Package 'echoice2'

Title: Choice Models with Economic Foundation
Description: Implements choice models based on economic theory, including estimation using Markov chain Monte Carlo (MCMC), prediction, and more. Its usability is inspired by ideas from 'tidyverse'. Models include versions of the Hierarchical Multinomial Logit and Multiple Discrete-Continous (Volumetric) models with and without screening. The foundations of these models are described in Allenby, Hardt and Rossi (2019) <doi:10.1016/bs.hem.2019.04.002>. Models with conjunctive screening are described in Kim, Hardt, Kim and Allenby (2022) <doi:10.1016/j.ijresmar.2022.04.001>. Models with set-size variation are described in Hardt and Kurz (2020) <doi:10.2139/ssrn.3418383>.
Authors: Nino Hardt [aut, cre]
Maintainer: Nino Hardt <[email protected]>
License: MIT + file LICENSE
Version: 0.2.4
Built: 2024-11-15 06:50:57 UTC
Source: CRAN

Help Index


Get the attribute of an object

Description

Get the attribute of an object

Usage

obj %.% attrname

Arguments

obj

The object to get the attribute from.

attrname

The name of the attribute to get.

Value

The attribute of the object.

Examples

obj <- list(a = 1, b = 2)
attributes(obj)$test="hello"
`%.%`(obj, "test")

Discrete Choice Predictions (HMNL)

Description

Discrete Choice Predictions (HMNL)

Usage

dd_dem(dd, est, prob = FALSE, cores = NULL)

Arguments

dd

tibble with long-format choice data

est

estimation object

prob

logical, report probabilities instead of demand

cores

cores

Value

Draws of expected choice

See Also

dd_est_hmnl() to generate demand predictions based on this model

Examples

data(icecream_discrete)
icecream_est <- icecream_discrete %>% filter(id<10) %>% dd_est_hmnl(R=4, cores=2)
#demand prediction
icecream_dempred <- icecream_discrete %>% filter(id<10) %>% 
  dd_dem(icecream_est, cores=2)

Discrete Choice Predictions (HMNL with attribute-based screening)

Description

Discrete Choice Predictions (HMNL with attribute-based screening)

Usage

dd_dem_sr(dd, est, prob = FALSE, cores = NULL)

Arguments

dd

data

est

est

prob

logical, report probabilities instead of demand

cores

cores

Value

Draws of expected choice

See Also

dd_est_hmnl_screen() to generate demand predictions based on this model

Examples

data(icecream_discrete)
icecream_est <- icecream_discrete %>% filter(id<20) %>% dd_est_hmnl_screen(R=10, cores=2)
#demand prediction
icecream_dempred <- icecream_discrete %>% filter(id<20) %>% 
 dd_dem_sr(icecream_est, cores=2)

Estimate discrete choice model (HMNL)

Description

Estimate discrete choice model (HMNL)

Usage

dd_est_hmnl(
  dd,
  R = 1e+05,
  keep = 10,
  cores = NULL,
  control = list(include_data = TRUE)
)

Arguments

dd

discrete choice data (long format)

R

draws

keep

thinning

cores

no of CPU cores to use (default: auto-detect)

control

list containing additional settings

Value

est ec-draw object (List)

See Also

dd_dem() to generate demand predictions based on this model

Examples

data(icecream_discrete)
icecream_est <- icecream_discrete %>% dd_est_hmnl(R=20, cores=2)

Estimate discrete choice model (HMNL, attribute-based screening (not including price))

Description

Estimate discrete choice model (HMNL, attribute-based screening (not including price))

Usage

dd_est_hmnl_screen(
  dd,
  price_screen = TRUE,
  R = 1e+05,
  keep = 10,
  cores = NULL,
  control = list(include_data = TRUE)
)

Arguments

dd

discrete choice data (long format)

price_screen

A logical, indicating whether price tag screening should be estimated

R

draws

keep

thinning

cores

no of CPU cores to use (default: auto-detect)

control

list containing additional settings

Value

est ec-draw object (List)

See Also

dd_dem_sr() to generate demand predictions based on this model

Examples

data(icecream_discrete)
icecream_est <- icecream_discrete %>% dplyr::filter(id<20) %>% 
  dd_est_hmnl_screen(R=20, cores=2)

Log-Likelihood for compensatory hmnl model

Description

Log-Likelihood for compensatory hmnl model

Usage

dd_LL(draw, dd, fromdraw = 1)

Arguments

draw

A list, 'echoice2' draws object

dd

A tibble, tidy choice data (before dummy-coding)

fromdraw

An integer, from which draw onwards to compute LL (i.e., excl. burnin)

Value

N x Draws Matrix of log-Likelihood values

Examples

data(icecream_discrete)
#fit model
icecream_est <- icecream_discrete %>% dd_est_hmnl(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-dd_LL(icecream_est, icecream_discrete, fromdraw = 2)

Log-Likelihood for screening hmnl model

Description

Log-Likelihood for screening hmnl model

Usage

dd_LL_sr(draw, dd, fromdraw = 1)

Arguments

draw

A list, 'echoice2' draws object

dd

A tibble, tidy choice data (before dummy-coding)

fromdraw

An integer, from which draw onwards to compute LL (i.e., excl. burnin)

Value

N x Draws Matrix of log-Likelihood values

Examples

data(icecream_discrete)
#fit model
icecream_est <- icecream_discrete %>% dd_est_hmnl_screen(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-dd_LL_sr(icecream_est, icecream_discrete, fromdraw = 2)

Create dummy variables within a tibble

Description

Create dummy variables within a tibble

Usage

dummify(dat, sel)

Arguments

dat

A tibble with the data.

sel

A character vector with the name(s) of the variables to be dummied.

