Title: | Analyzing Ecological Networks |
---|---|
Description: | A collection of advanced tools, methods and models specifically designed for analyzing different types of ecological networks - especially antagonistic (food webs, host-parasite), mutualistic (plant-pollinator, plant-fungus, etc) and competitive networks, as well as their variability in time and space. Statistical models are developed to describe and understand the mechanisms that determine species interactions, and to decipher the organization of these ecological networks (Ohlmann et al. (2019) <doi:10.1111/ele.13221>, Gonzalez et al. (2020) <doi:10.1101/2020.04.02.021691>, Miele et al. (2021) <doi:10.48550/arXiv.2103.10433>, Botella et al (2021) <doi:10.1111/2041-210X.13738>). |
Authors: | Vincent Miele [aut, cre], Catherine Matias [ctb], Stephane Dray [ctb], Christophe Botella [ctb], Marc Ohlmann [ctb], Giovanni Poggiato [ctb], Wilfried Thuiller [ctb] |
Maintainer: | Vincent Miele <[email protected]> |
License: | GPL-3 |
Version: | 0.7.0 |
Built: | 2024-12-27 06:40:17 UTC |
Source: | CRAN |
A collection of advanced tools, methods and models specifically designed for analyzing different types of ecological networks.
econetwork is designed for analyzing different types of ecological networks - especially antagonistic (food webs, host-parasite), mutualistic (plant-pollinator, plant-fungus, etc.) and competitive networks, as well as their variability in time and space. Statistical models are developed to describe and understand the mechanisms that determine species interactions, and to decipher the organization of these (multi-layer) ecological networks.
Authors: Stephane Dray, Catherine Matias, Vincent Miele, Marc Ohlmann, Wilfried Thuiller Maintainer: Vincent Miele <[email protected]>
Marc Ohlmann, Vincent Miele, Stephane Dray, Loic Chalmandrier, Louise O'Connor & Wilfried Thuiller, Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecology Letters (2019) <doi:10.1111/ele.13221> Ana M. Martin Gonzalez, Diego P. Vazquez, Rodrigo Ramos-Jiliberto, Sang Hoon Lee & Vincent Miele, Core-periphery structure in mutualistic networks: an epitaph for nestedness? BiorXiv (2020) <doi:10.1101/2020.04.02.021691>
Computation of the cpness measure for a bipartite graph/network
cpness(web, type=c("automatic","binary","integer","float"), plot=TRUE, fastplot=FALSE)
cpness(web, type=c("automatic","binary","integer","float"), plot=TRUE, fastplot=FALSE)
web |
A |
type |
Type of matrix. This should be (an unambiguous
abbreviation of) one of |
plot |
Plot the matrix reordered according to the core-periphery
partitioning. |
fastplot |
If |
In a matrix displaying a core-periphery structure, there is a species ordering (i.e. an ordering in rows and columns) such that interactions are distributed in an L-shape. This L-shape is composed by four blocks of varying connectance: block C11 represents the core; blocks C12 and C21 include the interactions between core and periphery; block C22 includes the interactions that occur between peripheral species.
This fonction computes the core-peripheriness (CPness), as
CPness=(E11+E12+E21)/E, where Eij is the number of interactions
(edges) or the sum of weights for each block (Eij for block ij) or
for the entire network (E). Here, we rely on a stochastic block model
(SBM) to detect the four groups/blocks C11, C12, C21 and C22 when they
actually exist. However, the SBM can fail in finding these blocks: in
these cases, there is no core-periphery partition and the CPness value is set to NA
.
