list containing at least the following components: models a list of models/objects whose class are determined by a model fitting from the previous step. pi the prior probabilities. latent number of the latent classes. algorithm the algorithm used (could be either 'em', 'sem' or 'cem'). obs the number of observations. post_pr the posterior probabilities. concomitant a list of the concomitant model. It is empty if no concomitant model is used. init.method the initialization method used. call the matched call. terms the codeterms object used.


The em function for glmerMod

Description

The em function for glmerMod

Usage

## S3 method for class 'glmerMod'
em(
  object,
  latent = 2,
  verbose = FALSE,
  init.method = c("random", "kmeans", "hc"),
  algo = c("em", "cem", "sem"),
  max_iter = 500,
  concomitant = list(...),
  ...
)

Arguments

object

the model used, e.g. 'lm', 'glm', 'gnm'.

latent

the number of latent classes.

verbose

'True' to print the process of convergence.

init.method

the initialization method used in the model. The default method is 'random'. 'kmeans' is K-means clustering. 'hc' is model-based agglomerative hierarchical clustering.

algo

the algorithm used in em: 'em' the default EM algorithm, the classification em 'cem', or the stochastic em 'sem'.

max_iter

the maximum iteration for em algorithm.

concomitant

the formula to define the concomitant part of the model. The default is NULL.

...

arguments used in the 'model'.

Value

An object of class 'em' is a list containing at least the following components: models a list of models/objects whose class are determined by a model fitting from the previous step. pi the prior probabilities. latent number of the latent classes. algorithm the algorithm used (could be either 'em', 'sem' or 'cem'). obs the number of observations. post_pr the posterior probabilities. concomitant a list of the concomitant model. It is empty if no concomitant model is used. init.method the initialization method used. call the matched call. terms the codeterms object used.


The em function for 'panelmodel' such as 'plm'.

Description

The em function for 'panelmodel' such as 'plm'.

Usage

## S3 method for class 'panelmodel'
em(
  object,
  latent = 2,
  verbose = FALSE,
  init.method = c("random", "kmeans"),
  algo = c("em", "cem", "sem"),
  max_iter = 500,
  concomitant = list(...),
  ...
)

Arguments

object

the model used, e.g. 'lm', 'glm', 'gnm', 'plm'.

latent

the number of latent classes.

verbose

'True' to print the process of convergence.

init.method

the initialization method used in the model. The default method is 'random'.

algo

the algorithm used in em: the default EM algorithm, the classification em 'cem', or the stochastic em 'sem'.

max_iter

the maximum iteration for em algorithm.

concomitant

the formula to define the concomitant part of the model. The default is NULL.

...

arguments used in the 'model'.

Value

An object of class 'em' is a list containing at least the following components: models a list of models/objects whose class are determined by a model fitting from the previous step. pi the prior probabilities. latent number of the latent classes. algorithm the algorithm used (could be either 'em', 'sem' or 'cem'). obs the number of observations. post_pr the posterior probabilities. concomitant a list of the concomitant model. It is empty if no concomitant model is used. init.method the initialization method used. call the matched call. terms the codeterms object used.


This function performs an E-Step of EM Algorithm.

Description

This function performs an E-Step of EM Algorithm.

Usage

estep(models, pi_matrix)

Arguments

models

models used in the EM algorithm,

pi_matrix

the pi matrix.

Value

the fitting result for the model.


Fit the density function for a fitted model.

Description

This function generates the probability density of given models.

Usage

fit.den(object, ...)

Arguments

object

the fitted model such as 'lm'.

...

other used arguments.

Value

the density function.


Fit the density for the survival::clogit

Description

Fit the density for the survival::clogit

Usage

## S3 method for class 'coxph'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Fitting the density function using in 'fitdistrplus::fitdist()'

Description

Fitting the density function using in 'fitdistrplus::fitdist()'

Usage

## S3 method for class 'fitdist'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Fit the density function for a generalized linear regression model.

Description

Fit the density function for a generalized linear regression model.

Usage

## S3 method for class 'glm'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Fit the density function for a generalized linear mixed effect model.

Description

Fit the density function for a generalized linear mixed effect model.

Usage

## S3 method for class 'glmerMod'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Fit the density function for a generalized non-linear regression model.

Description

Fit the density function for a generalized non-linear regression model.

Usage

## S3 method for class 'gnm'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Fit the density function for a linear regression model.

Description

Fit the density function for a linear regression model.

Usage

## S3 method for class 'lm'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Fit the density function for a multinomial regression model.

Description

Fit the density function for a multinomial regression model.

Usage

## S3 method for class 'multinom'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Fit the density function for a 'nnet' model.

Description

Fit the density function for a 'nnet' model.

Usage

## S3 method for class 'nnet'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Fit the density function for a panel regression model.

Description

Fit the density function for a panel regression model.