Value

tibble with dummy variables

Examples

mytest=data.frame(A=factor(c('a','a','b','c','c')), B=1:5)
dummify(mytest,"A")

Dummy-code a categorical variable

Description

Dummy-code a categorical variable

Usage

dummyvar(data)

Arguments

data

one column of categorical data to be dummy-coded

Value

tibble with dummy variables

Examples

mytest=data.frame(attribute=factor(c('a','a','b','c','c')))
dummyvar(mytest)

Generate MU_theta boxplot

Description

Generate MU_theta boxplot

Usage

ec_boxplot_MU(draws, burnin = 100)

Arguments

draws

A list, 'echoice2' draws object

burnin

burn-in to remove

Value

A ggplot2 plot containing traceplots of draws

See Also

ec_trace_MU() to obtain traceplot

Examples

## Not run: 
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use
icecream_est <- icecream %>% dplyr::filter(id<100) %>% vd_est_vdm(R=20, cores=2)
ec_boxplot_MU(icecream_est, burnin=1)

## End(Not run)

Generate Screening probability boxplot

Description

Generate Screening probability boxplot

Usage

ec_boxplot_screen(draws, burnin = 100)

Arguments

draws

A list, 'echoice2' draws object, from a model with attribute-based screening

burnin

burn-in to remove

Value

A ggplot2 plot containing traceplots of draws

See Also

ec_draws_MU() to obtain MU_theta draws, ec_trace_screen() to generate traceplot

Examples

data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_scr_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm_screen(R=20, cores=2)
ec_boxplot_screen(icecream_scr_est, burnin = 1)

Aggregate posterior draws of demand

Description

Aggregate demand draws, e.g. from individual-choice occasion-alternative level to individual level. (using the new demand draw format)

Usage

ec_dem_aggregate(de,groupby)

Arguments

de

demand draws

groupby

groupby grouping variables (as (vector of) string(s))

Value

Aggregated demand predictions

Examples

data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=4, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
 icecream %>% dplyr::filter(id<10) %>%   
   vd_dem_vdm(icecream_est)
#aggregate
brand_lvl_pred_demand <-
 icecream_predicted_demand %>% ec_dem_aggregate("Brand")

Evaluate (hold-out) demand predictions

Description

This function obtains proper posterior fit statistics. It computes the difference between true demand and each draw from the demand posterior. Then, fit statistics are obtained.

Usage

ec_dem_eval(de)

Arguments

de

demand draws (output from vd_dem_x function)

Value

Predictive fit statistics (MAE, MSE, RAE, bias, hit-probability)

data(icecream) #run MCMC sampler (use way more than 50 draws for actual use) icecream_est <- icecream %>% dplyr::filter(id<100) %>% vd_est_vdm(R=20, keep=1, cores=2) #Generate demand predictions icecream_predicted_demand= icecream %>% dplyr::filter(id<100) %>% vd_dem_vdm(icecream_est) #evaluate in-sample fit (note: too few draws for good results) ec_dem_eval(icecream_predicted_demand)


Summarize posterior draws of demand

Description

Adds summaries of posterior draws of demand to tibble. (using the new demand draw format)

Usage

ec_dem_summarise(de,quantiles)

ec_dem_summarize(de, quantiles = c(0.05, 0.95))

Arguments

de

demand draws

quantiles

Quantiles for Credibility Intervals (default: 90% interval)

Value

Summary of demand predictions

Examples

data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=10, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
 icecream %>% dplyr::filter(id<10) %>%   
   vd_dem_vdm(icecream_est)
#aggregate
brand_lvl_pred_demand <-
 icecream_predicted_demand %>% ec_dem_aggregate("Brand")
#summarise
brand_lvl_pred_demand %>% ec_dem_summarise()

Create demand curves

Description

This helper function creates demand curves

Usage

ec_demcurve(
  ec_long,
  focal_product,
  rel_pricerange,
  dem_fun,
  draws,
  epsilon_not = NULL
)

Arguments

ec_long

choice scenario (discrete or volumetric)

focal_product

Logical vector picking the focal product for which to create a demand curve

rel_pricerange

Price range, relative to base case price; this is used to create demand curve

dem_fun

demand function (e.g., dd_prob for HMNL or vd_dem_vdm for volumetric demand). For discrete choice, use choice probabilities instead of choice predictions.

draws

ec-draws object (e.g., output from dd_est_hmnl or vd_est_vd)

epsilon_not

(optional) error realisatins (this helps make curves look smother for voumetric models)

Value

List containing aggregate demand quantities for each scenario defined by rel_pricerange

See Also

ec_gen_err_normal() to generate error realization from Normal distribution, ec_gen_err_ev1() to generate error realization from EV1 distribution

