
Package: dynr (via r-universe)
October 26, 2024

Date 2023-11-27

Title Dynamic Models with Regime-Switching

Maintainer Michael D. Hunter <mike.dynr@gmail.com>

URL https://dynrr.github.io/, https://github.com/mhunter1/dynr

Contact <dynr@googlegroups.com>

Depends R (>= 3.0.0), ggplot2

Imports MASS, Matrix (>= 1.5-0), numDeriv, xtable, latex2exp, grid,
reshape2, plyr, mice, magrittr, methods, fda, car, stringi,
tibble, deSolve, Rdpack

Suggests testthat, roxygen2 (>= 3.1), knitr, rmarkdown, RcppGSL

VignetteBuilder knitr

Description Intensive longitudinal data have become increasingly
prevalent in various scientific disciplines. Many such data
sets are noisy, multivariate, and multi-subject in nature. The
change functions may also be continuous, or continuous but
interspersed with periods of discontinuities (i.e., showing
regime switches). The package 'dynr' (Dynamic Modeling in R) is
an R package that implements a set of computationally efficient
algorithms for handling a broad class of linear and nonlinear
discrete- and continuous-time models with regime-switching
properties under the constraint of linear Gaussian measurement
functions. The discrete-time models can generally take on the
form of a state-space or difference equation model. The
continuous-time models are generally expressed as a set of
ordinary or stochastic differential equations. All estimation
and computations are performed in C, but users are provided
with the option to specify the model of interest via a set of
simple and easy-to-learn model specification functions in R.
Model fitting can be performed using single-subject time series
data or multiple-subject longitudinal data. Ou, Hunter, & Chow
(2019) <doi:10.32614%2FRJ-2019-012> provided a detailed
introduction to the interface and more information on the
algorithms.

1

https://dynrr.github.io/
https://github.com/mhunter1/dynr
https://doi.org/10.32614%2FRJ-2019-012

2 Contents

SystemRequirements GNU make

NeedsCompilation yes

License GPL-3

LazyLoad yes

LazyData yes

Collate 'dynrData.R' 'dynrRecipe.R' 'dynrModelInternal.R'
'dynrModel.R' 'dynrCook.R' 'dynrPlot.R' 'dynrFuncAddress.R'
'dynrMi.R' 'dynrTaste.R' 'dynrVersion.R' 'dataDoc.R'
'dynrGetDerivs.R' 'dynrPredict.R'

RdMacros Rdpack

Version 0.1.16-105

Biarch TRUE

RoxygenNote 5.0.1

Author Lu Ou [aut], Michael D. Hunter [aut, cre]
(<https://orcid.org/0000-0002-3651-6709>), Sy-Miin Chow [aut]
(<https://orcid.org/0000-0003-1938-027X>), Linying Ji [aut],
Meng Chen [aut], Hui-Ju Hung [aut], Jungmin Lee [aut], Yanling
Li [aut], Jonathan Park [aut], Massachusetts Institute of
Technology [cph], S. G. Johnson [cph], Benoit Scherrer [cph],
Dieter Kraft [cph]

Repository CRAN

Date/Publication 2023-11-28 05:20:05 UTC

Contents
dynr-package . 4
autoplot.dynrTaste . 9
coef.dynrModel . 10
confint.dynrCook . 11
diag,character-method . 13
dynr.config . 14
dynr.cook . 15
dynr.data . 17
dynr.flowField . 18
dynr.ggplot . 20
dynr.ldl . 22
dynr.mi . 23
dynr.model . 24
dynr.plotFreq . 26
dynr.taste . 27
dynr.taste2 . 28
dynr.trajectory . 30
dynr.version . 31
dynrCook-class . 32

https://orcid.org/0000-0002-3651-6709
https://orcid.org/0000-0003-1938-027X

Contents 3

dynrDynamics-class . 32
dynrInitial-class . 32
dynrMeasurement-class . 33
dynrModel-class . 33
dynrNoise-class . 33
dynrRecipe-class . 34
dynrRegimes-class . 34
dynrTrans-class . 34
EMG . 35
EMGsim . 35
ExpandRandomAsLVModel . 36
getdx . 37
internalModelPrep . 38
LinearOsc . 39
LogisticSetPointSDE . 40
logLik.dynrCook . 41
names,dynrCook-method . 43
names,dynrModel-method . 43
nobs.dynrCook . 44
nobs.dynrModel . 45
NonlinearDFAsim . 46
oscData . 47
Oscillator . 48
Outliers . 49
PFAsim . 51
plot.dynrCook . 54
plotFormula . 55
plotGCV . 56
PPsim . 57
predict.dynrModel . 57
prep.formulaDynamics . 58
prep.initial . 61
prep.loadings . 64
prep.matrixDynamics . 66
prep.measurement . 67
prep.noise . 69
prep.regimes . 71
prep.tfun . 73
printex . 74
RSPPsim . 75
summary.dynrCook . 76
theta_plot . 76
TrueInit_Y14 . 77
VARsim . 78
vcov.dynrCook . 79
vdpData . 79