This function can deal with binary and weighted networks with the appropriate statistical distribution (Bernouilli for binary
data, Poisson for integer
weights, and Gaussian for float
weights). Note that it is often advisable to log-transform float data before running the cpness
function.
cpness
returns an object of class list
with the following components:
cpness |
The value of the core-peripheriness measure. |
rowmembership |
An integer |
colmembership |
Same as |
Authors: Vincent Miele Maintainer: Vincent Miele <[email protected]>
Ana M. Martin Gonzalez, Diego P. Vazquez, Rodrigo Ramos-Jiliberto, Sang Hoon Lee & Vincent Miele, Core-periphery structure in mutualistic networks: an epitaph for nestedness? BiorXiv (2020) <doi:10.1101/2020.04.02.021691>
library(bipartite) data(mosquin1967) result <- cpness(mosquin1967, type="automatic", plot=TRUE) print(result) data(junker2013) result <- cpness(junker2013, type="automatic", plot=TRUE, fastplot=TRUE) print(result$cpness) print(table(result$rowmembership)) print(table(result$colmembership))
library(bipartite) data(mosquin1967) result <- cpness(mosquin1967, type="automatic", plot=TRUE) print(result) data(junker2013) result <- cpness(junker2013, type="automatic", plot=TRUE, fastplot=TRUE) print(result$cpness) print(table(result$rowmembership)) print(table(result$colmembership))
Computation of the dissimilarity matrix for a set of networks. Each value of the matrix is the pairwise beta-diversity, computed using Hill numbers. It measures the dissimilarity in terms of groups, links, or probability of links.
disPairwise(gList, groups=NULL, eta=1, type=c('P','L','Pi'), abTable=NULL)
disPairwise(gList, groups=NULL, eta=1, type=c('P','L','Pi'), abTable=NULL)
gList |
A |
groups |
A named vector of class |
eta |
A positive number that controls the weight given to abundant groups/links. Default value is 1. |
type |
The type of diversity used to measure dissimilarity. It can be groups diversity ('P'), links diversity ('L') or probability of links diversity ('Pi'). |
abTable |
A matrix of size the number of nodes of the metanetwork times the number of networks. The rownames of this matrix must be the node names of metanetwork and the columns must
be in an order corresponding to gList. The element (i,j) of this matrix is the abundance of species i in network j. Importantly, the non-nul elements in each column of |
Return a dist
object whose elements are the pairwise dissimilarities.
Authors: Stephane Dray, Vincent Miele, Marc Ohlmann, Wilfried Thuiller Maintainer: Wilfried Thuiller <[email protected]>
Marc Ohlmann, Vincent Miele, Stephane Dray, Loic Chalmandrier, Louise O'Connor & Wilfried Thuiller, Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecology Letters (2019) <doi:10.1111/ele.13221>
# Generating a set of Erdos-Renyi graphs and give node names. library(econetwork) library(igraph) nbGraph <- 3 gList <- c() n <- 57 # number of nodes of each graph C <- 0.1 # connectance of each graph for(i in 1:nbGraph){ graphLocal <- erdos.renyi.game(n, type='gnp', p.or.m=C, directed=TRUE) V(graphLocal)$name <- as.character(1:57) gList = c(gList,list(graphLocal)) } # vector that gives the group of each node groups <- c(rep("a",23),rep("b",34)) names(groups) <- as.character(1:57) #generating random (non-nul) abundances data abTable <- sapply(1:nbGraph,function(x) rpois(n,1)+1) rownames(abTable) = unlist(unique(lapply(gList,function(g) V(g)$name))) # Dissimilarity matrices based on links beta-diversity # at a node level disPairwise(gList, type = 'L') # at a node level while taking into account node abundances disPairwise(gList, type = 'L', abTable = abTable) # at a group level disPairwise(gList, groups, type = 'L') # at a group level while taking into account node abundances disPairwise(gList, groups, type = 'L', abTable = abTable)
# Generating a set of Erdos-Renyi graphs and give node names. library(econetwork) library(igraph) nbGraph <- 3 gList <- c() n <- 57 # number of nodes of each graph C <- 0.1 # connectance of each graph for(i in 1:nbGraph){ graphLocal <- erdos.renyi.game(n, type='gnp', p.or.m=C, directed=TRUE) V(graphLocal)$name <- as.character(1:57) gList = c(gList,list(graphLocal)) } # vector that gives the group of each node groups <- c(rep("a",23),rep("b",34)) names(groups) <- as.character(1:57) #generating random (non-nul) abundances data abTable <- sapply(1:nbGraph,function(x) rpois(n,1)+1) rownames(abTable) = unlist(unique(lapply(gList,function(g) V(g)$name))) # Dissimilarity matrices based on links beta-diversity # at a node level disPairwise(gList, type = 'L') # at a node level while taking into account node abundances disPairwise(gList, type = 'L', abTable = abTable) # at a group level disPairwise(gList, groups, type = 'L') # at a group level while taking into account node abundances disPairwise(gList, groups, type = 'L', abTable = abTable)
This function computes alpha, beta and gamma diversity of a list of networks. It measures either group, links, or probability of links diversity.
