Title: | Methods for Ecotoxicology |
---|---|
Description: | Implementation of the EPA's Ecological Exposure Research Division (EERD) tools (discontinued in 1999) for Probit and Trimmed Spearman-Karber Analysis. Probit and Spearman-Karber methods from Finney's book "Probit analysis a statistical treatment of the sigmoid response curve" with options for most accurate results or identical results to the book. Probit and all the tables from Finney's book (code-generated, not copied) with the generating functions included. Control correction: Abbott, Schneider-Orelli, Henderson-Tilton, Sun-Shepard. Toxicity scales: Horsfall-Barratt, Archer, Gauhl-Stover, Fullerton-Olsen, etc. |
Authors: | Jose Gama [aut, cre, trl] |
Maintainer: | Jose Gama <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0.1 |
Built: | 2024-11-19 06:46:16 UTC |
Source: | CRAN |
Returns the corrected efficacy % with Abbott's formula
AdjustAbbott(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
AdjustAbbott(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
smoothedObservedProportion |
numeric vector, treated population |
ps0 |
numeric vector, control |
p1 |
numeric vector, percentage 0 to1 or 0 to 100 (p1=1 or P1=100) |
the corrected efficacy %
Jose Gama
ehabsoft, last accessed 2015 http://www.ehabsoft.com/ldpline/onlinecontrol.htm
Puntener W., 1981 Manual for field trials in plant protection second edition. Agricultural Division, Ciba-Geigy Limited.
#same result as example on Short-term Methods for Estimating the Chronic Toxicity of #Effluents and Receiving Waters to Freshwater Organisms.TABLE J1. page 312 data(SheepsheadMinnow40SK) IsMonotonicallyIncreasing(SheepsheadMinnow40SK[,2]/40) mydata <- cbind(SheepsheadMinnow40SK, MakeMonotonicallyIncreasing(cbind(rep(40,6),SheepsheadMinnow40SK[,2]))) AdjustAbbott(mydata[,3])
#same result as example on Short-term Methods for Estimating the Chronic Toxicity of #Effluents and Receiving Waters to Freshwater Organisms.TABLE J1. page 312 data(SheepsheadMinnow40SK) IsMonotonicallyIncreasing(SheepsheadMinnow40SK[,2]/40) mydata <- cbind(SheepsheadMinnow40SK, MakeMonotonicallyIncreasing(cbind(rep(40,6),SheepsheadMinnow40SK[,2]))) AdjustAbbott(mydata[,3])
Returns the corrected efficacy % with Henderson-Tilton's formula
AdjustHendersonTilton(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
AdjustHendersonTilton(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
smoothedObservedProportion |
numeric vector, treated population |
ps0 |
numeric vector, control |
p1 |
numeric vector, percentage 0 to1 or 0 to 100 (p1=1 or P1=100) |
the corrected efficacy %
Jose Gama
ehabsoft, last accessed 2015 http://www.ehabsoft.com/ldpline/onlinecontrol.htm
Puntener W., 1981 Manual for field trials in plant protection second edition. Agricultural Division, Ciba-Geigy Limited.
Returns the corrected efficacy % with Schneider-Orelli's formula
AdjustSchneiderOrelli(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
AdjustSchneiderOrelli(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
smoothedObservedProportion |
numeric vector, treated population |
ps0 |
numeric vector, control |
p1 |
numeric vector, percentage 0 to1 or 0 to 100 (p1=1 or P1=100) |
the corrected efficacy %
Jose Gama
ehabsoft, last accessed 2015 http://www.ehabsoft.com/ldpline/onlinecontrol.htm
Puntener W., 1981 Manual for field trials in plant protection second edition. Agricultural Division, Ciba-Geigy Limited.
Returns the corrected efficacy % with Sun-Shepard's formula
AdjustSunShepard(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
AdjustSunShepard(smoothedObservedProportion, ps0 = smoothedObservedProportion[1], p1 = 1)
smoothedObservedProportion |
numeric vector, treated population |
ps0 |
numeric vector, control |
p1 |
numeric vector, percentage 0 to1 or 0 to 100 (p1=1 or P1=100) |
the corrected efficacy %
Jose Gama
ehabsoft, last accessed 2015 http://www.ehabsoft.com/ldpline/onlinecontrol.htm
Puntener W., 1981 Manual for field trials in plant protection second edition. Agricultural Division, Ciba-Geigy Limited.
data on the toxicity to Aphis rumicis of an ether extract of Derris malaccensis
AphisRumicisDerrisMalaccensis
AphisRumicisDerrisMalaccensis
concentration. concentration
n. number of insects
r. number of observed affected
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. pp 238. Cambridge University Press
Martin, J. T ., 1940 The problem of the evaluation of rotenone-containing plants. V. The relative toxicities of different species of derris. Ann. Appl. Biol. 27, 274-94.