Examples

data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<100) %>% 
vd_est_vdm(R=20, keep=1, cores=2)
#demand at different price points
dem_scenarios<-
ec_demcurve(icecream%>% dplyr::filter(id<100),
 icecream%>% dplyr::filter(id<100) %>% pull('Brand')=="Store",
 c(.75,1,1.25),vd_dem_vdm,icecream_est)
#optional plot
# dem_scenarios %>% 
#   do.call('rbind',.) %>%
#   ggplot(aes(x=scenario,y=`E(demand)`,color=Flavor)) + geom_line()

Create demand-incidence curves

Description

This helper function creates demand curves

Usage

ec_demcurve_cond_dem(
  ec_long,
  focal_product,
  rel_pricerange,
  dem_fun,
  draws,
  epsilon_not = NULL
)

Arguments

ec_long

choice scenario (discrete or volumetric)

focal_product

Logical vector picking the focal product for which to create a demand curve

rel_pricerange

Price range, relative to base case price; this is used to create demand curve

dem_fun

demand function (e.g., dd_prob for HMNL or vd_dem_vdm for volumetric demand). For discrete choice, use choice probabilities instead of choice predictions.

draws

ec-draws object (e.g., output from dd_est_hmnl or vd_est_vd)

epsilon_not

(optional) error realisatins (this helps make curves look smother for voumetric models)

Value

List containing aggregate demand quantities for each scenario defined by rel_pricerange

See Also

ec_gen_err_normal() to generate error realization from Normal distribution, ec_gen_err_ev1() to generate error realization from EV1 distribution

Examples

data(icecream)
#run MCMC sampler (use way more draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% 
vd_est_vdm(R=2, keep=1, cores=2)
#demand at different price points
conddem_scenarios<-
ec_demcurve_cond_dem(icecream%>% dplyr::filter(id<20),
 icecream%>% dplyr::filter(id<20) %>% pull('Brand')=="Store",
 c(.75,1),vd_dem_vdm,icecream_est)

Create demand-incidence curves

Description

This helper function creates demand curves

Usage

ec_demcurve_inci(
  ec_long,
  focal_product,
  rel_pricerange,
  dem_fun,
  draws,
  epsilon_not = NULL
)

Arguments

ec_long

choice scenario (discrete or volumetric)

focal_product

Logical vector picking the focal product for which to create a demand curve

rel_pricerange

Price range, relative to base case price; this is used to create demand curve

dem_fun

demand function (e.g., dd_prob for HMNL or vd_dem_vdm for volumetric demand). For discrete choice, use choice probabilities instead of choice predictions.

draws

ec-draws object (e.g., output from dd_est_hmnl or vd_est_vd)

epsilon_not

(optional) error realisatins (this helps make curves look smother for voumetric models)

Value

List containing aggregate demand quantities for each scenario defined by rel_pricerange

See Also

ec_gen_err_normal() to generate error realization from Normal distribution, ec_gen_err_ev1() to generate error realization from EV1 distribution

Examples

data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<50) %>% 
vd_est_vdm(R=20, keep=1, cores=2)
#demand at different price points
inci_scenarios<-
ec_demcurve_inci(icecream%>% dplyr::filter(id<50),
 icecream%>% dplyr::filter(id<50) %>% pull('Brand')=="Store",
 c(.75,1,1.25),vd_dem_vdm,icecream_est)

Obtain MU_theta draws

Description

Obtain MU_theta draws

Usage

ec_draws_MU(draws)

Arguments

draws

A list, 'echoice2' draws object

Value

A tibble, long format, draws of MU

See Also

ec_draws_screen() to obtain screening parameter draws (where applicable), ec_trace_MU() to generate a traceplot of MU_theta draws

Examples

data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_est <- icecream %>% dplyr::filter(id<50) %>% vd_est_vdm(R=20, cores=2)
ec_draws_MU(icecream_est)

Obtain Screening probability draws

Description

Obtain Screening probability draws

Usage

ec_draws_screen(draws)

Arguments

draws

A list, 'echoice2' draws object

Value

A tibble, long format, draws of MU

See Also

ec_draws_MU() to obtain MU_theta draws, ec_trace_screen() to generate a traceplot of screening draws

Examples

data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_scr_est <- icecream %>% dplyr::filter(id<50) %>% vd_est_vdm_screen(R=20, cores=2)
ec_draws_screen(icecream_scr_est)

Obtain upper level model estimates

Description

Obtain upper level model estimates

Usage

ec_estimates_MU(est, quantiles = c(0.05, 0.95))

Arguments

est

is an 'echoice2' draw object (list)

quantiles

quantile for CI

Value

tibble with MU (upper level) summaries

Examples

data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm(R=20, cores=2)
#Upper-level summary
icecream_est %>% ec_estimates_MU

Summarize attribute-based screening parameters

Description

Summarize attribute-based screening parameters from an attribute-based screening model in 'echoice2'

Usage

ec_estimates_screen(est, quantiles = c(0.05, 0.95))