Index 81

4 dynr-package

dynr-package Dynamic Models with Regime-Switching

Description

Intensive longitudinal data have become increasingly prevalent in various scientific disciplines.
Many such data sets are noisy, multivariate, and multi-subject in nature. The change functions may
also be continuous, or continuous but interspersed with periods of discontinuities (i.e., showing
regime switches). The package ’dynr’ (Dynamic Modeling in R) is an R package that implements
a set of computationally efficient algorithms for handling a broad class of linear and nonlinear
discrete- and continuous-time models with regime-switching properties under the constraint of lin-
ear Gaussian measurement functions. The discrete-time models can generally take on the form of
a state-space or difference equation model. The continuous-time models are generally expressed
as a set of ordinary or stochastic differential equations. All estimation and computations are per-
formed in C, but users are provided with the option to specify the model of interest via a set of
simple and easy-to-learn model specification functions in R. Model fitting can be performed using
single-subject time series data or multiple-subject longitudinal data. Ou, Hunter, & Chow (2019)
<doi:10.32614%2FRJ-2019-012> provided a detailed introduction to the interface and more infor-
mation on the algorithms.

Details

The DESCRIPTION file:

Package: dynr
Date: 2023-11-27
Title: Dynamic Models with Regime-Switching
Authors@R: c(person("Lu", "Ou", role="aut"), person(c("Michael", "D."), "Hunter", role=c("aut", "cre"), email="mike.dynr@gmail.com", comment=c(ORCID = "0000-0002-3651-6709")), person("Sy-Miin", "Chow", role="aut", comment=c(ORCID = "0000-0003-1938-027X")), person("Linying", "Ji", role="aut", email=""), person("Meng", "Chen", role="aut", email=""), person("Hui-Ju", "Hung", role="aut", email=""), person("Jungmin", "Lee", role="aut", email="leejapply@gmail.com"), person("Yanling", "Li", role="aut", email=""), person("Jonathan", "Park", role="aut", email=""), person("Massachusetts Institute of Technology", role="cph"), person("S. G.", "Johnson", role="cph"), person("Benoit", "Scherrer", role="cph"), person("Dieter", "Kraft", role="cph"))
Maintainer: Michael D. Hunter <mike.dynr@gmail.com>
URL: https://dynrr.github.io/, https://github.com/mhunter1/dynr
Contact: <dynr@googlegroups.com>
Depends: R (>= 3.0.0), ggplot2
Imports: MASS, Matrix (>= 1.5-0), numDeriv, xtable, latex2exp, grid, reshape2, plyr, mice, magrittr, methods, fda, car, stringi, tibble, deSolve, Rdpack
Suggests: testthat, roxygen2 (>= 3.1), knitr, rmarkdown, RcppGSL
VignetteBuilder: knitr
Description: Intensive longitudinal data have become increasingly prevalent in various scientific disciplines. Many such data sets are noisy, multivariate, and multi-subject in nature. The change functions may also be continuous, or continuous but interspersed with periods of discontinuities (i.e., showing regime switches). The package ’dynr’ (Dynamic Modeling in R) is an R package that implements a set of computationally efficient algorithms for handling a broad class of linear and nonlinear discrete- and continuous-time models with regime-switching properties under the constraint of linear Gaussian measurement functions. The discrete-time models can generally take on the form of a state-space or difference equation model. The continuous-time models are generally expressed as a set of ordinary or stochastic differential equations. All estimation and computations are performed in C, but users are provided with the option to specify the model of interest via a set of simple and easy-to-learn model specification functions in R. Model fitting can be performed using single-subject time series data or multiple-subject longitudinal data. Ou, Hunter, & Chow (2019) <doi:10.32614%2FRJ-2019-012> provided a detailed introduction to the interface and more information on the algorithms.
SystemRequirements: GNU make
NeedsCompilation: yes
License: GPL-3
LazyLoad: yes
LazyData: yes
Collate: ’dynrData.R’ ’dynrRecipe.R’ ’dynrModelInternal.R’ ’dynrModel.R’ ’dynrCook.R’ ’dynrPlot.R’ ’dynrFuncAddress.R’ ’dynrMi.R’ ’dynrTaste.R’ ’dynrVersion.R’ ’dataDoc.R’ ’dynrGetDerivs.R’ ’dynrPredict.R’
RdMacros: Rdpack
Version: 0.1.16-105
Biarch: TRUE
RoxygenNote: 5.0.1
Author: Lu Ou [aut], Michael D. Hunter [aut, cre] (<https://orcid.org/0000-0002-3651-6709>), Sy-Miin Chow [aut] (<https://orcid.org/0000-0003-1938-027X>), Linying Ji [aut], Meng Chen [aut], Hui-Ju Hung [aut], Jungmin Lee [aut], Yanling Li [aut], Jonathan Park [aut], Massachusetts Institute of Technology [cph], S. G. Johnson [cph], Benoit Scherrer [cph], Dieter Kraft [cph]

dynr-package 5

Archs: x64

Index of help topics:

EMG Single-subject time series of facial
electromyography data

EMGsim Simulated single-subject time series to capture
features of facial electromyography data

ExpandRandomAsLVModel Extend a user-specified model to include random
varibles

LinearOsc Simulated time series data for a deterministic
linear damped oscillator model

LogisticSetPointSDE Simulated time series data for a stochastic
linear damped oscillator model with logistic
time-varying setpoints

NonlinearDFAsim Simulated multi-subject time series based on a
dynamic factor analysis model with nonlinear
relations at the latent level

Oscillator Simulated time series data of a damped linear
oscillator

Outliers Simulated time series data for detecting
outliers.