Converts Arcsin values to percentages
ArcsinToPercentage(myarcsin)
ArcsinToPercentage(myarcsin)
myarcsin |
numeric vector |
percentages
Jose Gama
Statistical tests for significance, accessed October 2015 http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4.html
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.9999) b<-PercentageToProbit(a) d<-ProbitToPercentage(b) e<-PercentageToArcsin(d) f<-ArcsinToPercentage(e)
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.9999) b<-PercentageToProbit(a) d<-ProbitToPercentage(b) e<-PercentageToArcsin(d) f<-ArcsinToPercentage(e)
Returns the LC50 from a matrix with 3 columns: concentration, number of exposed subjects and number of deaths
CalculateLC50(matrixConcExpoResp)
CalculateLC50(matrixConcExpoResp)
matrixConcExpoResp |
numeric vector |
the LC50
Jose Gama
Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).
#Data from the example on page 5: #Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. #Trimmed spearman-karber method for estimating median #Lethal concentrations in toxicity bioassays. #Environ. Sci. Technol. 11(7): 714-719; #Correction 12(4):417 (1978). concentration<-c(.5,1,2,4,8) exposed<-c(10,10,10,10,10) mortality<-c(0,2,4,9,10) CalculateLC50(cbind(concentration, exposed, mortality))
#Data from the example on page 5: #Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. #Trimmed spearman-karber method for estimating median #Lethal concentrations in toxicity bioassays. #Environ. Sci. Technol. 11(7): 714-719; #Correction 12(4):417 (1978). concentration<-c(.5,1,2,4,8) exposed<-c(10,10,10,10,10) mortality<-c(0,2,4,9,10) CalculateLC50(cbind(concentration, exposed, mortality))
Returns the LC for n between 0 and 100
CalculateLCn(x, n, r, N = 50)
CalculateLCn(x, n, r, N = 50)
x |
numeric, log concentration |
n |
numeric, number of insects |
r |
numeric, number of observed affected |
N |
numeric, Lethal Concentration "N" |
the LC for n between 0 and 100
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Critical Values of Dunnett's t Statistic, Two-Tailed Comparisons
Dunnett.t.Statistic
Dunnett.t.Statistic
Critical Values of Dunnett's t Statistic - data columns
df. Degress of freedom.
alpha. significance level.
2. k=2, Number of Treatment Means, Including Control.
3. k=3, Number of Treatment Means, Including Control.
4. k=4, Number of Treatment Means, Including Control.
5. k=5, Number of Treatment Means, Including Control.
6. k=6, Number of Treatment Means, Including Control.
7. k=7, Number of Treatment Means, Including Control.
8. k=8, Number of Treatment Means, Including Control.
9. k=9, Number of Treatment Means, Including Control.
10. k=10, Number of Treatment Means, Including Control.
Jose Gama
C. W. Dunnett, 1964. New tables for multiple comparisons with a control. Biometrics 20. 482–491.
Returns the inverse error function
erfinv(x)
erfinv(x)
x |
numeric vector |
the inverse error function
Jose Gama
Abramowitz and Stegun 29.2.29 http://stat.ethz.ch/R-manual/R-devel/library/stats/html/Normal.html
erfinv(1:10)
erfinv(1:10)
Generates table I from Finney1964 "Transformation of percentages to probits"
GenTableIFinney1964()
GenTableIFinney1964()
table I from Finney1964 "Transformation of percentages to probits"
Percentage. Percentage.
Col0.0. Column for 0.0
Col0.1. Column for 0.1
Col0.2. Column for 0.2
Col0.3. Column for 0.3
Col0.4. Column for 0.4
Col0.5. Column for 0.5
Col0.6. Column for 0.6
Col0.7. Column for 0.7
Col0.8. Column for 0.8
Col0.9. Column for 0.9
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableIFinney1964()
GenTableIFinney1964()
Generates table II from Finney1964 "The weighting coefficient and Q/Z"
GenTableIIFinney1964()
GenTableIIFinney1964()
table II from Finney1964 "The weighting coefficient and Q/Z"
Y. expected probit
Q/Z.