Usage

## S3 method for class 'plm'
fit.den(object, ...)

Arguments

object

the fitted model.

...

other used arguments.

Value

the density function.


Flatten a data.frame or matrix by column or row with its name. The name will be transformed into the number of row/column plus the name of column/row separated by '.'.

Description

Flatten a data.frame or matrix by column or row with its name. The name will be transformed into the number of row/column plus the name of column/row separated by '.'.

Usage

flatten(x, by = c("col", "row"))

Arguments

x

a data.frame or matrix.

by

either by column or by row.

Value

a flattened vector with names


Initialization of EM algorithm

Description

Given a matrix with number of rows equal to the number of observation and number of columns equal to the number of latent classes, function 'init.em' generate the posterior probability using that matrix based on the method set by the user.

Usage

init.em(object, ...)

Arguments

object

A matrix.

...

other used arguments.

Value

The posterior probability matrix


model-based agglomerative hierarchical clustering

Description

model-based agglomerative hierarchical clustering

Usage

## S3 method for class 'hc'
init.em(object, ...)

Arguments

object

A matrix.

...

other used arguments.

Value

The posterior probability matrix


K-mean initialization

Description

K-mean initialization

Usage

## S3 method for class 'kmeans'
init.em(object, ...)

Arguments

object

A matrix.

...

other used arguments.

Value

The posterior probability matrix


Random initialization

Description

Random initialization

Usage

## S3 method for class 'random'
init.em(object, ...)

Arguments

object

A matrix.

...

other used arguments.

Value

The posterior probability matrix


Random initialization with weights

Description

Random initialization with weights

Usage

## S3 method for class 'random.weights'
init.em(object, ...)

Arguments

object

A matrix.

...

other used arguments.

Value

The posterior probability matrix


Initialization using sampling 5 times.

Description

Initialization using sampling 5 times.

Usage

## S3 method for class 'sample5'
init.em(object, ...)

Arguments

object

A matrix.

...

other used arguments.

Value

The posterior probability matrix


This function computes logLik of EM Algorithm.

Description

This function computes logLik of EM Algorithm.

Usage

## S3 method for class 'em'
logLik(object, ...)

Arguments

object

an object of 'em'.

...

other used arguments.

Value

the log-likelihood value


M-Step of EM algorithm

Description

This function performs an M-Step of EM Algorithm.

Usage

mstep(models, post_pr = NULL)

Arguments

models

the models used in the EM algorithm

post_pr

the posterior probability.

Value

the fitting result for the model.


The mstep for the concomitant model.

Description

This section was inspired by Flexmix.

Usage

mstep.concomitant(formula, data, postpr)

Arguments

formula

the formula of the concomitant model.

data

the data or model.frame related to the concomitant model.

postpr

the posterior probability matrix.

Value

the function returns a fitted nnet object.


The refit of for the concomitant model. This section was inspired by Flexmix.

Description

The refit of for the concomitant model. This section was inspired by Flexmix.

Usage

mstep.concomitant.refit(formula, data, postpr)

Arguments

formula

the formula of the concomitant model.

data

the data or model.frame related to the concomitant model.

postpr

the posterior probability matrix.

Value

the function returns a fitted multinom object.


Multiple run of EM algorithm

Description

Multiple run of EM algorithm

Usage

multi.em(object, ...)

Arguments

object

the model to use in em, e.g. 'lm', 'glm', 'gnm'

...

arguments used in em.

Value

return the 'em' object with the maximum log-likelihood.


Default generic for multi.em

Description

Default generic for multi.em

Usage

## Default S3 method:
multi.em(
  object,
  iter = 10,
  parallel = FALSE,
  num.cores = 2,
  random.init = TRUE,
  ...
)

Arguments

object

the model to use in em, e.g. 'lm', 'glm', 'gnm'

iter

number of iterations for running EM algorithm.

parallel

whether to use the parallel computing.

num.cores

number of cores used in the parallel computing.

random.init

whether to use a random initialization.

...

arguments used in em.

Value

return the 'em' object with the maximum log-likelihood.


Plot the fitted results of EM algorithm

Description

This is the generic plot function for 'em' project. One can produce three types of graphs using this function 1. A graph of the predicted value distribution for each component. 2. A histogram of posterior probability distributions

Usage

## S3 method for class 'em'
plot(
  x,
  by = c("component", "prob"),
  prior = FALSE,
  cols = rep(1, length(x$models)),
  lwds = rep(3, length(x$models)),
  ltys = c(seq_len(length(x$models))),
  ranges = NULL,
  main = NULL,
  lgd = list(),
  lgd.loc = "topleft",
  hist.args = list(main = "Histograms of posterior probabilities", xlab =
    "Posterior Probabilities"),
  ...
)

Arguments

x

the 'em' model to plot

by

the type of the graph to produce. The default is 'component'.

prior

whether fit the model using prior probabilities.

cols

lines' colors.

lwds

Lines' widths.

ltys

lines' types.

ranges

the ranges of the x-axis and the y-axis limits of plots. It should be a vector of four numeric values. The first two represent the x-axis limits. The last two represent the y-axis limits

main

the main title.

lgd

a list for legend related arguments.

lgd.loc

the location of the legend. The default is "topleft".

hist.args

The list of arguments for the histogram.