divPartition(gList, groups, eta=1, framework=c('RLC','Chao'), type=c('P','L','Pi'), abTable=NULL)
divPartition(gList, groups, eta=1, framework=c('RLC','Chao'), type=c('P','L','Pi'), abTable=NULL)
gList |
A |
groups |
A named vector of class |
eta |
A positive number that controls the weight given to abundant groups/links. Default value is 1. |
framework |
The framework used to partitionate diversity, either Reeve Leinster Cobbold ('RLC') or Chao ('Chao') |
type |
The type of diversity to measure and partitionate. It can be groups diversity ('P'), link diversity ('L') or probability of link diversity ('Pi'). |
abTable |
A matrix of size the number of nodes of the metanetwork times the number of networks. The rownames of this matrix must be the node names of metanetwork and the columns must
be in an order corresponding to gList. The element (i,j) of this matrix is the abundance of species i in network j. Importantly, the non-nul elements in each column of |
Returns a list
the following components:
mAlpha |
The mean value of alpha-diversity accross all networks. |
Alphas |
A vector of |
Beta |
The value of the overall beta-diversity |
Gamma |
The value of the gamma-diversity |
Authors: Stephane Dray, Vincent Miele, Marc Ohlmann, Wilfried Thuiller Maintainer: Wilfried Thuiller <[email protected]>
Marc Ohlmann, Vincent Miele, Stephane Dray, Loic Chalmandrier, Louise O'Connor & Wilfried Thuiller, Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecology Letters (2019) <doi:10.1111/ele.13221>
# Generating a set of Erdos-Renyi graphs and give node names. library(econetwork) library(igraph) nbGraph <- 3 gList <- c() n <- 57 # number of nodes of each graph C <- 0.1 # connectance of each graph for(i in 1:nbGraph){ graphLocal <- erdos.renyi.game(n, type='gnp', p.or.m=C, directed=TRUE) V(graphLocal)$name <- as.character(1:57) gList = c(gList,list(graphLocal)) } # vector that gives the group of each node groups <- c(rep("a",23),rep("b",34)) names(groups) <- as.character(1:57) # generating random (non-nul) abundances data abTable <- sapply(1:nbGraph,function(x) rpois(n,1)+1) rownames(abTable) = unlist(unique(lapply(gList,function(g) V(g)$name))) # Diversities in link abundances # at a node level divPartition(gList, framework='Chao', type = 'L') # at a node level while taking into account node abundances divPartition(gList, framework='Chao', type = 'L', abTable = abTable) # at a group level divPartition(gList, framework='Chao', groups, type = 'L') # at a group level while taking into account node abundances divPartition(gList, framework='Chao', groups, type = 'L', abTable = abTable)
# Generating a set of Erdos-Renyi graphs and give node names. library(econetwork) library(igraph) nbGraph <- 3 gList <- c() n <- 57 # number of nodes of each graph C <- 0.1 # connectance of each graph for(i in 1:nbGraph){ graphLocal <- erdos.renyi.game(n, type='gnp', p.or.m=C, directed=TRUE) V(graphLocal)$name <- as.character(1:57) gList = c(gList,list(graphLocal)) } # vector that gives the group of each node groups <- c(rep("a",23),rep("b",34)) names(groups) <- as.character(1:57) # generating random (non-nul) abundances data abTable <- sapply(1:nbGraph,function(x) rpois(n,1)+1) rownames(abTable) = unlist(unique(lapply(gList,function(g) V(g)$name))) # Diversities in link abundances # at a node level divPartition(gList, framework='Chao', type = 'L') # at a node level while taking into account node abundances divPartition(gList, framework='Chao', type = 'L', abTable = abTable) # at a group level divPartition(gList, framework='Chao', groups, type = 'L') # at a group level while taking into account node abundances divPartition(gList, framework='Chao', groups, type = 'L', abTable = abTable)
ELGRIN jointly models the presence and absence of all species in a given area in function of environmental covariates and the topological structure of the known metaweb