C=0. 0
C=1. 1 ...
C=89. 89
C=90. 90
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableIIFinney1964()
GenTableIIFinney1964()
Generates table III from Finney1964 "Maximum and minimum working probits and range"
GenTableIIIFinney1964()
GenTableIIIFinney1964()
table III from Finney1964 "Maximum and minimum working probits and range"
Ymin. Minimum working probit - expected
Y0. Minimum working probit - Y0 = Y-P/Z
Yrange. Range 1/Z
Y100. Maximum working probit - Y100 = Y+Q/Z
Ymax. Maximum working probit - expected
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableIIIFinney1964()
GenTableIIIFinney1964()
Generates table IV from Finney1964 "Working probits"
GenTableIVFinney1964()
GenTableIVFinney1964()
table IV from Finney1964 "Working probits"
Kill
Col2 Expected probit 2.0
Col2.1 Expected probit 2.1 ...
Col7.8 Expected probit 7.8
Col7.9 Expected probit 7.9
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableIVFinney1964()
GenTableIVFinney1964()
Generates table IX from Finney1964 "Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling"
GenTableIXFinney1964()
GenTableIXFinney1964()
table IX from Finney1964 "Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling"
Y. Expected probit
MinWorkProbit. Minimum working probit
Range. Range 1/Z
WeightingCoef. Weighting Coefficient
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableIXFinney1964()
GenTableIXFinney1964()
Generates table V from Finney1964 "The Probability, P, the Ordinate, Z, and Z^2"
GenTableVFinney1964()
GenTableVFinney1964()
table V from Finney1964 "The Probability, P, the Ordinate, Z, and Z^2"
Y. Expected probit
P. Probability P of expected probit
Z. Ordinate to the normal distribution corresponding to the probability P
Z^2. Z^2
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableVFinney1964()
GenTableVFinney1964()
Generates table VI from Finney1964 "Distribution of chi^2"
GenTableVIFinney1964()
GenTableVIFinney1964()
table VI from Finney1964 "Distribution of chi^2"
Deg.freedom. Degrees of freedom
0.9. Probability 0.9
0.7. Probability 0.7
0.5. Probability 0.5
0.3. Probability 0.3
0.1. Probability 0.1
0.05. Probability 0.05
0.02. Probability 0.02
0.01. Probability 0.01
0.001. Probability 0.001
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableVIFinney1964()
GenTableVIFinney1964()
Generates table VII from Finney1964 "Distribution of t"
GenTableVIIFinney1964()
GenTableVIIFinney1964()
table VII from Finney1964 "Distribution of t"
Deg.freedom. Degrees of freedom
0.9. Probability 0.9
0.7. Probability 0.7
0.5. Probability 0.5
0.3. Probability 0.3
0.1. Probability 0.1
0.05. Probability 0.05
0.02. Probability 0.02
0.01. Probability 0.01
0.001. Probability 0.001
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableVIIFinney1964()
GenTableVIIFinney1964()
Generates table VIII from Finney1964 "The Weighting Coefficient in Wadley's Problem"
GenTableVIIIFinney1964()
GenTableVIIIFinney1964()
table VIII from Finney1964 "The Weighting Coefficient in Wadley's Problem"
Y. Expected probit
w. Weighting Coefficient
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
GenTableVIIIFinney1964()
GenTableVIIIFinney1964()
Returns TRUE if all proportions are in a monotonically decreasing sequence
IsMonotonicallyDecreasing(p)
IsMonotonicallyDecreasing(p)
p |
numeric vector |
True is the series is monotonically decreasing
Jose Gama
Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).
IsMonotonicallyDecreasing(1:10) IsMonotonicallyDecreasing(6:2) IsMonotonicallyDecreasing(c(1,3,2))
IsMonotonicallyDecreasing(1:10) IsMonotonicallyDecreasing(6:2) IsMonotonicallyDecreasing(c(1,3,2))
Returns TRUE if all proportions are in a monotonically increasing sequence
IsMonotonicallyIncreasing(p)
IsMonotonicallyIncreasing(p)
p |
numeric vector |
True is the series is monotonically increasing
Jose Gama
Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).
