
em: A Generic Function of the EM Algorithm for
Finite Mixture Models in R

Dongjie Wu
Københavns Universitet

Abstract

The em package estimates finite mixture models using the expectation-maximization
(EM) algorithm. It follows R’s feature of generic functions and the function em() can
be applied after a model fitting with one component using R’s pre-existing functions and
packages.

Currently, it supports the following models: linear models (lm()), generalized linear
models (glm()), generalized non-linear model (gnm()), survival models (mainly condi-
tional logistic regression) (survival::clogit()), multinomial models(nnet::multinom()).

Keywords: R, the EM Algorithm, finite mixture models, model based clustering, latent class
regression.

1. Introduction
Finite mixture models (FMMs) are widely applied in both natural science and social science
to model unobserved heterogeneity1. This modelling technique assumes that data can be
divided into unobserved groups known as latent classes, each following a distinct probability
density or a regression model with unique model parameters.
One reason for the extensive usage of finite mixture modelling is its flexibility. Its core assump-
tion of unobserved heterogeneity can be applied to a variety of models including generalized
linear regression models (GLMs), generalized non-linear regression models (GNMs), survival
analysis, etc. It can also be used as a model-based clustering technique with different data
structures, for example, categorical data, multidimensional data or hierarchical data (Ver-
munt 2008). In addition, FMMs can parameterize probabilities of belonging to latent classes
(i.e. a concomitant model (Wedel 2002)). FMMs can also be applied to data with a nested
or hierarchical structure (Vermunt and Magidson 2005).
In general, FMMs can be estimated by the following four methods: Methods of moments
(MoM), Maximum log-likelihood estimation (MLE), Bayesian methods, and unsupervised ma-
chine learning methods (Figueiredo and Jain 2002). MLE using the Expectation-maximization
(EM) algorithm is the mainstream method of estimating FMM models due to its performance
and accuracy. However, it is relatively computationally intensive as it involves iteratively
computing log-likelihood values.
There are many packages or software available for FMM models: e.g. fmm (Deb 2007) and
gllamm (Rabe-Hesketh, Skrondal, and Pickles 2004) in Stata, flexmix (Leisch 2004), mixtools

1See McLachlan, Lee, and Rathnayake (2019) for an introduction to finite mixture models

2 em: the EM Algorithm in R

(Benaglia, Chauveau, Hunter, and Young 2010) and mclust (Scrucca, Fop, Murphy, and
Raftery 2016) in R, etc. Although these packages provide a wide range of opportunities for
fitting finite mixture models, they do not cover all models, including some of those that are
used my area of research. The em package thus fills this gap. To ensure user-friendliness, the
em package is based on generic functions in R, which integrates better with other functions
and packages in R and makes implementing FMM models more flexible and straightforward.
In section 2, we define FMMs and some of their extensions. In section 3, we present EM
algorithms and the approaches we use to fit FMMs. In section 4, we introduce the em
package and the generic em function for fitting FMMs in R. Section 5 demonstrates some
examples of using em. Section 6 provides a short summary of the paper.

2. Finite Mixture Models

2.1. The Finite Mixture Models

Finite mixture models can be described in the following equations given J components:

f(y|x, ϕ) =
J∑

j=1
πjfj(y|x, θj) (1)

where
∑J

j=1 πj = 1, y is a dependent variable with conditional density f , x is a vector of
independent variables, πj is the prior probability of component j, θj is the component specific
parameters for the density function fj .
The model fj(y|x, θj) can be one of a wide range of models: probability distributions, general-
ized linear models (GLM), generalized non-linear models (GNM), survival models, categorical
models, etc.
Given the fitted model, one can compute the posterior probability that observation i belongs
to class j using the following equation:

Pr(k|x, ϕ, y) = πk
fk(y|x, θk)∑J

j=1 πj(fj(y|x, θj))
(2)

The probability π can also be parameterized by a vector of variables z.

f(y|x, ϕ) =
J∑

j=1
π(z)(fj(y|x, θj)) (3)

where π(z) is a function that determines the prior probability by a vector of variables z. The
equation 3 is known as a concomitant model.