Arguments

est

is an 'echoice2' draw object (list) from a model with attribute-based screening

quantiles

quantile for CI

Value

tibble with screening summaries

Examples

#run MCMC sampler (use way more than 20 draws for actual use)
data(icecream)
est_scr_icecream <- vd_est_vdm_screen(icecream%>%dplyr::filter(id<30), R=20, cores=2)
#summarise draws of screening probabilities
ec_estimates_screen(est_scr_icecream)
#Note: There is no variance in this illustrative example - more draws are needed

Obtain posterior mean estimates of upper level covariance

Description

Obtain posterior mean estimates of upper level covariance

Usage

ec_estimates_SIGMA(est)

Arguments

est

is an 'echoice2' draw object (list)

Value

estimates of upper level covariance

Examples

data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<50) %>% vd_est_vdm(R=20, cores=2)
icecream_est %>% ec_estimates_SIGMA %>% round(2)

Obtain posterior mean estimates of upper level correlations

Description

Obtain posterior mean estimates of upper level correlations

Usage

ec_estimates_SIGMA_corr(est)

Arguments

est

is an 'echoice2' draw object (list)

Value

estimates of upper level correlations

Examples

data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm(R=20, cores=2)
icecream_est %>% ec_estimates_SIGMA_corr %>% round(2)

Simulate error realization from EV1 distribution

Description

Simulate error realization from EV1 distribution

Usage

ec_gen_err_ev1(ec_dem, draws, seed = NULL)

Arguments

ec_dem

discrete or volumetric choice data, with or without x

draws

draws from volumetric demand model

seed

seed for reproducible error realisations; seet is automatically reset of running this function

Value

error realizations

Examples

data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<100) %>% 
vd_est_vdm(R=100, keep=1, cores=2)
#generate error realizations
errs<- ec_gen_err_ev1(icecream %>% dplyr::filter(id<100), icecream_est, seed=123)

Simulate error realization from Normal distribution

Description

Simulate error realization from Normal distribution

Usage

ec_gen_err_normal(ec_dem, draws, seed = NULL)

Arguments

ec_dem

discrete or volumetric choice data, with or without x

draws

draws from volumetric demand model

seed

seed for reproducible error realisations; seet is automatically reset of running this function

Value

error realizations

Examples

data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% 
vd_est_vdm(R=10, keep=1, error_dist = "Normal", cores=2)
#generate error realizations
errs<- ec_gen_err_normal(icecream %>% dplyr::filter(id<10), icecream_est, seed=123)

Obtain Log Marginal Density from draw objects

Description

This is a helper function to quickly obtain log marginal density from a draw object

Usage

ec_lmd_NR(est)

Arguments

est

'echoice2' draw object

Details

Draws are split in 4 equal parts from start to finish, and LMD is computed for each part. This helps to double-check convergence.

Value

tibble with LMDs (first 25% of draws, next 25% of draws, ...)

Examples

data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<100) %>% vd_est_vdm(R=20, cores=2)
#obtain LMD by quartile of draws
ec_lmd_NR(icecream_est)

Convert "list of lists" format to long "tidy" format

Description

Convert "list of lists" format to long "tidy" format

Usage

ec_lol_tidy1(data_lol, X = "X", y = "y")

Arguments

data_lol

A list of data frames containing design matrices and response vectors

X

The column name of the design matrix, default: "X"

y

The column name of the response vector, default: "y"

Value

A tidy data frame with columns for each design matrix column, the response vector, and an id column indicating which data frame the row came from

Examples

loldata<-list()
loldata[[1]]=list()
loldata[[1]]$y = c(1,2)
loldata[[1]]$X= data.frame(brand1=c(1,0, 1,0),brand2=c(0,1, 0,1),price=c(1,2))
loldata[[2]]=list()
loldata[[2]]$y = c(1,1)
loldata[[2]]$X= data.frame(brand1=c(1,0, 1,0),brand2=c(0,1, 0,1),price=c(1,2))
ec_lol_tidy1(loldata)

Summarize posterior draws of screening

Description

Adds summaries of posterior draws of demand to tibble. (using the new demand draw format)

Usage

ec_screen_summarise(sc, quantiles = c(0.05, 0.95))

ec_screen_summarize(sc, quantiles = c(0.05, 0.95))

Arguments

sc

tibble containing screening draws in .screendraws

quantiles

Quantiles for Credibility Intervals (default: 90% interval)

Value

Summary of screening probabilities

Examples

data(icecream)
icecream_est <- icecream %>% vd_est_vdm_screen(R=20,  price_screen=TRUE, cores=2)
#consideration set by respondent
cons_ss <- 
ec_screenprob_sr(icecream, icecream_est, cores=2) %>%
group_by(id, task)  %>%
  summarise(.screendraws=list(purrr::reduce(.screendraws ,`+`))) %>%
  ec_screen_summarise() %>%
  group_by(id) %>%
  summarise(n_screen=mean(`E(screening)`))

Screening probabilities of choice alternatives

Description

Obtain draws of screening probabilities of choiec alternatives

Usage

ec_screenprob_sr(xd, est, cores=NULL)

Arguments

xd

data

est

ec-model draws

cores

(optional) cores

Value

Draws of screening probabilities of choice alternatives

Examples

data(icecream)
icecream_est <- icecream %>% filter(id<10) %>% vd_est_vdm_screen(R=10,  price_screen=TRUE, cores=2)
ec_screenprob_sr(icecream %>% filter(id<10), icecream_est, cores=2)

Summarize attributes and levels

Description

Summarize attributes and levels in tidy choice data containing categorical attributes (before dummy-coding)

Usage

ec_summarize_attrlvls(data_in)

ec_summarise_attrlvls(data_in)

Arguments

data_in

A tibble, containing long-format choice data

Details

This functions looks for categorical attributes and summaries their levels This is helpful when evaluating a new choice data file.