elgrin(presence, metaweb, environmentvar, ncores=1)
elgrin(presence, metaweb, environmentvar, ncores=1)
presence |
A |
metaweb |
A |
environmentvar |
A |
ncores |
The number of cores to use, i.e. at most how many threads will run simultaneously. Default is 1 (no parallelization). |
ELGRIN (in reference to Charles Elton and Joseph Grinnell) can handle the effects of both environmental factors and known ecological interactions (aka a metanetwork) on species distributions. We rely on Markov random fields, a family of flexible models that can handle dependencies between variables using a graph.
elgrin
returns an object of class list
with the following components:
a |
A |
al |
A |
b |
A |
c |
A |
betaPres |
A |
betaAbs |
A |
compat |
A |
Authors: Vincent Miele Maintainer: Vincent Miele <[email protected]>
Vincent Miele, Catherine Matias, Marc Ohlmann, Giovanni Poggiato, St ephane Dray and Wilfried Thuiller, Quantifying the overall effect of biotic1interactions on species communities along2environmental gradients, arXiv <doi:10.48550/arXiv.2103.10433>
data(virtualComCompetition) vcom <- virtualComCompetition result <- elgrin(vcom$presence, vcom$metaweb, vcom$environmentvar) str(result) plot(result$betaPres, result$betaAbs, xlab="Co-presence", ylab="Co-absence") abline(h=0, col=2) abline(v=0, col=2)
data(virtualComCompetition) vcom <- virtualComCompetition result <- elgrin(vcom$presence, vcom$metaweb, vcom$environmentvar) str(result) plot(result$betaPres, result$betaAbs, xlab="Co-presence", ylab="Co-absence") abline(h=0, col=2) abline(v=0, col=2)
Computation of different embeddings from a list of directed graphs
embedding(gList, method="metric2vec", groups=NULL)
embedding(gList, method="metric2vec", groups=NULL)
gList |
A |
method |
Embedding method. This should be (an unambiguous
abbreviation of) one of |
groups |
A named vector of class |
This function computes a graph embedding from a list of graph.
Comparing the architecture of interaction networks in space or time is essential for understanding the assembly, trajectory, functioning and persistence of species communities. Graph embedding methods, which position networks into a vector space where nearby networks have similar architectures, could be ideal tools for this purposes.
Here, the proposed embedding methods are:
-"metric2vec"
: each column is a network
metric. connectance
: network connectance,
modularity
: network modularity (undirected graph),
rangeTL
: trophic level range, (trophic level is computed as in Williams & Martinez, 2004),
meanTL
: mean trophic level,
SWTL
: shortest weighted trophic level,
meanOmni
: mean level of omnivory (standard deviation of the
trophic levels of the prey),
propOmni
: proportion of omnivorous species,
propCanib
: proportion of cannibal species,
meanNbPrey
: mean number of prey,
sdNbPrey
: standard deviation of the number of prey,
skewNbPrey
: skewness of the number of prey,
meanNbPred
: mean number of predators,
sdNbPred
: standard deviation of the number of predators,
skewNbPred
: skewness of the number of predators,
propBasal
: proportion of basal species (which have no prey),
propTop
: proportion of top species (which have no predator),
propInter
: proportion of intermediate species (which have prey and predator),
sdVulnerability
: standard deviation of the vulnerability (i.e. in-degree),
sdGeneralism
: standard deviation of the generalism (i.e. out-degree),
transitivity
: network transitivity,
diameter
: network diameter,
meanSP
: mean shortest path,
assortativity
: network assortativity.