PFAsim Simulated time series data of a multisubject
process factor analysis

PPsim Simulated time series data for multiple
eco-systems based on a predator-and-prey model

RSPPsim Simulated time series data for multiple
eco-systems based on a regime-switching
predator-and-prey model

TrueInit_Y14 Simulated multilevel multi-subject time series
of a Van der Pol Oscillator

VARsim Simulated time series data for multiple
imputation in dynamic modeling.

autoplot.dynrTaste The ggplot of the outliers estimates.
coef.dynrModel Extract fitted parameters from a dynrCook

Object
confint.dynrCook Confidence Intervals for Model Parameters
diag,character-method Create a diagonal matrix from a character

vector
dynr-package Dynamic Models with Regime-Switching
dynr.config Check that dynr in configured properly
dynr.cook Cook a dynr model to estimate its free

parameters
dynr.data Create a list of data for parameter estimation

(cooking dynr) using 'dynr.cook'
dynr.flowField A Function to plot the flow or velocity field

for a one or two dimensional autonomous ODE

6 dynr-package

system from the phaseR package written by
Michael J. Grayling.

dynr.ggplot The ggplot of the smoothed state estimates and
the most likely regimes

dynr.ldl LDL Decomposition for Matrices
dynr.mi Multiple Imputation of dynrModel objects
dynr.model Create a dynrModel object for parameter

estimation (cooking dynr) using 'dynr.cook'
dynr.plotFreq Plot of the estimated frequencies of the

regimes across all individuals and time points
based on their smoothed regime probabilities

dynr.taste Detect outliers in state space models.
dynr.taste2 Re-fit state-space model using the estimated

outliers.
dynr.trajectory A Function to perform numerical integration of

the chosen ODE system, for a user-specified set
of initial conditions. Plots the resulting
solution(s) in the phase plane. This function
from the phaseR package written by Michael J.
Grayling.

dynr.version Current Version String
dynrCook-class The dynrCook Class
dynrDynamics-class The dynrDynamics Class
dynrInitial-class The dynrInitial Class
dynrMeasurement-class The dynrMeasurement Class
dynrModel-class The dynrModel Class
dynrNoise-class The dynrNoise Class
dynrRecipe-class The dynrRecipe Class
dynrRegimes-class The dynrRegimes Class
dynrTrans-class The dynrTrans Class
getdx A wrapper function to call functions in the fda

package to obtain smoothed estimated
derivatives at a specified order

internalModelPrep Do internal model preparation for dynr
logLik.dynrCook Extract the log likelihood from a dynrCook

Object
names,dynrCook-method Extract the free parameter names of a dynrCook

object
names,dynrModel-method

Extract the free parameter names of a dynrModel
object

nobs.dynrCook Extract the number of observations for a
dynrCook object

nobs.dynrModel Extract the number of observations for a
dynrModel object

oscData Another simulated multilevel multi-subject time
series of a damped oscillator model

plot.dynrCook Plot method for dynrCook objects

dynr-package 7

plotFormula Plot the formula from a model
plotGCV A function to evaluate the generalized

cross-validation (GCV) values associated with
derivative estimates via Bsplines at a range of
specified smoothing parameter (lambda) values

predict.dynrModel 'predict' method for 'dynrModel' objects
prep.formulaDynamics Recipe function for specifying dynamic

functions using formulas
prep.initial Recipe function for preparing the initial

conditions for the model.
prep.loadings Recipe function to quickly create factor

loadings
prep.matrixDynamics Recipe function for creating Linear Dynamics

using matrices
prep.measurement Prepare the measurement recipe
prep.noise Recipe function for specifying the measurement

error and process noise covariance structures
prep.regimes Recipe function for creating regime switching

(Markov transition) functions
prep.tfun Create a dynrTrans object to handle the

transformations and inverse transformations of
model paramters

printex The printex Method
summary.dynrCook Get the summary of a dynrCook object
theta_plot A function to plot simple slopes and region of

significance.
vcov.dynrCook Extract the Variance-Covariance Matrix of a

dynrCook object
vdpData Another simulated multilevel multi-subject time

series of a Van der Pol Oscillator

Because the dynr package compiles C code in response to user input, more setup is required for the
dynr package than for many others. We acknowledge that this additional setup can be bothersome,
but we believe the ease of use for the rest of the package and the wide variety of models it is possible
to fit with it will compensate for this initial burden. Hopefully you will agree!