#Data from the example on page 8: #Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. #Trimmed spearman-karber method for estimating median #Lethal concentrations in toxicity bioassays. #Environ. Sci. Technol. 11(7): 714-719; #Correction 12(4):417 (1978). concentration<-c(1.1,2.3,4.5,8.8,17.1) exposed<-c(10,10,9,10,10) mortality<-c(1,5,4,2,7) p<-mortality/exposed x<-log(concentration) IsMonotonicallyIncreasing(p)
#Data from the example on page 8: #Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. #Trimmed spearman-karber method for estimating median #Lethal concentrations in toxicity bioassays. #Environ. Sci. Technol. 11(7): 714-719; #Correction 12(4):417 (1978). concentration<-c(1.1,2.3,4.5,8.8,17.1) exposed<-c(10,10,9,10,10) mortality<-c(1,5,4,2,7) p<-mortality/exposed x<-log(concentration) IsMonotonicallyIncreasing(p)
Returns a monotonically decreasing sequence
MakeMonotonicallyDecreasing(matrixExpoResp)
MakeMonotonicallyDecreasing(matrixExpoResp)
matrixExpoResp |
numeric vector or matrix |
monotonically decreasing sequence
Jose Gama
Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).
Returns the Smoothed Mortality Proportion (monotonically increasing sequence)
MakeMonotonicallyIncreasing(matrixExpoResp)
MakeMonotonicallyIncreasing(matrixExpoResp)
matrixExpoResp |
numeric vector or matrix |
The Smoothed Mortality Proportion (monotonically increasing sequence)
Jose Gama
Hamilton, m.a., R.c. Russo, and r.v. Thurston, 1977. Trimmed spearman-karber method for estimating median Lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11(7): 714-719; Correction 12(4):417 (1978).
Converts percentages to Arcsin values
PercentageToArcsin(mypercentage)
PercentageToArcsin(mypercentage)
mypercentage |
numeric vector |
Arcsin values
Jose Gama
Statistical tests for significance, accessed October 2015 http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4.html
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.9999) b<-PercentageToProbit(a) d<-ProbitToPercentage(b) e<-PercentageToArcsin(d)
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.9999) b<-PercentageToProbit(a) d<-ProbitToPercentage(b) e<-PercentageToArcsin(d)
Converts percentages to Probit values
PercentageToProbit(mypercentage)
PercentageToProbit(mypercentage)
mypercentage |
numeric vector |
Probit values
Jose Gama
Statistical tests for significance, accessed October 2015 http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4.html
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.9999) b<-PercentageToProbit(a)
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.9999) b<-PercentageToProbit(a)
Approximate Standard Error of dosage
ProbitApproxStandardErrorOfDosage(b, Snw)
ProbitApproxStandardErrorOfDosage(b, Snw)
b |
numeric, rate of increase of probit value per unit increase in x |
Snw |
numeric, sum of nw |
Approximate Standard Error of dosage
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Estimates the column for Chi calculation
ProbitChi(r, n, P)
ProbitChi(r, n, P)
r |
numeric vector, number of observed affected |
n |
numeric vector, number of insects |
P |
numeric vector, Probability P of expected probit |
numeric vector
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Probit estimation similar to the EPA's Ecological Exposure Research Division (EERD) tool
ProbitEPA(toxData, retData = FALSE, showOutput = TRUE)
ProbitEPA(toxData, retData = FALSE, showOutput = TRUE)
toxData |
numeric matrix, matrix with concentration, n ,r columns |
retData |
logic, return the results in a list |
showOutput |
logic, show results in the console |
Probit estimation regression
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Probit Fiducial Limits
ProbitFiducialLimits(Vm, m, tPercent = 5, roundFinney = FALSE)
ProbitFiducialLimits(Vm, m, tPercent = 5, roundFinney = FALSE)
Vm |
numeric, variance of the logarithm |
m |
numeric, logLD50 |
tPercent |
numeric, probability level |
roundFinney |
logic, round as in Finney's book |
Probit Fiducial Limits
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Probit estimation regression with Finney's method
ProbitFinney(toxData, tPercent = 5, showPlot = FALSE, roundFinney = FALSE)