-"motif2vec"
: Graph motifs are small connected subgraphs with a well-defined
structure. Each column is the proportion of each of the 13
connected motifs as enumerated by the 'motifs' function.
-"group2vec"
: Groups proportion, where the groups are defined
previously (e.g. taxonmic groups).
-"shortestpath2vec"
: Computing the proportion of shortest path
lengths. Can use the groups as well, path length proportion is decomposed
per source and target group in this case.
embedding
returns an object of class matrix
where rows
corresponds to the differents graphs and columns to the different
dimensions in the embedding space.
Authors: Christophe Botella, Stephane Dray, Catherine Matias, Vincent Miele, Wilfried Thuiller
Maintainer: Vincent Miele <[email protected]>
Christophe Botella, Stephane Dray, Catherine Matias, Vincent Miele & Wilfried Thuiller, An appraisal of graph embeddings for comparing trophic network architectures. Methods in Ecology and evolution (2021) <doi:10.1111/2041-210X.13738>
Williams, Richard J., and Neo D. Martinez. "Limits to trophic levels and omnivory in complex food webs: theory and data." The American Naturalist 163.3 (2004)
library(igraph) # Generating a set of graphs with 3 groups groups = rep(-1,60) groups[1:20] = 1 groups[21:40] = 2 groups[41:60] = 3 names(groups) = as.character(1:60) # A first set with a few links between groups 1 and 3 gList = c() for(i in 1:5){ pm <- rbind( c(0, .5, 0.05), c(0, 0, 0.5), c(0,0,0) ) graphLoc <- sample_sbm(60, pref.matrix=pm, block.sizes=c(20,20,20), directed=TRUE) V(graphLoc)$name = as.character(1:60) gList = c(gList,list(graphLoc)) } # A second set with many links between groups 1 and 3 for(i in (6:10)){ pm <- rbind( c(0, .5, .5), c(0, 0, 0.5), c(0,0,0) ) graphLoc <- sample_sbm(60, pref.matrix=pm, block.sizes=c(20,20,20), directed=TRUE) V(graphLoc)$name = as.character(1:60) gList = c(gList,list(graphLoc)) } names(gList) = LETTERS[1:10] # Computing different embeddings and usermfrow <- par()$mfrow par(mfrow=c(2,2)) embd <- embedding(gList, method="metric2vec") pca <- prcomp(embd, rank=2)$x plot(pca, main="metric2vec") text(x=pca[,1], y=pca[,2], labels=rownames(embd), pos=2, col=c(rep("blue",5),rep("red",5))) embd <- embedding(gList, method="motif2vec") pca <- prcomp(embd, rank=2)$x plot(pca, main="motif2vec") text(x=pca[,1], y=pca[,2], labels=rownames(embd), pos=2, col=c(rep("blue",5),rep("red",5))) embd <- embedding(gList, method="shortestpath2vec") pca <- prcomp(embd, rank=2)$x plot(pca, main="shortestpath2vec") text(x=pca[,1], y=pca[,2], labels=rownames(embd), pos=2, col=c(rep("blue",5),rep("red",5))) embd <- embedding(gList, method="shortestpath2vec", groups) pca <- prcomp(embd, rank=2)$x plot(pca, main="shortestpath2vec_group") text(x=pca[,1], y=pca[,2], labels=rownames(embd), pos=2, col=c(rep("blue",5),rep("red",5))) par(mfrow=usermfrow)