3. Fitting FMM using the EM Algorithm and its Extensions
The EM algorithm is the mainstream approach to fitting finite mixture models. It runs
iteratively through an expectation step (E-step) and a maximization step (M-step). Given an
FMM, the E-step computes posterior probabilities given the estimation in the last step, while

Dongjie Wu 3

the M-step estimates the model by maximizing the log-likelihood function. The log-likelihood
function generated by an FMM can be rewritten:

LI(θ|y, x) =
∑
i∈N

log
∑
j∈J

πjfj(yi|xi, θj) (4)

An FMM can be treated as a model with missing data represented by latent classes. Therefore,
we can assume a variable w that captures which class each observation belongs to. In this
case, the data {y, w} becomes complete data. Based on this complete data, we can write the
following complete-data log-likelihood function.

LC(θ|y, x, w) =
∑
i∈N

log
∑
j∈J

wiπjfj(yi|xi, θj) (5)

Since the EM is computationally intensive due to its iterative nature, we provide two exten-
sions of the EM algorithm in the em package. One is the Categorical EM (CEM) and the
other is the Stochastic EM (SEM). The CEM assigns each observation to a class for which the
posterior probability is higher, whereas SEM randomly assigns each observation to a certain
class based on the observation’s posterior probabilities for each class (i.e., weighted random
allocation with weights given by the posterior probabilities).
Using either CEM or SEM, we can assign each observation to a latent class after an E-step,
and estimate the model respectively for each class. This approach requires no fitting for a
mixed version of log-likelihood functions. Therefore, it could be more computational efficient
when the model is easier to fit given one class.
However, this classification approach may not work well when a one-class model has a flat
log-likelihood function such as a conditional logit model. In this case, it is difficult to identify
variation by latent classes by simply assigning observations to each latent class. To fit this
type of models, we adopt an EM algorithm with a complete-data log-likelihood. A complete-
data log-likelihood increases steepness of the log-likelihood function so that the EM algorithm
can better differentiate classes and search for the maximum.
To improve the performance of model-fitting, we make use of the Rcpp and RcppArmadillo
packages to embed c++ code in R. The R programs make uses of the optim function in R to
call the embedded c++ code. In an E-step, we also use the c++ code to compute posterior
probabilities. The use of c++ massively reduces the computational time of estimating a
complete-data log-likelihood function and, therefore, improves the computational efficiency.
For running the EM algorithm, we also provide several methods to generate starting val-
ues. Starting values are crucial for fitting a mixture model as the log-likelihood function
of a mixture model usually has several local optimums. Choosing a starting value far from
the global optimum can lead to a less optimal result. In the package, we created two argu-
ments init.method and optim.start for methods generating starting values. init.method
generates the starting clustering for each observation. The available methods are: random
– random assignment to a cluster that each observation is allocated to, kmeans – k-mean
clustering of data, and hc – model-based agglomerative hierarchical clustering. An m-step
runs immediately after the clustering to provide the starting values for the model parameters.
If the complete log-likelihood function is used in the estimation, we use optim.start for
generating the starting value of MLE. In the current version, it supports two methods: random
generates a set of random values and sample5 generates five sets of random values and runs

4 em: the EM Algorithm in R

for each set an MLE with each set for five time. Values with the largest log-likelihood are
retained as starting values of next round of MLE.
For simple models like the generalized linear regression models, we recommend using kmeans
or random to generate the staring values. For more complex models like a conditional logit
model, we recommend fitting a complete log-likelihood function with sample5.

4. Using the Generic em Function
As a generic function, the em function can take different models as its input. Currently, it
supports the following models implemented in both the R base package and external pack-
ages: linear models (lm()), generalized linear models (glm()), generalized non-linear model
(gnm()), survival models (mainly conditional logistic regression) (survival::clogit()), multi-
nomial models(nnet::multinom()). The following function describes the default em function:

em(object, latent=2, verbose=F,
init.method = c("random", "kmeans", "hc"),
init.prob = NULL, algo= c("em", "cem", "sem"),
cluster.by=NULL, max_iter=500,
abs_tol=1e-4, concomitant=list(...),
use.optim=F, optim.start=c("random","sample5"), ...)