...

other arguments.

Value

'NULL'


Predict the fitted finite mixture models

Description

Predict the fitted finite mixture models

Usage

## S3 method for class 'em'
predict(object, prob = c("prior", "posterior"), ...)

Arguments

object

Output from em, representing a fitted model using EM algorithm.

prob

the probabilities used to compute the fitted value. It can be either prior probability ('prior') or posterior probability ('posterior'). The default value is 'prior'.

...

other arguments.

Value

An object of class 'predict.em' is a list containing at least the following components: components a list of fitted values by components with each element a matrix/vector of fitted values. mean a matrix of predicted values computed by weighted sum of fitted values by components. The weights used in the computation can be either prior probabilities or posterior probabilities depending on the parameter 'prob'. prob the value used in the parameter 'prob'.


Print the 'em' object

Description

Print the 'em' object

Usage

## S3 method for class 'em'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x

the 'em' object.

digits

the maximum digits printed, the default is '3L'.

...

other arguments used.

Value

print the 'em' object on the screen.


Print the 'summary.em' object

Description

Print the 'summary.em' object

Usage

## S3 method for class 'summary.em'
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

Arguments

x

the 'summary.em' object.

digits

the maximum digits printed, the default is '3L'.

signif.stars

logical; if 'TRUE', P-values are additionally encoded visually as 'significance stars' in order to help scanning of long coefficient tables. It defaults to the 'show.signif.stars' slot of options.

...

other augments used in 'printCoefmat'.

Value

print the 'summary.em' object on the screen.


Simulated Data from a logistic regression

Description

A data set with simulated data from a mixture of a logistic regression.

Usage

simbinom

Format

A data frame with 10000 rows and 2 variables:

y

A dependent variable generated from a mixture of a logistic regression with x

x

An independent variable

Source

<https://www.github.com/wudongjie/em>


Simulated Data from a conditional logistic regression

Description

A data set with simulated data from a mixture of a conditional logistic regression.

Usage

simclogit

Format

A data frame with 10000 rows and 4 variables:

x2

A dummy variable showing whether x is equal to level 2

x3

A dummy variable showing whether x is equal to level 3

a2

Whether the alternative choice 2 is chosen

a2_x2

Interaction between a2 and x2

a2_x3

Interaction between a2 and x3

a3

Whether the alternative choice 3 is chosen

a3_x2

Interaction between a3 and x2

a3_x3

Interaction between a3 and x3

chosen1

Whether the observation-alternative combination is chosen (Generated by a one-class regression).

chosen2

Whether the observation-alternative combination is chosen (Generated by a two-class mixed regression).

fid

Family ID

id

Individual ID

z

Other variables

Source

<https://www.github.com/wudongjie/em>


Simulated Regression Data

Description

A data set with simulated data from mixture regression models.

Usage

simreg

Format

A data frame with 1000 rows and 5 variables:

yp

A dependent variable generated from a mixture of a poisson regression with x

yn

A dependent variable generated from a mixture of a linear regression with x

yc

A dependent variable generated from a mixture of a linear regression with x and a concomitant variable of z

x

An independent variable

z

A concomitant variable

Source

<https://www.github.com/wudongjie/em>


S-step of EM algorithm

Description

Given the posterior probability, generate a matrix to assign each individual to a class. The assignment is randomly sampled based on the posterior probability.

Usage

sstep(postpr)

Arguments

postpr

('matrix()')
The matrix of the posterior probability


Summaries of fitted finite mixture models using EM algorithm

Description

Summaries of fitted finite mixture models using EM algorithm

Usage

## S3 method for class 'em'
summary(object, ...)

Arguments

object

Output from em, representing a fitted model using EM algorithm.

...

other arguments used.

Value

An object of class 'summary.em' is a list containing at least the following components: call the matched call. coefficients pi the prior probabilities. latent number of the latent classes. ll log-likelihood value. sum.models summaries of models generated by 'summary()' of models from each class. df degree of freedom. obs number of observations. AIC the Akaike information criterion. BIC the Bayesian information criterion. concomitant a list of the concomitant model. It is empty if no concomitant model is used. concomitant.summary summaries of the concomitant model generated by 'summary()'.


Transform a factor variable to a matrix of dummy variables

Description

Transform a factor variable to a matrix of dummy variables

Usage

vdummy(x)

Arguments

x

a factor vector

Value

a matrix of dummy variables