See the installation vignette referenced in the Examples section below for installation instructions.

The naming convention for dynr exploits the pronunciation of the package name, dynr, pronounced
the same as “dinner”. That is, the names of functions and methods are specifically designed to relate
to things done surrounding dinner, such as gathering ingredients (e.g., the data), preparing recipes,
cooking, and serving the finished product. The general procedure for using the dynr package can
be summarized in five steps as below.

1. Data are prepared using with the dynr.data() function.

2. Recipes are prepared. To each part of a model there is a corresponding prep.*() recipe func-
tion. Examples of such prep.*() functions include: prep.measurement(), prep.matrixDynamics(),
prep.formulaDynamics(), prep.initial(), prep.noise(), and prep.regimes().

3. The function dynr.model() mixes the data and recipes together into a model object of class
dynrModel.

8 dynr-package

4. The model is cooked with dynr.cook().

5. Results from model fitting and related estimation are served using functions such as summary(),
plot(), dynr.ggplot() (or its alias autoplot()), plotFormula(), and printex().

Note

State-space modeling, dynamic model, differential equation, regime switching, nonlinear

Author(s)

NA

Maintainer: Michael D. Hunter <mike.dynr@gmail.com>

References

Chow S, Grimm KJ, Guillaume F, Dolan CV, McArdle JJ (2013). “Regime-switching bivari-
ate dual change score model.” Multivariate Behavioral Research, 48(4), 463-502. doi:10.1080/
00273171.2013.787870.

Chow S, Zhang G (2013). “Nonlinear Regime-Switching State-Space (RSSS) Models.” Psychome-
trika: Application Reviews and Case Studies, 78(4), 740-768. doi:10.1007/s1133601393308.

Ou L, Hunter MD, Chow S (2019). “What’s for dynr: A package for linear and nonlinear dynamic
modeling in R.” The R Journal, 11(1), 1-20.

Yang M, Chow S (2010). “Using state-space model with regime switching to represent the dynamics
of Facial electromyography (EMG) data.” Psychometrika: Application and Case Studies, 74(4),
744-771. doi:10.1007/s1133601091762.

Chow S, Ou L, Ciptadi A, Prince E, You D, Hunter MD, Rehg JM, Rozga A, Messinger DS (2018).
“Representing sudden shifts in intensive dyadic interaction data using differential equation models
with regime switching.” Psychometrika, 83, 476-510. doi:10.1007/s1133601896051.

See Also

For other annotated tutorials using the dynr package see https://quantdev.ssri.psu.edu/
resources/what%E2%80%99s-dynr-package-linear-and-nonlinear-dynamic-modeling-r

Examples

For installation instructions see the package vignette below
Not run:
vignette(package='dynr', 'InstallationForUsers')

End(Not run)
This should open a pdf/html file to guide you through proper
installation and configuration.

#For illustrations of the functions in dynr, check out some of the demo examples in:
Not run:
demo(package='dynr')

End(Not run)

https://doi.org/10.1080/00273171.2013.787870
https://doi.org/10.1080/00273171.2013.787870
https://doi.org/10.1007/s11336-013-9330-8
https://doi.org/10.1007/s11336-010-9176-2
https://doi.org/10.1007/s11336-018-9605-1
https://quantdev.ssri.psu.edu/resources/what%E2%80%99s-dynr-package-linear-and-nonlinear-dynamic-modeling-r
https://quantdev.ssri.psu.edu/resources/what%E2%80%99s-dynr-package-linear-and-nonlinear-dynamic-modeling-r

autoplot.dynrTaste 9

#For example, to run the demo 'LinearSDE' type
the following without the comment character (#) in front of it.
Not run:
demo('LinearSDE', package='dynr')

End(Not run)

autoplot.dynrTaste The ggplot of the outliers estimates.

Description

The ggplot of the outliers estimates.

Usage

S3 method for class 'dynrTaste'
autoplot(object, numSubjDemo = 2, idtoPlot = NULL,
names.state = NULL, names.observed = NULL, ...)

Arguments

object A dynrTaste object.

numSubjDemo The number of subjects, who have largest joint chi-square statistic, to be selected
for plotting.

idtoPlot Values of the ID variable to plot.

names.state (optional) The names of the states to be plotted, which should be a subset of the
state.names slot of the measurement slot of dynrModel. If NULL, the t statistic
plots for all state variables will be included.

names.observed (optional) The names of the observed variables to be plotted, which should be a
subset of the obs.names slot of the measurement slot of dynrModel. If NULL,
the t statistic plots for all observed variables will be included.

... Place holder for other arguments. Please do not use.

Value

a list of ggplot objects for each ID. The plots of chi-square statistics (joint and independent), and
the plots of t statistic for names.state and names.observed will be included. Users can modify
the ggplot objects using ggplot grammar. If a filename is provided, a pdf of plots will be saved
additionally.