library(igraph) # Generating a set of graphs with 3 groups groups = rep(-1,60) groups[1:20] = 1 groups[21:40] = 2 groups[41:60] = 3 names(groups) = as.character(1:60) # A first set with a few links between groups 1 and 3 gList = c() for(i in 1:5){ pm <- rbind( c(0, .5, 0.05), c(0, 0, 0.5), c(0,0,0) ) graphLoc <- sample_sbm(60, pref.matrix=pm, block.sizes=c(20,20,20), directed=TRUE) V(graphLoc)$name = as.character(1:60) gList = c(gList,list(graphLoc)) } # A second set with many links between groups 1 and 3 for(i in (6:10)){ pm <- rbind( c(0, .5, .5), c(0, 0, 0.5), c(0,0,0) ) graphLoc <- sample_sbm(60, pref.matrix=pm, block.sizes=c(20,20,20), directed=TRUE) V(graphLoc)$name = as.character(1:60) gList = c(gList,list(graphLoc)) } names(gList) = LETTERS[1:10] # Computing different embeddings and usermfrow <- par()$mfrow par(mfrow=c(2,2)) embd <- embedding(gList, method="metric2vec") pca <- prcomp(embd, rank=2)$x plot(pca, main="metric2vec") text(x=pca[,1], y=pca[,2], labels=rownames(embd), pos=2, col=c(rep("blue",5),rep("red",5))) embd <- embedding(gList, method="motif2vec") pca <- prcomp(embd, rank=2)$x plot(pca, main="motif2vec") text(x=pca[,1], y=pca[,2], labels=rownames(embd), pos=2, col=c(rep("blue",5),rep("red",5))) embd <- embedding(gList, method="shortestpath2vec") pca <- prcomp(embd, rank=2)$x plot(pca, main="shortestpath2vec") text(x=pca[,1], y=pca[,2], labels=rownames(embd), pos=2, col=c(rep("blue",5),rep("red",5))) embd <- embedding(gList, method="shortestpath2vec", groups) pca <- prcomp(embd, rank=2)$x plot(pca, main="shortestpath2vec_group") text(x=pca[,1], y=pca[,2], labels=rownames(embd), pos=2, col=c(rep("blue",5),rep("red",5))) par(mfrow=usermfrow)
Computation of the binary metaweb from a list of graph
getMetaweb(gList)
getMetaweb(gList)
gList |
A |
This function computes the metaweb from a list of graph. It computes the union (in the sense of graph theory) of the set of graphs.
getMetaweb
returns an object of class igraph
.
Authors: Stephane Dray, Vincent Miele, Marc Ohlmann, Wilfried Thuiller Maintainer: Wilfried Thuiller <[email protected]>
Marc Ohlmann, Vincent Miele, Stephane Dray, Loic Chalmandrier, Louise O'Connor & Wilfried Thuiller, Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecology Letters (2019) <doi:10.1111/ele.13221>
# Generating a set of Erdos-Renyi graphs library(igraph) gList <- c() for(i in 1:4){ graphLocal <- erdos.renyi.game(60, type = 'gnp', p.or.m=0.1, directed=TRUE) V(graphLocal)$name <- as.character(1:60) gList <- c(gList, list(graphLocal)) } names(gList) <- c("A","B","C","D") ## building the metaweb graphMetaweb <- getMetaweb(gList)
# Generating a set of Erdos-Renyi graphs library(igraph) gList <- c() for(i in 1:4){ graphLocal <- erdos.renyi.game(60, type = 'gnp', p.or.m=0.1, directed=TRUE) V(graphLocal)$name <- as.character(1:60) gList <- c(gList, list(graphLocal)) } names(gList) <- c("A","B","C","D") ## building the metaweb graphMetaweb <- getMetaweb(gList)
50 species in interaction in a metaweb, with presence/absence data for 400 locations and a single enviromental variable.
data(virtualComCompetition)
data(virtualComCompetition)
A list containing three objects presence, metaweb and environmentvar.