Value

A tibble with one row per attribute, and a list of the levels

Examples

data(icecream)
ec_summarize_attrlvls(icecream)

Generate MU_theta traceplot

Description

Generate MU_theta traceplot

Usage

ec_trace_MU(draws, burnin = 100)

Arguments

draws

A list, 'echoice2' draws object

burnin

burn-in to remove

Value

A ggplot2 plot containing traceplots of draws

See Also

ec_boxplot_MU() to obtain boxplot

Examples

## Not run: 
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=10, cores=2)
ec_trace_MU(icecream_est)

## End(Not run)

Generate Screening probability traceplots

Description

Generate Screening probability traceplots

Usage

ec_trace_screen(draws, burnin = 100)

Arguments

draws

A list, 'echoice2' draws object, from a model with attribute-based screening

burnin

burn-in to remove

Value

A ggplot2 plot containing traceplots of draws

See Also

ec_draws_MU() to obtain MU_theta draws, ec_boxplot_screen() to generate boxplot

Examples

## Not run: 
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_scr_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm_screen(R=20, cores=2)
ec_trace_screen(icecream_scr_est, burnin=1)

## End(Not run)

Converts a set of dummy variables into a single categorical variable

Description

Given a set of dummy variables, this function converts them into a single categorical variable. The categorical variable is created by determining which variables are active (i.e. have a value of 1) for each observation and assigning a category based on the set of active variables. If necessary, a reference level can be specified to ensure that all possible categories are represented. Often, all brands of a brand attribute are added as brand intercepts, while other categorical attributes are coded with respect to a reference level.

Usage

ec_undummy(data_in, set_members, attribute_name, ref_level = NULL)

Arguments

data_in

a data frame containing the dummy variables

set_members

a character vector of the names of the dummy variables

attribute_name

a character string representing the name of the new categorical variable

ref_level

a character string representing the name of the reference level. If specified, a new dummy variable will be created for this level, and it will be used as the reference category for the categorical variable. Defaults to NULL.

Value

a data frame with the same columns as data_in, except for the dummy variables in set_members, which are replaced with the new categorical variable attribute_name

Examples

minidata=structure(list(id = c("1", "1", "1", "1", "2", "2", "2", "2"), 
task = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L), 
alt = c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L), 
brand1 = c(1, 0, 1, 0, 1, 0, 1, 0), 
brand2 = c(0, 1, 0, 1, 0, 1, 0, 1), 
price = c(1, 2, 1, 2, 1, 2, 1, 2), 
x = c(1, 0, 0, 1, 1, 0, 1, 0)), 
class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, -8L))

minidata %>% ec_undummy(c('brand1','brand2'),"brand")

Convert dummy-coded variables to low/high factor

Description

Convert dummy-coded variables to low/high factor

Usage

ec_undummy_lowhigh(vec_in)

Arguments

vec_in

A vector of dummy-coded variables (0/1)

Value

A factor vector with levels "low" and "high"

Examples

ec_undummy_lowhigh(c(0,1,0,1,1))

Convert dummy-coded variables to low/medium/high factor

Description

Convert dummy-coded variables to low/medium/high factor

Usage

ec_undummy_lowmediumhigh(vec_in)

Arguments

vec_in

A vector of dummy-coded variables (0/1/2)

Value

A factor vector with levels "low", "medium" and "high"

Examples

ec_undummy_lowmediumhigh(c(0,1,2,1,0,2))

Convert dummy-coded variables to yes/no factor

Description

Convert dummy-coded variables to yes/no factor

Usage

ec_undummy_yesno(vec_in)

Arguments

vec_in

A vector of dummy-coded variables (0/1)

Value

A factor vector with levels "no" and "yes"

Examples

ec_undummy_yesno(c(0,1,0,1,1))

Convert a vector of choices to long format

Description

Converts a vector of choices into a long format data frame, where each row represents a single choice and contains the choice status for each alternative.

Usage

ec_util_choice_to_long(myvec, all_index)

Arguments

myvec

A vector of choices, where each element represents the index of the chosen alternative.

all_index

A vector of all the possible alternative indices.

Value

A tibble with columns 'x', 'task', and 'alt', where 'x' is a binary indicator of whether the alternative was chosen or not, 'task' is the task index, and 'alt' is the alternative index.

Examples

#There are 3 alternatives in this task. 
#Since there are 3 observations in myvec, there are 3 tasks total.
ec_util_choice_to_long(c(1, 2, 1), c(1, 2, 3))

Find mutually exclusive columns

Description

This function finds pairs of columns in a data frame that are mutually exclusive, i.e., that never have positive values at the same time.