ProbitFinney(toxData, tPercent = 5, showPlot = FALSE, roundFinney = FALSE)
toxData |
numeric matrix, matrix with concentration, n ,r columns |
tPercent |
numeric, probability level |
showPlot |
logic, show regression line - plot |
roundFinney |
logic, round as in Finney's book |
Probit estimation regression
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Probit regression line
ProbitRegression(x, n, r, adjAbbot = FALSE, roundFinney = FALSE)
ProbitRegression(x, n, r, adjAbbot = FALSE, roundFinney = FALSE)
x |
numeric, log concentration |
n |
numeric, number of insects |
r |
numeric, number of observed affected |
adjAbbot |
logic, use Abbot adjustment |
roundFinney |
logic, round as in Finney's book |
Probit regression line a+bx
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Standard Error of dosage
ProbitStandardErrorOfDosage(varianceDosage)
ProbitStandardErrorOfDosage(varianceDosage)
varianceDosage |
numeric, Variance of dosage |
Standard Error of dosage
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Standard Error of rate of increase of probit value per unit increase in x
ProbitStandardErrorRate(n, w, x, xbar)
ProbitStandardErrorRate(n, w, x, xbar)
n |
numeric, number of insects |
w |
numeric, weighting coefficients |
x |
numeric, log concentration |
xbar |
numeric, mean dosage |
Standard Error of rate of increase of probit value per unit increase in x
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Converts Probit values to percentages
ProbitToPercentage(myprobit)
ProbitToPercentage(myprobit)
myprobit |
numeric vector |
percentages
Jose Gama
Statistical tests for significance, accessed October 2015 http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4.html
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.9999) b<-PercentageToProbit(a) d<-ProbitToPercentage(b)
a<-c(.1,.5,1:10,50,96,97,98,99.5,99.99,99.999,99.9999) b<-PercentageToProbit(a) d<-ProbitToPercentage(b)
Probit value "g"
ProbitVALUEg(b, n, w, x, xbar, tPercent)
ProbitVALUEg(b, n, w, x, xbar, tPercent)
b |
numeric, rate of increase of probit value per unit increase in x |
n |
numeric, number of insects |
w |
numeric, weighting coefficients |
x |
numeric, log concentration |
xbar |
numeric, mean dosage |
tPercent |
numeric, probability level |
Probit value "g"
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Variance of dosage
ProbitVarianceDosage(b, m, n, w, x, xbar)
ProbitVarianceDosage(b, m, n, w, x, xbar)
b |
numeric, rate of increase of probit value per unit increase in x |
m |
numeric, dosage |
n |
numeric, number of insects |
w |
numeric, weighting coefficients |
x |
numeric, log concentration |
xbar |
numeric, mean dosage |
Variance of dosage
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Variance of rate of increase of probit value per unit increase in x
ProbitVarianceRate(n, w, x, xbar)
ProbitVarianceRate(n, w, x, xbar)
n |
numeric, number of insects |
w |
numeric, weighting coefficients |
x |
numeric, log concentration |
xbar |
numeric, mean dosage |
Variance of rate of increase of probit value per unit increase in x
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Returns the weighting coefficient from expected probit
Probitw(Y, C = 0)
Probitw(Y, C = 0)
Y |
numeric, expected probit |
C |
numeric, proportion of natural mortality |
the weighting coefficient
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Formula 6.3.
# Example from page 90 of Finney 1964: # expected probit Y = 6.2, control mortality C = 59% Y <- 6.2 C <- 0.59 # weighting coefficient = 0.141 Probitw(Y,C)
# Example from page 90 of Finney 1964: # expected probit Y = 6.2, control mortality C = 59% Y <- 6.2 C <- 0.59 # weighting coefficient = 0.141 Probitw(Y,C)
Returns the weighting coefficient
ProbitWeightingCoef(Z, Q, P, C)
ProbitWeightingCoef(Z, Q, P, C)
Z |
numeric, ordinate to the normal distribution corresponding to the probability P |
Q |
numeric, 1-P |
P |
numeric, Probability P of expected probit |
C |
numeric, proportion of natural mortality |
the weighting coefficient
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Formula 6.3.