where object is a model object such as lm() and glm(), latent determines the number
of latent classes, verbose allows printing the fitting process, init.method provides three
different initialization methods, init.prob allows users to determine the staring prior proba-
bilities, algo provides three extensions of EM algorithms, cluster.by is a variable specifying
the level at which the clustering should occur (for hierarchical data), max_iter determines
the maximum number for iteration, abs_tol is the absolute tolerance – the difference be-
tween two log-likelihood values, concomitant allows users to specify a concomitant model,
use.optim decides whether to use the function optim() to maximize log-likelihood functions,
and optim.start determines the method to generate the starting values for optim().2

5. Examples

5.1. Mixture of Generalized Linear Models
In the first example, we mix two linear models described in the following two equations with
mixing probabilities 30% and 70% respectively:

y = −10 + 0.1x (6)
y = 20 − 0.1x (7)

The models can be fitted and presented using the following lines of codes in R.

R> library("em")
R> fit.lm <- lm(yn ~ x, data = simreg)
R> summary(fit.lm)

2For more detail, please check the em documentations.

Dongjie Wu 5

Call:
lm(formula = yn ~ x, data = simreg)

Residuals:
Min 1Q Median 3Q Max

-25.720 -18.166 7.212 9.926 17.206

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.73792 1.22736 8.749 <2e-16 ***
x -0.04715 0.18710 -0.252 0.801

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.59 on 998 degrees of freedom
Multiple R-squared: 6.362e-05, Adjusted R-squared: -0.0009383
F-statistic: 0.0635 on 1 and 998 DF, p-value: 0.8011

R> results <- em(fit.lm, latent = 2, verbose = F)
R> summary(results)

Call:
em.default(object = fit.lm, latent = 2, verbose = F)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

1.(Intercept) -9.88442 0.18569 -53.230 <2e-16 ***
1.x 0.07305 0.02819 2.591 0.0097 **
2.(Intercept) 19.74555 0.25442 77.611 <2e-16 ***
2.x -0.05942 0.03886 -1.529 0.1265

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prior Probabilities:
Comp.1: 0.31
Comp.2: 0.69

logLik: -2975, AIC: 5964, BIC: 5999.

In the code block showing above, we use summary() to print and summarize results after
the use of em(). We organize the presentation of results in a similar look comparing with
the summary of an baseline one-class model (like lm()). The difference is that we add a
prefix 1. or 2. to represent which class the coefficients belong to. In addition, we present
prior probabilities below the table of coefficients to show the proportion of each class in the
mixture model.

6 em: the EM Algorithm in R

The summary of em fitting shows that the results are close to the true values. After model
fitting, we can use other generic functions in R for post-estimations and results printing.
The supporting generic functions in the current version are as follows: summary(), print(),
predict(), update(), logLik(),df(), plot().

R> fmm_fit <- predict(results)
R> str(fmm_fit)

List of 3
$ components:List of 2
..$: Named num [1:1000] -9.56 -9.59 -9.42 -9.71 -9.46 ...
.. ..- attr(*, "names")= chr [1:1000] "1" "2" "3" "4" ...
..$: Named num [1:1000] 19.5 19.5 19.4 19.6 19.4 ...
.. ..- attr(*, "names")= chr [1:1000] "1" "2" "3" "4" ...

$ mean : num [1:1000, 1] 10.5 10.5 10.4 10.5 10.5 ...
$ prob : chr "prior"
- attr(*, "class")= chr [1:3] "predict" "predict.em" "predict.prior"

R> fmm_fit_post <- predict(results, prob = "posterior")
R> str(fmm_fit_post)

List of 3
$ components:List of 2
..$: Named num [1:1000] -9.56 -9.59 -9.42 -9.71 -9.46 ...
.. ..- attr(*, "names")= chr [1:1000] "1" "2" "3" "4" ...
..$: Named num [1:1000] 19.5 19.5 19.4 19.6 19.4 ...
.. ..- attr(*, "names")= chr [1:1000] "1" "2" "3" "4" ...