Usage

ec_util_dummy_mutualeclusive(data_in, filtered = TRUE)

Arguments

data_in

A data frame containing the data.

filtered

A logical value indicating whether to return only the mutually exclusive pairs (TRUE) or all pairs (FALSE). Default is TRUE.

Value

A tibble containing all pairs of mutually exclusive columns in the data frame.

Examples

minidata=structure(list(id = c("1", "1", "1", "1", "2", "2", "2", "2"), 
task = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L), 
alt = c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L), 
brand1 = c(1, 0, 1, 0, 1, 0, 1, 0), 
brand2 = c(0, 1, 0, 1, 0, 1, 0, 1), 
price = c(1, 2, 1, 2, 1, 2, 1, 2), 
x = c(1, 0, 0, 1, 1, 0, 1, 0)), 
class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, -8L))
ec_util_dummy_mutualeclusive(minidata)

Obtain attributes and levels from tidy choice data with dummies

Description

Obtain attributes and levels from tidy choice data with dummies

Usage

get_attr_lvl(tdc)

Arguments

tdc

A tibble with choice data

Value

tibble

Examples

mytest=data.frame(A=factor(c('a','a','b','c','c')), B=1:5)
dummied_data = dummify(mytest,"A")
get_attr_lvl(dummied_data)

icecream

Description

Volumetric Conjoint data, ice cream category

Details

Data from volumetric conjoint analysis in the ice cream category. 300 respondents total. Volumetric demand in units of 4 ounces each. Attributes include brand name, flavor, and container size.


icecream_discrete

Description

Discrete-Choice Conjoint data, ice cream category

Details

Data from discrete choice conjoint analysis in the ice cream category. 300 respondents total. Attributes include brand name, flavor, and container size.


Log Marginal Density (Newton-Raftery)

Description

This function uses the quick-and-dirty Newton-Raftery approximation for log-marginal-density.

Usage

logMargDenNRu(ll)

Arguments

ll

A vector of log-likelihood values (i.e., draws)

Details

Approximation of LMD based on Newton-Raftery. It is not the most accurate, but a very fast method.

Value

A single numeric value representing the log marginal density

Examples

logll_values <- c(-4000, -4001, -4002)
logMargDenNRu(logll_values)

pizza

Description

Volumetric Conjoint data, pizza category

Details

Data from volumetric conjoint analysis in the frozen pizza category.


Match factor levels between two datasets

Description

Makes sure the factor levels in data_new are aligned with data_old This is helpful for demand simulations.

Usage

prep_newprediction(data_new, data_old)

Arguments

data_new

New long-format choice data

data_old

Old long-format choice data

Value

long-format choice data

Examples

data(icecream)
prep_newprediction(icecream, icecream)

Add product id to demand draws

Description

This adds a unique product identifier to demand draw objects.

Usage

vd_add_prodid(de)

Arguments

de

demand draws

Value

est

Examples

data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=4, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
 icecream %>% dplyr::filter(id<10) %>%   
   vd_dem_vdm(icecream_est)
#add prodid
icecream_predicted_demand_w_id<-icecream_predicted_demand %>% vd_add_prodid

Summarize posterior draws of demand (volumetric models only)

Description

Adds summaries of posterior draws of demand to tibble. (using the new demand draw format)

Usage

vd_dem_summarise(de, quantiles = c(0.05, 0.95))

vd_dem_summarize(de, quantiles = c(0.05, 0.95))

Arguments

de

demand draws

quantiles

Quantiles for Credibility Intervals (default: 90% interval)

Value

Summary of demand predictions

Examples

data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=10, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
 icecream %>% dplyr::filter(id<10) %>%   
   vd_dem_vdm(icecream_est)
#aggregate
brand_lvl_pred_demand <-
 icecream_predicted_demand %>% ec_dem_aggregate("Brand")
#summarise
brand_lvl_pred_demand %>% vd_dem_summarise()

Demand Prediction (Volumetric Demand Model)

Description

Generating demand predictions for volumetric demand model. Reminder: there is no closed-form solution for demand, thus we need to integrate not only over the posterior distribution of parameters and the error distribution. The function outputs a tibble containing id, task, alt, p, attributes, draws from the posterior of demand. Error realizations can be pre-supplied to the epsilon_not. This helps create smooth demand curves or conduct optimization.

Usage

vd_dem_vdm(
  vd,
  est,
  epsilon_not = NULL,
  error_dist = NULL,
  tidy = TRUE,
  cores = NULL
)

Arguments

vd

data

est

ec-model draws

epsilon_not

(optional) error realizations

error_dist

(optional) A string defining the error term distribution (default: 'EV1')

tidy

(optional) apply 'echoice2' tidier (default: TRUE)

cores

(optional) cores (default: auto-detect)

Value

Draws of expected demand

See Also

prep_newprediction() to match vd's factor levels, ec_gen_err_ev1() for pre-generating error realizations and vd_est_vdm() for estimating the corresponding model

Examples

data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm(R=10, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
 icecream %>% dplyr::filter(id<20) %>%   
   vd_dem_vdm(icecream_est, cores=2)
#column .demdraws contains draws from posterior of predicted demand

Demand Prediction (Volumetric demand, attribute-based screening)

Description

Generating demand predictions for volumetric demand model with attribute-based screening. Reminder: there is no closed-form solution for demand, thus we need to integrate not only over the posterior distribution of parameters and the error distribution. The function outputs a tibble containing id, task, alt, p, attributes, draws from the posterior of demand. Eerror realisations can be pre-supplied to the epsilon_not. This helps create smooth demand curves or conduct optimization.