# Example from page 90 of Finney 1964: # expected probit Y = 6.2, control mortality C = 59% Y <- 6.2 C <- 0.59 P <- pnorm(Y-5) Q <- 1-P Z <- ProbitZ(Y) # weighting coefficient = 0.141 ProbitWeightingCoef(Z,Q,P,C)
# Example from page 90 of Finney 1964: # expected probit Y = 6.2, control mortality C = 59% Y <- 6.2 C <- 0.59 P <- pnorm(Y-5) Q <- 1-P Z <- ProbitZ(Y) # weighting coefficient = 0.141 ProbitWeightingCoef(Z,Q,P,C)
Returns the working probit
ProbitWorkingP(Y, p)
ProbitWorkingP(Y, p)
Y |
numeric, expected probit |
p |
numeric, kill percentage |
the working probit
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
# Example from page 50 of Finney 1964: # kill p = 72.3%, expected probit Y = 6.2 Y <- 6.2 p <- 72.3/100 # working probit = 5.366 ProbitWorkingP(Y,p)
# Example from page 50 of Finney 1964: # kill p = 72.3%, expected probit Y = 6.2 Y <- 6.2 p <- 72.3/100 # working probit = 5.366 ProbitWorkingP(Y,p)
Returns the ordinate to the normal distribution corresponding to the probability P
ProbitZ(Y)
ProbitZ(Y)
Y |
numeric, expected probit |
the ordinate to the normal distribution corresponding to the probability P
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Formula 3.5.
# expected probit Y = 6.2 Y <- 6.2 ProbitZ(Y)
# expected probit Y = 6.2 Y <- 6.2 ProbitZ(Y)
Returns the ordinate to the normal distribution corresponding to the probability P with the exact same results as Finney's
ProbitZ4dec(Y)
ProbitZ4dec(Y)
Y |
numeric, expected probit |
the ordinate to the normal distribution corresponding to the probability P
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Formula 3.5.
# expected probit Y = 6.2 Y <- 6.2 ProbitZ4dec(Y)
# expected probit Y = 6.2 Y <- 6.2 ProbitZ4dec(Y)
Archer Scale for assessment of leaf damage
ScaleArcher(percentAffected)
ScaleArcher(percentAffected)
percentAffected |
numeric vector |
Archer Scale for assessment of leaf damage
Jose Gama
Archer, T.L., 1987 Techniques for screening maize for resistance to mites. pp.178-183. In: Mihn, J.A., Wiseman, B.R. and Davis, F.M. (Eds.). Proceedings of the International symposium on methodologies for developing host plant resistance to maize insects. CIMMYT, Mexico.
Gauhl’s modification of Stover’s severity scoring system
ScaleGauhlStover(percentShowingSymptoms)
ScaleGauhlStover(percentShowingSymptoms)
percentShowingSymptoms |
numeric, proportion of the leaf area showing symptoms |
Gauhl-Stover scale
Jose Gama
Gauhl F., 1994 Epidemiology and ecology of black Sigatoka (Mycosphaerella fijiensis Morlet) on plantain and banana (Musa spp.) in Costa Rica, Central America. INIBAP, Montpellier, France. 120pp).
Horsfall-Barratt Scale for Measuring Plant Disease
ScaleHorsfallBarratt(percentAffected)
ScaleHorsfallBarratt(percentAffected)
percentAffected |
numeric vector |
Horsfall-Barratt Scale for Measuring Plant Disease
Jose Gama
Horsfall, J. G.; Barratt, R. W., 1945 An Improved Grading System for Measuring Plant Disease. Phytopathology.
Mortality data from a fathead minnow larval survival and growth test (40 organisms per concentration)
SheepsheadMinnow40SK
SheepsheadMinnow40SK
Mortality data from a fathead minnow larval survival and growth test - data columns
Concentration. Concentration.
Mortality. Mortality
Jose Gama
USEPA, 2002 Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. 4th Edition,USEPA,Office of Water,October 2002,EPA 821-R-02-013 TABLE J1. pp 312
Spearman Karber estimation
SpearmanKarber(toxData, N, retData = FALSE, showOutput = TRUE, showPlot = TRUE)
SpearmanKarber(toxData, N, retData = FALSE, showOutput = TRUE, showPlot = TRUE)
toxData |
numeric matrix, matrix with concentration, n ,r columns |
N |
numeric, number of organisms |
retData |
logic, return the results in a list |
showOutput |
logic, show results in the console |
showPlot |
logic, show regression line - plot |
Spearman Karber estimation
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Transformation of Percentages to Probits, table I of Finney, 1964
Table1Finney1964
Table1Finney1964
Transformation of Percentages to Probits - data columns
Percentage. Percentage.