10 coef.dynrModel

coef.dynrModel Extract fitted parameters from a dynrCook Object

Description

aliases coef.dynrModel coef<- coef<-.dynrModel

Usage

S3 method for class 'dynrModel'
coef(object, ...)

coef(object) <- value

S3 replacement method for class 'dynrModel'
coef(object) <- value

S3 method for class 'dynrCook'
coef(object, ...)

Arguments

object The dynrCook object for which the coefficients are desired

... further named arguments, ignored for this method

value values for setting

Value

A numeric vector of the fitted parameters.

See Also

Other S3 methods logLik.dynrCook

Examples

Create a minimal cooked model called 'cook'
require(dynr)

meas <- prep.measurement(
values.load=matrix(c(1, 0), 1, 2),
params.load=matrix(c('fixed', 'fixed'), 1, 2),
state.names=c("Position","Velocity"),
obs.names=c("y1"))

ecov <- prep.noise(
values.latent=diag(c(0, 1), 2),
params.latent=diag(c('fixed', 'dnoise'), 2),

confint.dynrCook 11

values.observed=diag(1.5, 1),
params.observed=diag('mnoise', 1))

initial <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")

model <- dynr.model(dynamics=dynamics, measurement=meas,
noise=ecov, initial=initial, data=data)

Not run:
cook <- dynr.cook(model,
verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)

Now grab the coef!
coef(cook)

End(Not run)

confint.dynrCook Confidence Intervals for Model Parameters

Description

Confidence Intervals for Model Parameters

Usage

S3 method for class 'dynrCook'
confint(object, parm, level = 0.95,
type = c("delta.method", "endpoint.transformation"),
transformation = NULL, ...)

Arguments

object a fitted model object

parm which parameters are to be given confidence intervals

level the confidence level

12 confint.dynrCook

type The type of confidence interval to compute. See details. Partial name matching
is used.

transformation For type='endpoint.transformation' the transformation function used.

... further named arguments. Ignored.

Details

The parm argument can be a numeric vector or a vector of names. If it is missing then it defaults to
using all the parameters.

These are Wald-type confidence intervals based on the standard errors of the (transformed) parame-
ters. Wald-type confidence intervals are known to be inaccurate for variance parameters, particularly
when the variance is near zero (See references for issues with Wald-type confidence intervals).

Value

A matrix with columns giving lower and upper confidence limits for each parameter. These will be
labelled as (1-level)/2 and 1 - (1-level)/2 as a percentage (e.g. by default 2.5

References

Pritikin, J.N., Rappaport, L.M. & Neale, M.C. (In Press). Likelihood-Based Confidence Intervals
for a Parameter With an Upper or Lower Bound. Structural Equation Modeling. DOI: 10.1080/10705511.2016.1275969

Neale, M. C. & Miller M. B. (1997). The use of likelihood based confidence intervals in genetic
models. Behavior Genetics, 27(2), 113-120.

Pek, J. & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrica, 80(4), 1123-1145.

Wu, H. & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
genetics, 42(6), 886-898.

Examples

Minimal model
require(dynr)

meas <- prep.measurement(
values.load=matrix(c(1, 0), 1, 2),
params.load=matrix(c('fixed', 'fixed'), 1, 2),
state.names=c("Position","Velocity"),
obs.names=c("y1"))

ecov <- prep.noise(
values.latent=diag(c(0, 1), 2),
params.latent=diag(c('fixed', 'dnoise'), 2),
values.observed=diag(1.5, 1),
params.observed=diag('mnoise', 1))

initial <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),

diag,character-method 13

values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")

model <- dynr.model(dynamics=dynamics, measurement=meas,
noise=ecov, initial=initial, data=data)

Not run:
cook <- dynr.cook(model,
verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)

Now get the confidence intervals
But note that they are nonsense because we set hessian_flag=FALSE !!!!
confint(cook)

End(Not run)

diag,character-method Create a diagonal matrix from a character vector

Description

Create a diagonal matrix from a character vector

Usage

S4 method for signature 'character'
diag(x = 1, nrow, ncol)

Arguments

x Character vector used to create the matrix

nrow Numeric. Number of rows for the resulting matrix.

ncol Numeric. Number of columns for the resulting matrix.

Details

We create a new method for diag with character input. The default behavior for missing nrow
and/or ncol arguments is the same as for the diag function in the base package. Off-diagonal
entries are filled with "0".

14 dynr.config

Value

A matrix

Examples

diag(letters[1:3])

dynr.config Check that dynr in configured properly

Description

Check that dynr in configured properly

Usage

dynr.config(verbose = FALSE)

Arguments

verbose logical. Whether to print messages during/after checks

Details

The ’dynr’ package requires additional set-up and configuration beyond just installing the package.
In particular, it requires compiling C code along with GSL to run (cook) models. This function
runs some basic checks of the configuration. We check that (1) R is on the PATH variable, (2)
Rtools exists and is on the PATH variable for Windows, (3) a C compiler is available, and (4) GSL
is available and on the PATH.