Usage

vd_dem_vdm_screen(vd, est, epsilon_not = NULL, error_dist = NULL, cores = NULL)

Arguments

vd

data

est

ec-model draws

epsilon_not

(optional) error realizations

error_dist

(optional) A string defining the error term distribution (default: 'EV1')

cores

(optional) cores

Value

Draws of expected demand

See Also

prep_newprediction() to match vd's factor levels, ec_gen_err_normal() for pre-generating error realizations and vd_est_vdm_screen() for estimating the corresponding model

Examples

data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm_screen(R=20, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
 icecream %>% dplyr::filter(id<20) %>%   
   vd_dem_vdm_screen(icecream_est, cores=2)
#column .demdraws contains draws from posterior of predicted demand

Demand Prediction (Volumetric demand, accounting for set-size variation, EV1 errors)

Description

Generating demand predictions for volumetric demand model with set-size adjustment. Reminder: there is no closed-form solution for demand, thus we need to integrate not only over the posterior distribution of parameters and the error distribution. The function outputs a tibble containing id, task, alt, p, attributes, draws from the posterior of demand. Eerror realizations can be pre-supplied to the epsilon_not. This helps create smooth demand curves or conduct optimization.

Usage

vd_dem_vdm_ss(vd, est, epsilon_not = NULL, cores = NULL)

Arguments

vd

data

est

ec-model draws

epsilon_not

(optional) error realizations

cores

(optional) cores

Value

Draws of expected demand

See Also

prep_newprediction() to match vd's factor levels, ec_gen_err_ev1() for pre-generating error realizations and vd_est_vdm_ss() for estimating the corresponding model

Examples

data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm_ss(R=10, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
 icecream %>% dplyr::filter(id<10) %>%   
   vd_dem_vdm_ss(icecream_est, cores=2)
#column .demdraws contains draws from posterior of predicted demand

Estimate volumetric demand model

Description

Estimate volumetric demand model

Usage

vd_est_vdm(
  vd,
  tidy = TRUE,
  R = 1e+05,
  keep = 10,
  cores = NULL,
  error_dist = "EV1",
  control = list(include_data = TRUE)
)

Arguments

vd

A tibble, containing volumetric demand data (long format)

tidy

A logical, whether to apply 'echoice2' tidier function (default: TRUE)

R

A numeric, no of draws

keep

A numeric, thinning factor

cores

An integer, no of CPU cores to use (default: auto-detect)

error_dist

A string defining the error term distribution, 'EV1' or 'Normal'

control

A list containing additional settings

Value

An 'echoice2' draw object, in the form of a list

See Also

vd_dem_vdm() to generate demand predictions based on this model

vd_est_vdm_screen() to estimate a volumetric demand model with screening

Examples

data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<50) %>% vd_est_vdm(R=10, cores=2)

Estimate volumetric demand model with attribute-based conjunctive screening

Description

Estimate volumetric demand model with attribute-based conjunctive screening

Usage

vd_est_vdm_screen(
  vd,
  R = 1e+05,
  keep = 10,
  cores = NULL,
  error_dist = "EV1",
  price_screen = TRUE,
  control = list(include_data = TRUE)
)

Arguments

vd

volumetric demand data (long format)

R

draws

keep

thinning

cores

no of CPU cores to use (default: auto-detect)

error_dist

A string defining the error term distribution, 'EV1' or 'Normal' (default: 'EV1')

price_screen

A logical, indicating whether price tag screening should be estimated (default: TRUE)

control

list containing additional settings

Value

est ec-draw object (List)

Examples

data(icecream)
icecream_est <- icecream %>% vd_est_vdm_screen(R=10, cores=2)

Estimate volumetric demand model accounting for set size variation (1st order)

Description

This model REQUIRES variation in choice-set size

Usage

vd_est_vdm_ss(
  vd,
  order = 1,
  R = 1e+05,
  keep = 10,
  cores = NULL,
  control = list(include_data = TRUE)
)

Arguments

vd

volumetric demand data (long format) with set size variation

order

integer, either 1 or 2 (for now), indicating linear or quadratic set-size effect

R

draws

keep

thinning

cores

no of CPU cores to use (default: auto-detect)

control

list containing additional settings

Value

est ec-draw object (List)

Examples

data(icecream)
#note that for this example dataset, the model is not identified
#because the data lacks variation in set size
icecream_est <- icecream %>% vd_est_vdm_ss(R=10, cores=2)

Log-Likelihood for compensatory volumetric demand model

Description

Log-Likelihood for compensatory volumetric demand model

Usage

vd_LL_vdm(draw, vd, fromdraw = 1)

Arguments

draw

A list, 'echoice2' draws object

vd

A tibble, tidy choice data (before dummy-coding)

fromdraw

An integer, from which draw onwards to compute LL (i.e., excl. burnin)