$ mean : num [1:1000, 1:2] -3.84e-42 -8.02e-35 -8.03e-42 -1.02e-30 -5.12e-43 ...
$ prob : chr "posterior"
- attr(*, "class")= chr [1:3] "predict" "predict.em" "predict.posterior"

In the above coding block, we use function predict() to predict values based on the results
from the model fitting. In the default mode, predict() produces the fitted values for each
component saved in the list components and computes the weighted mean based on the fitted
values for each component and the prior probability π:

ŷ =
∑
j∈J

πj ŷj (8)

The results for the weighted sum are saved in a vector mean.
We can set the argument prob="posterior" to compute the fitted values weighted by the
posterior probability using the following equation:

ŷ =
∑
j∈J

πij ŷj (9)

where πij is the posterior probability.

Dongjie Wu 7

Figure 1: The counterfactual distribution of the predicted by component

−10 −5 0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

The distribution of the fitted value by component

N = 1000 Bandwidth = 0.03796

D
en

si
ty

Comp. 1
Comp. 2

8 em: the EM Algorithm in R

For data visualization, we use plot() to produce graphs after the model fitting em(). In the
current version, plot() supports producing density plots by component and histograms of
posterior probabilities. One can set up the figure using the argument by.
In the default mode, plot() produces a graph of distributions of fitted values for each com-
ponent (See Figure 1).

Figure 2: Histograms of posterior probabilities

Posterior Probabilities

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
30

0
60

0

Histograms of posterior probabilities Comp.1

Posterior Probabilities

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
30

0
60

0

Comp.2

Figure 2 shows a histogram of posterior probability distributions.
We can also use a concomitant model to parameterize the prior probabilities. For example,
we can assume the concomitant model in the following equations:

yc = π1(z)f1(x) + π2(z)f2(x) (10)
π1 + π2 = 1 (11)

π(z) = g(z) (12)

Given the equations, we run the following lines of codes:

R> formula <- yc ~ x
R> formula_c <- ~z

Dongjie Wu 9

R> lm_fit <- lm(formula, data = simreg)
R> results <- em(lm_fit, concomitant = list(formula = formula_c, data = simreg))
R> summary(results)

Call:
em.default(object = lm_fit, concomitant = list(formula = formula_c,

data = simreg))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

1.(Intercept) 20.69606 0.26784 77.271 < 2e-16 ***
1.x -0.23917 0.04072 -5.874 5.79e-09 ***
2.(Intercept) -10.13260 0.18380 -55.129 < 2e-16 ***
2.x 0.09922 0.02806 3.536 0.000424 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prior Probabilities:
Comp.1: 0.339
Comp.2: 0.661

Concomitant model:
Estimate Std. Error t value Pr(>|t|)

2.(Intercept) 0.1843 0.1280 1.440 0.150
2.z -0.2978 0.2233 -1.334 0.183

logLik: -2948, AIC: 5912, BIC: 5951.

In the summary of results, we print the results from the concomitant model including the
logistic regression of π(z).

5.2. Mixture of Conditional Logistic Regression Models
In this example, a three-level outcome y is generated by a mixture of two multinomial regres-
sions with a three-category variable x described in the following equations.
Class 1:

ln
Pr(yi = 2)
Pr(yi = 1) = 2.1x2 + 4.1x3 (13)

ln
Pr(yi = 3)
Pr(yi = 1) = 8.1x2 − 0.1x3 (14)

Class 2:

ln
Pr(yi = 2)
Pr(yi = 1) = 20.3x2 + 1.9x3 (15)

ln
Pr(yi = 3)
Pr(yi = 1) = 10.5x2 + 0.7x3 (16)

10 em: the EM Algorithm in R

The probability of the mixture is 0.3 and 0.7 for two classes, respectively.

R> library("em")
R> library("survival")
R> fmla <- chosen2 ~ 0 + a2_x2 + a2_x3 + a3_x2 + a3_x3 + strata(id)
R> cfit <- clogit(fmla, simclogit)
R> emfit <- em(cfit, latent = 2, verbose = F, init.method = "kmeans", use.optim = T, optim.start = "sample5", max_iter = 100)
R> print(summary(emfit))