In general, see the ’Installation for Users’ vignette for set-up and configuration instructions.

Value

No return value.

Examples

Not run: dynr.config()

dynr.cook 15

dynr.cook Cook a dynr model to estimate its free parameters

Description

Cook a dynr model to estimate its free parameters

Usage

dynr.cook(dynrModel, conf.level = 0.95, infile, optimization_flag = TRUE,
hessian_flag = TRUE, verbose = TRUE, weight_flag = FALSE,
debug_flag = FALSE, perturb_flag = FALSE)

Arguments

dynrModel a dynr model compiled using dynr.model, consisting of recipes for submodels,
starting values, parameter names, and C code for each submodel

conf.level a cumulative proportion indicating the level of desired confidence intervals for
the final parameter estimates (default is .95)

infile (not required for models specified through the recipe functions) the name of a
file that has the C codes for all dynr submodels for those interested in specifying
a model directly in C

optimization_flag

a flag (TRUE/FALSE) indicating whether optimization is to be done.

hessian_flag a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.

verbose a flag (TRUE/FALSE) indicating whether more detailed intermediate output dur-
ing the estimation process should be printed

weight_flag a flag (TRUE/FALSE) indicating whether the negative log likelihood function
should be weighted by the length of the time series for each individual

debug_flag a flag (TRUE/FALSE) indicating whether users want additional dynr output that
can be used for diagnostic purposes

perturb_flag a flag (TRUE/FLASE) indicating whether to perturb the latent states during es-
timation. Only useful for ensemble forecasting.

Details

Free parameter estimation uses the SLSQP routine from NLOPT.

The typical items returned in the cooked model are the filtered and smoothed latent variable esti-
mates. eta_smooth_final, error_cov_smooth_final and pr_t_given_T are respectively time-
varying smoothed latent variable mean estimates, smoothed error covariance estimates, and smoothed
regime probability. eta_filtered, error_cov_filtered and pr_t_given_t are respectively
time-varying filtered latent variable mean estimates, filtered error covariance matrix estimates, and
filtered regime probability. Note that if theta.formula is provided in dynrModel@dynamics, this

16 dynr.cook

assumes that random effects are present in the dynamic equation. This would call an internal func-
tion to insert the random effect components as additional state variables. In this case, the last set of
elements (rows) in eta_smooth_final would contain the estimated random effect components.

When debug_flag is TRUE, then additional information is passed into the cooked model. eta_predicted,
error_cov_predicted, innov_vec, and residual_cov are respectively time-varying predicted
latent variable mean estimates, predicted error covariance matrix estimates, the error/residual esti-
mates (innovation vector), and the error/residual covariance matrix estimates.

The exit flag given after optimization has finished is from the SLSQP optimizer. Generally, error
codes have negative values and successful codes have positive values. However, codes 5 and 6 do
not indicate the model converged, but rather simply ran out of iterations or time, respectively. A
more full description of each code is available at https://nlopt.readthedocs.io/en/latest/
NLopt_Reference/#return-values and is also listed in the table below.

NLOPT Term Numeric Code Description
SUCCESS 1 Generic success return value.
STOPVAL_REACHED 2 Optimization stopped because stopval (above) was reached.
FTOL_REACHED 3 Optimization stopped because ftol_rel or ftol_abs (above) was reached.
XTOL_REACHED 4 Optimization stopped because xtol_rel or xtol_abs (above) was reached.
MAXEVAL_REACHED 5 Optimization stopped because maxeval (above) was reached.
MAXTIME_REACHED 6 Optimization stopped because maxtime (above) was reached.
FAILURE -1 Generic failure code.
INVALID_ARGS -2 Invalid arguments (e.g. lower bounds are bigger than upper bounds, an unknown algorithm was specified, etcetera).
OUT_OF_MEMORY -3 Ran out of memory.
ROUNDOFF_LIMITED -4 Halted because roundoff errors limited progress. (In this case, the optimization still typically returns a useful result.)
FORCED_STOP -5 Halted because of a forced termination: the user called nlopt_force_stop(opt) on the optimization’s nlopt_opt object opt from the user’s objective function or constraints.
NONFINITE_FIT -6 Fit function is not finite (i.e., is NA, NaN, Inf or -Inf).

The last row of this table corresponding to an exit code of -6, is not from NLOPT, but rather is
specific to the dynr package.

Value

Object of class dynrCook.

See Also

autoplot, coef, confint, deviance, initialize, logLik, names, nobs, plot, print, show,
summary, vcov.