Value

N x Draws Matrix of log-Likelihood values

Examples

data(icecream)
#fit model
icecream_est <- icecream %>% vd_est_vdm(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-vd_LL_vdm(icecream_est, icecream, fromdraw = 2)
dim(loglls)

Log-Likelihood for conjunctive-screening volumetric demand model

Description

Log-Likelihood for conjunctive-screening volumetric demand model

Usage

vd_LL_vdm_screen(draw, vd, fromdraw = 1)

Arguments

draw

A list, 'echoice2' draws object

vd

A tibble, tidy choice data (before dummy-coding)

fromdraw

An integer, from which draw onwards to compute LL (i.e., excl. burnin)

Value

N x Draws Matrix of log-Likelihood values

Examples

data(icecream)
#fit model
icecream_est <- icecream %>% filter(id<20) %>% vd_est_vdm_screen(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-vd_LL_vdm_screen(icecream_est, icecream%>% filter(id<20), fromdraw = 2)
dim(loglls)

Log-Likelihood for volumetric demand model with set-size variation

Description

Log-Likelihood for volumetric demand model with set-size variation

Usage

vd_LL_vdmss(draw, vd, fromdraw = 1)

Arguments

draw

A list, 'echoice2' draws object

vd

A tibble, tidy choice data (before dummy-coding)

fromdraw

An integer, from which draw onwards to compute LL (i.e., excl. burnin)

Value

N x Draws Matrix of log-Likelihood values

Examples

data(icecream)
#fit model
#note: this is just for demo purposes
#on this demo dataset, the model is not identified
#due to a lack of set size variation
icecream_est <- icecream %>% vd_est_vdm_ss(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-vd_LL_vdmss(icecream_est, icecream, fromdraw = 2)
#300 respondents, 10 draws
dim(loglls)

Generate tidy choice data with dummies from long-format choice data

Description

Generate tidy choice data with dummies from long-format choice data

Usage

vd_long_tidy(longdata)

Arguments

longdata

tibble

Value

tibble

Examples

data(icecream)
vd_long_tidy(icecream)

Prepare choice data for analysis

Description

This utility function prepares tidy choice data for fast MCMC samplers.

Usage

vd_prepare(dt, Af = NULL)

Arguments

dt

tidy choice data (columns: id, task, alt, x, p, attributes)

Af

(optional) contains a full design matrix (for attribute-based screening), or, more generally, a design matrix used for attribute-based screening

Details

Note: This function is only exported because it makes it easier to tinker with this package. This function re-arranges choice data for fast access in highly-optimized MCMC samplers. It Pre-computes task-wise total expenditures sumpsx and generates indices xfr,xto,lfr,lto for fast data access.

Value

list containing information for estimation functions

Examples

#minimal data example
dt <- structure(list(id = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
                            2L, 2L), 
                     task = c(1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L), 
                     alt = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), 
                     x = c(1, 0, 2, 1, 0, 1, 2, 3, 1, 1, 0, 1), 
                     p = c(0, 1, 1, 1, 2, 0, 2, 2, 1, 2, 1, 1), 
                     attr2 = c(1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0), 
                     attr1 = c(0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1)), 
                 class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,-12L))
#run prep function
test <- dt %>% vd_prepare

Prepare choice data for analysis (without x being present)

Description

This utility function prepares tidy choice data (without x) for fast data access.

Usage

vd_prepare_nox(dt, Af = NULL)

Arguments

dt

tidy choice data (columns: id, task, alt, p, attributes)

Af

(optional) contains a full design matrix (for attribute-based screening), or, more generally, a design matrix used for attribute-based screening

Details

Note: This function is only exported because it makes it easier to tinker with this package. This function re-arranges choice data for fast access, mainly for demand prediction.

Value

list containing information for prediction functions

Examples

#Minimal example:
#One attribute with 3 levels, 2 subjects, 3 alternatives, 2 tasks
dt <- structure(list(id = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
                            2L, 2L), 
                     task = c(1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L), 
                     alt = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), 
                     x = c(1, 0, 2, 1, 0, 1, 2, 3, 1, 1, 0, 1), 
                     p = c(0, 1, 1, 1, 2, 0, 2, 2, 1, 2, 1, 1), 
                     attr2 = c(1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0), 
                     attr1 = c(0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1)), 
                 class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,-12L))
test <- dt %>% dplyr::select(-all_of("x")) %>% vd_prepare_nox()

Thin 'echoice2'-vd draw objects

Description

Thin 'echoice2'-vd draw objects

Usage

vd_thin_draw(est, burnin_perc = 0.5, total_draws = NULL)

Arguments

est

is an 'echoice2' draw object (list)

burnin_perc

how much burn-in to remove

total_draws

how many draws to keep after thinning

Value

thinned 'echoice2' draw object (list)

Examples

data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<100) %>% vd_est_vdm(R=10, keep = 1, cores=2)
#without thinning, yields R=50 draWs
dim(icecream_est$MUDraw)
icecream_est_thinned <- vd_thin_draw(icecream_est,.5)
#26 draws left after thinning about half
dim(icecream_est_thinned$MUDraw)