Random start: 1
Iteration 1: (EM) log likelihood = 14323.5221
Iteration 2: (EM) log likelihood = 14033.9953
Iteration 3: (EM) log likelihood = 14004.4842
Iteration 4: (EM) log likelihood = 14001.2086
Iteration 5: (EM) log likelihood = 14000.8126
Random start: 2
Iteration 1: (EM) log likelihood = 14323.5221
Iteration 2: (EM) log likelihood = 13987.5831
Iteration 3: (EM) log likelihood = 13996.8977
Iteration 4: (EM) log likelihood = 14003.7911
Iteration 5: (EM) log likelihood = 14005.0099
Random start: 3
Iteration 1: (EM) log likelihood = 14323.5221
Iteration 2: (EM) log likelihood = 13814.0416
Iteration 3: (EM) log likelihood = 13767.1343
Iteration 4: (EM) log likelihood = 13761.0806
Iteration 5: (EM) log likelihood = 13760.0858
Random start: 4
Iteration 1: (EM) log likelihood = 14323.5221
Iteration 2: (EM) log likelihood = 14198.8056
Iteration 3: (EM) log likelihood = 14244.7413
Iteration 4: (EM) log likelihood = 14249.8756
Iteration 5: (EM) log likelihood = 14250.3362
Random start: 5
Iteration 1: (EM) log likelihood = 14323.5221
Iteration 2: (EM) log likelihood = 14474.4036
Iteration 3: (EM) log likelihood = 14471.6073
Iteration 4: (EM) log likelihood = 14471.5818
Iteration 5: (EM) log likelihood = 14471.6738
Iteration 0: (EM) log likelihood = 13759.9111
Iteration 1: (EM) log likelihood = 13759.5697
Iteration 2: (EM) log likelihood = 13759.5447
Iteration 3: (EM) log likelihood = 13759.5073
Iteration 4: (EM) log likelihood = 13759.5583
Iteration 5: (EM) log likelihood = 13759.5316
Iteration 6: (EM) log likelihood = 13759.529
Iteration 7: (EM) log likelihood = 13759.5186

Dongjie Wu 11

Iteration 8: (EM) log likelihood = 13759.5082
Iteration 9: (EM) log likelihood = 13759.4992
Iteration 10: (EM) log likelihood = 13759.4988
Iteration 11: (EM) log likelihood = 13759.4959
Iteration 12: (EM) log likelihood = 13759.4972
Iteration 13: (EM) log likelihood = 13759.4948
Iteration 14: (EM) log likelihood = 13759.4951
Iteration 15: (EM) log likelihood = 13759.4945
Iteration 16: (EM) log likelihood = 13759.4948
Iteration 17: (EM) log likelihood = 13759.4942
Iteration 18: (EM) log likelihood = 13759.4946
Iteration 19: (EM) log likelihood = 13759.4951
Iteration 20: (EM) log likelihood = 13759.4959
Iteration 21: (EM) log likelihood = 13759.496
Iteration 22: (EM) log likelihood = 13759.4979
Iteration 23: (EM) log likelihood = 13759.4965
Iteration 24: (EM) log likelihood = 13759.4978
Iteration 25: (EM) log likelihood = 13759.498
Iteration 26: (EM) log likelihood = 13759.4987
Iteration 27: (EM) log likelihood = 13759.4987
R> print(summary(emfit))
Call: NULL
Coefficients:

coef exp(coef) se(coef) z Pr(>|z|)
1.a2_x2 7.261e+00 1.424e+03 1.000e+00 7.260 3.87e-13 ***
1.a2_x3 3.989e+00 5.398e+01 6.665e-02 59.846 < 2e-16 ***
1.a3_x2 6.753e+00 8.568e+02 1.001e+00 6.750 1.48e-11 ***
1.a3_x3 1.256e+00 3.513e+00 7.831e-02 16.044 < 2e-16 ***
2.a2_x2 1.084e+01 5.082e+04 1.000e+00 10.834 < 2e-16 ***
2.a2_x3 8.993e-01 2.458e+00 6.665e-02 13.494 < 2e-16 ***
2.a3_x2 8.904e+00 7.358e+03 1.001e+00 8.899 < 2e-16 ***
2.a3_x3 5.079e-01 1.662e+00 7.831e-02 6.486 8.84e-11 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Prior Probabilities:
Comp.1: 0.6721
Comp.2: 0.3279
logLik: -7954, AIC: 15927, BIC: 15992.