Col0.0. Column for 0.0
Col0.1. Column for 0.1
Col0.2. Column for 0.2
Col0.3. Column for 0.3
Col0.4. Column for 0.4
Col0.5. Column for 0.5
Col0.6. Column for 0.6
Col0.7. Column for 0.7
Col0.8. Column for 0.8
Col0.9. Column for 0.9
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
The Weighting Coefficient and Q/Z, table II of Finney, 1964
Table2Finney1964
Table2Finney1964
The Weighting Coefficient and Q/Z - data columns
Y. expected probit
Q/Z.
C=0. 0
C=1. 1 ...
C=89. 89
C=90. 90
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Maximum and Minimum working probits and Range, table III of Finney, 1964
Table3Finney1964
Table3Finney1964
Maximum and Minimum working probits and Range - data columns
Ymin. Minimum working probit - expected
Y0. Minimum working probit - Y0 = Y-P/Z
Yrange. Range 1/Z
Y100. Maximum working probit - Y100 = Y+Q/Z
Ymax. Maximum working probit - expected
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Working probits, table IV of Finney, 1964
Table4Finney1964
Table4Finney1964
Working probits - data columns
Kill
Col2 Expected probit 2.0
Col2.1 Expected probit 2.1 ...
Col7.8 Expected probit 7.8
Col7.9 Expected probit 7.9
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Probability, P, the Ordinate, Z, and Z^2, table V of Finney, 1964
Table5Finney1964
Table5Finney1964
The Probability, P, the Ordinate, Z, and Z^2 - data columns
Y. Expected probit
P. Probability P of expected probit
Z. Ordinate to the normal distribution corresponding to the probability P
Z^2. Z^2
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
The Weighting Coefficient in Wadley's Problem, table VIII of Finney, 1964
Table8Finney1964
Table8Finney1964
The Weighting Coefficient in Wadley's Problem - data columns
Y. Expected probit
w. Weighting Coefficient
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling, table IX of Finney, 1964
Table9Finney1964
Table9Finney1964
Minimum Working Probit, Range, and Weighting Coefficient for Inverse Sampling - data columns
Y. Expected probit
MinWorkProbit. Minimum working probit
Range. Range 1/Z
WeightingCoef. Weighting Coefficient
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
Generates table 26 from Finney1964 "The Function for Planning Tests of Mixtures of Two Poisons"
TestMix2poisons()
TestMix2poisons()
table 26 from Finney1964 "The Function for Planning Tests of Mixtures of Two Poisons"
rho. toxicity
0.1. distance 0.1 log rho in the left of the probit regression line ...
0.9. distance 0.9 log rho in the left of the probit regression line
Jose Gama
Finney D. J., 1964 Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press
TestMix2poisons()
TestMix2poisons()
Returns the Trimmed Spearman-Karber (TSK) method, as per Hamilton and EPA
TSK(x, r, n, A = 0, conf = 0.95)
TSK(x, r, n, A = 0, conf = 0.95)
x |
numeric vector |
r |
numeric vector |
n |
numeric vector |
A |
numeric vector |
conf |
numeric vector |
mu=mu,gsd=gsd,left=left,right=right
Jose Gama
Hamilton,M.A.,Russo,R.L.,Thurston,R.V.,1977. Trimmed Spearman–Karber method for estimating median lethal concentrations. Environ. Sci. Tech. 11,714–719.
x<-c(15.54,20.47,27.92,35.98,55.52) n1<-c(20,20,20,19,20) r<-c(0,0,0,5.26,100)/100*n1 n<-c(20,20,20,19,20) TSK(x,r,n)
x<-c(15.54,20.47,27.92,35.98,55.52) n1<-c(20,20,20,19,20) r<-c(0,0,0,5.26,100)/100*n1 n<-c(20,20,20,19,20) TSK(x,r,n)
WAAPP Pest Count scoring system
WAAPPpestCount(percentLeafDamage)
WAAPPpestCount(percentLeafDamage)
percentLeafDamage |
numeric, percentage of leaf damage |
WAAPP Pest Count Score
Jose Gama
Environmental Protection Agency Chemicals Control And Managemenet Centre (ACCRA), 2012 Protocols for the biological evaluation of pesticides on Selected crops grown in both the humid and sahel regions of West africa. West Africa Agriculture Productivity Programme (WAAPP).