Examples

Minimal model
require(dynr)

meas <- prep.measurement(
values.load=matrix(c(1, 0), 1, 2),
params.load=matrix(c('fixed', 'fixed'), 1, 2),
state.names=c("Position","Velocity"),

https://nlopt.readthedocs.io/en/latest/NLopt_Reference/#return-values
https://nlopt.readthedocs.io/en/latest/NLopt_Reference/#return-values

dynr.data 17

obs.names=c("y1"))

ecov <- prep.noise(
values.latent=diag(c(0, 1), 2),
params.latent=diag(c('fixed', 'dnoise'), 2),
values.observed=diag(1.5, 1),
params.observed=diag('mnoise', 1))

initial <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")

model <- dynr.model(dynamics=dynamics, measurement=meas,
noise=ecov, initial=initial, data=data)

Not run:
Now cook the model!
cook <- dynr.cook(model,
verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)

End(Not run)

dynr.data Create a list of data for parameter estimation (cooking dynr) using
dynr.cook

Description

Create a list of data for parameter estimation (cooking dynr) using dynr.cook

Usage

dynr.data(dataframe, id = "id", time = "time", observed, covariates)

Arguments

dataframe either a “ts” class object of time series data for a single subject or a data frame
object of data for potentially multiple subjects that contain a column of subject
ID numbers (i.e., an ID variable), a column indicating subject-specific measure-
ment occasions (i.e., a TIME variable), at least one column of observed values,

18 dynr.flowField

and any number of covariates. If the data are fit to a discrete-time model, the
TIME variable should contain subject-specific sequences of (subsets of) consec-
utively equally spaced numbers (e.g, 1, 2, 3, ...). That is, the program assumes
that the input data.frame is equally spaced with potential missingness. If the
measurement occasions for a subject are a subset of an arithmetic sequence but
are not consecutive, NAs will be inserted automatically to create an equally
spaced data set before estimation. If the data are fit to a continuous-time model,
the TIME varibles can contain subject-specific increasing sequences of irregu-
larly spaced real numbers. Missing values in the observed variables shoud be
indicated by NA. Missing values in covariates are not allowed. That is, missing
values in the covariates, if there are any, should be imputed first.

id a character string of the name of the ID variable in the data. Optional for a “ts”
class object.

time a character string of the name of the TIME variable in the data. Optional for a
“ts” class object.

observed a vector of character strings of the names of the observed variables in the data.
Optional for a “ts” class object.

covariates (optional) a vector of character strings of the names of the covariates in the data,
which can be missing.

Value

A list with components as needed for dynr.model

Examples

data(EMGsim)
dd <- dynr.data(EMGsim, id = 'id', time = 'time', observed = 'EMG', covariates = 'self')

z <- ts(matrix(rnorm(300), 100, 3), start = c(1961, 1), frequency = 12)
dz <- dynr.data(z)

dynr.flowField A Function to plot the flow or velocity field for a one or two dimen-
sional autonomous ODE system from the phaseR package written by
Michael J. Grayling.

Description

A Function to plot the flow or velocity field for a one or two dimensional autonomous ODE system
from the phaseR package written by Michael J. Grayling.

Usage

dynr.flowField(deriv, xlim, ylim, parameters = NULL, system = "two.dim",
points = 21, col = "gray", arrow.type = "equal", arrow.head = 0.05,
frac = 1, add = TRUE, xlab = "x", ylab = "y", state.names = c("x",
"y"), ...)

dynr.flowField 19

Arguments

deriv A function computing the derivative at a point for the ODE system to be anal-
ysed. For examples see the phaseR package guide.

xlim A vector of length two setting the lower and upper limits of the variable to be
plotted on the horizontal axis (usually the first variable returned by the function
deriv)

ylim A vector of length two setting the lower and upper limits of the variable to be
plotted on the vertical axis (usually the second variable returned by the function
deriv)

parameters Parameters of the ODE system, to be passed to deriv. Supplied as a vector; the
order of the parameters can be found from the deriv file. Defaults to NULL.

system Set to either "one.dim" or "two.dim" to indicate the type of system being anal-
ysed. Defaults to "two.dim".

points Sets the density of the line segments to be plotted. Defaults to 11.

col Sets the color of the plotted line segments. Defaults to "gray". Should be a
vector of length one. Will be reset accordingly if it is a vector of the wrong
length.

arrow.type Sets the type of line segments plotted. Options include: "proportional" = the
length of the line segments reflects the magnitude of the derivative. "equal" the
line segments take equal lengths, simply reflecting the gradient of the deriva-
tive(s). Defaults to "equal".

arrow.head Sets the length of the arrow heads. Passed to arrows. Defaults to 0.05.

frac Sets the fraction of the theoretical maximum length line segments can take with-
out overlapping, that they can actually attain. In practice, frac can be set to
greater than 1 without line segments overlapping.

add Logical. Defaults to TRUE. TRUE = the flow field is added to an existing plot;
FALSE = a new plot is created.

xlab Label for the x-axis of the resulting plot. Defaults to "x".

ylab Label for the y-axis of the resulting plot. Defaults to "y".

state.names State names for ode functions that do not use positional states

... Additional arguments to be passed to either plot or arrows.

Value

Returns a list with the following components: add, arrow.head, arrow.type, col, deriv, dx, dy, frac,
parameters, points, system, x, xlab, xlim, y, ylab, ylim. Most of these components correspond
simply to their original input values.