Using the above code block, we make use of the function clogit() in the survival package
and fit an FMM with two latent classes. We set use.optim to TRUE so that the optim()
function is used with the embedded c++ code. To generate a start value for the M-step, we
produce a set of random values for the parameters for five times. For each set of random
values, we run the maximum log-likelihood estimate for five steps. We pick the values with
the largest log-likelihood as the starting value.
Since we limited the iteration time for demonstration purpose, the results are well-separated

12 em: the EM Algorithm in R

given two classes but they are not exactly the true values.

6. Summary
The main challenge for implementing the EM algorithm and finite mixture modelling is that
one could apply the mixture framework on any model. It would take immense effort and
work if all models need to be built in the mixture form. In the em package, we make use
of the feature of generic functions in R so that our em function can attach to other available
statistical models in R. Our package can, therefore, focus on algorithm development, results
presentation and post-estimations.
The current version of em supports most of generalized linear regressions implemented by
function lm and glm in R. It also supports generalized non-linear regressions (gnm), multino-
mial regression models (nnet::multinom) and survival models (survival::clogit). Other
models we are working on are mixture effect models (the lme4 package) and mixture of dis-
tributions (the fitdistrplus package) and regressions with panel data (the plm package).
When fitting a finite mixture model, many factors (such as starting values, algorithms and
models we mixed) can determine whether the maximum log-likelihood value will converge.
The em package provides several extensions of EM algorithms and different methods to gener-
ate starting values for fitting. In addition, we provide a completed-data log-likelihood function
for cases when a normal log-likelihood function is too flat. For estimating a completed-data
log-likelihood function, we built a c++ module for speeding up the maximizing procedure so
that a log-likelihood value is computed in c++ for each iteration. The c++ module massively
reduces the computational time for the maximization part of the EM algorithm. These algo-
rithms and methods are written independently in functions and objects so that more methods
can be developed and included conveniently if required.

Acknowledgments
The research leading to the results presented in this article has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement no. 851293). I am thankful to Dr. Kristian Bernt
Karlson for his professional guidance and valuable advice.

References

Benaglia T, Chauveau D, Hunter DR, Young DS (2010). “mixtools: an R package for ana-
lyzing mixture models.” Journal of statistical software, 32, 1–29.

Deb P (2007). “FMM: Stata module to estimate finite mixture models.” Statistical Software
Components, Boston College Department of Economics. URL https://ideas.repec.org/
c/boc/bocode/s456895.html.

Figueiredo M, Jain A (2002). “Unsupervised learning of finite mixture models.” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(3), 381–396. doi:10.1109/34.
990138.

https://ideas.repec.org/c/boc/bocode/s456895.html
https://ideas.repec.org/c/boc/bocode/s456895.html
https://doi.org/10.1109/34.990138
https://doi.org/10.1109/34.990138

Dongjie Wu 13

Leisch F (2004). “Flexmix: A general framework for finite mixture models and latent glass
regression in R.”

McLachlan GJ, Lee SX, Rathnayake SI (2019). “Finite mixture models.” Annual review of
statistics and its application, 6, 355–378.

Rabe-Hesketh S, Skrondal A, Pickles A (2004). “GLLAMM manual.”

Scrucca L, Fop M, Murphy TB, Raftery AE (2016). “mclust 5: clustering, classification and
density estimation using Gaussian finite mixture models.” The R journal, 8(1), 289.

Vermunt JK (2008). “Latent class and finite mixture models for multilevel data sets.” Statis-
tical methods in medical research, 17(1), 33–51.

Vermunt JK, Magidson J (2005). “Hierarchical mixture models for nested data structures.”
In Classification—The ubiquitous challenge, pp. 240–247. Springer.

Wedel M (2002). “Concomitant variables in finite mixture models.” Statistica Neerlandica,
56(3), 362–375.

Affiliation:
Dongjie Wu
Sociologisk Institut
Københavns Universitet
Øster Farimagsgade 5
1353 Copenhagen
E-mail: dongjie.wu@soc.ku.dk

mailto:dongjie.wu@soc.ku.dk

	Introduction
	Finite Mixture Models
	The Finite Mixture Models

	Fitting FMM using the EM Algorithm and its Extensions
	Using the Generic em Function
	Examples
	Mixture of Generalized Linear Models
	Mixture of Conditional Logistic Regression Models

	Summary