The only new elements are:

dx = A matrix. In the case of a two dimensional system, the values of the derivative of the first
dependent derivative at all evaluated points.

dy = A matrix. In the case of a two dimensional system, the values of the derivative of the second
dependent variable at all evaluated points. In the case of a one dimensional system, the values of
the derivative of the dependent variable at all evaluated points.

20 dynr.ggplot

x = A vector. In the case of a two dimensional system, the values of the first dependent variable at
which the derivatives were computed. In the case of a one dimensional system, the values of the
independent variable at which the derivatives were computed.

y = A vector. In the case of a two dimensional system, the values of the second dependent variable
at which the derivatives were computed. In the case of a one dimensional system, the values of the
dependent variable at which the derivatives were computed.

Note

The phaseR package was taken off cran as off 10/1/2019 so we are exporting some selected func-
tions from phaseR_2.0 published on 8/20/2018. For details of these functions please see original
documentations on the phaseR package.

References

Grayling, Michael J. (2014). phaseR: An R Package for Phase Plane Analysis of Autonomous ODE
Systems. The R Journal, 6(2), 43-51. DOI: 10.32614/RJ-2014-023. Available at https://doi.org/10.32614/RJ-
2014-023

dynr.ggplot The ggplot of the smoothed state estimates and the most likely regimes

Description

The ggplot of the smoothed state estimates and the most likely regimes

Usage

dynr.ggplot(res, dynrModel, style = 1, numSubjDemo = 2, idtoPlot = c(),
names.state, names.observed, names.regime, shape.values, title, ylab,
is.bw = FALSE, colorPalette = "Set2", fillPalette = "Set2",
mancolorPalette, manfillPalette, ...)

S3 method for class 'dynrCook'
autoplot(object, dynrModel, style = 1, numSubjDemo = 2,
idtoPlot = c(), names.state, names.observed, names.regime, shape.values,
title, ylab, is.bw = FALSE, colorPalette = "Set2", fillPalette = "Set2",
mancolorPalette, manfillPalette, ...)

Arguments

res The dynr object returned by dynr.cook().

dynrModel The model object to plot.

style The style of the plot. If style is 1 (default), user-selected smoothed state vari-
ables are plotted. If style is 2, user-selected observed-versus-predicted values
are plotted.

dynr.ggplot 21

numSubjDemo The number of subjects to be randomly selected for plotting.
idtoPlot Values of the ID variable to plot.
names.state (optional) The names of the states to be plotted, which should be a subset of the

state.names slot of the measurement slot of dynrModel.
names.observed (optional) The names of the observed variables to be plotted, which should be a

subset of the obs.names slot of the measurement slot of dynrModel.
names.regime (optional) The names of the regimes to be plotted, which can be missing.
shape.values (optional) A vector of values that correspond to the shapes of the points, which

can be missing. See the R documentation on pch for details on possible shapes.
title (optional) A title of the plot.
ylab (optional) The label of the y axis.
is.bw Is plot in black and white? The default is FALSE.
colorPalette A color palette for lines and dots. It is a value passed to the palette argument

of the ggplot2::scale_colour_brewer() function. These palettes are in the
R package RColorBrewer. One can find them by attaching the package with
library(RColorBrewer) and run display.brewer.all().

fillPalette A color palette for blocks. It is a value passed to the palette argument of the
ggplot2::scale_fill_brewer() function. These palettes are in the package
RColorBrewer. One can find them by attaching the package with library(RColorBrewer)
and run display.brewer.all().

mancolorPalette

(optional) A color palette for manually scaling the colors of lines and dots. It is a
vector passed to the values argument of the ggplot2::scale_colour_manual
function.

manfillPalette (optional) A color palette for manually scaling the colors of filled blocks. It is
a vector passed to the values argument of the ggplot2::scale_fill_manual
function.

... A list of elements that modify the existing ggplot theme. Consult the ggplot2::theme()
function in the R package ggplot2 for more options.

object The same as res. The dynr object returned by dynr.cook().

Details

This function outputs a ggplot layer that can be modified using functions in the package ggplot2.
That is, one can add layers, scales, coords and facets with the "+" sign. In an example below,
the ggplot2::ylim() function is used to modify the limits of the y axis of the graph. More de-
tails can be found on https://ggplot2.tidyverse.org/ and https://ggplot2.tidyverse.
org/reference/.

The two functions dynr.ggplot() and autoplot() as identical aliases of one another. The autoplot()
function is an S3 method from the package ggplot2 that allows many objects to be plotted and works
like the base plot() function.

Value

ggplot object

ggplot object

https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/reference/
https://ggplot2.tidyverse.org/reference/

22 dynr.ldl

Examples

The following code is part of a demo example in dynr
Not run:
demo(RSLinearDiscreteYang, package='dynr')
p <- dynr.ggplot(yum, dynrModel = rsmod, style = 1,

names.regime = c("Deactivated", "Activated"),
title = "(B) Results from RS-AR model", numSubjDemo = 1,
shape.values = c(1),
text = element_text(size = 16),
is.bw = TRUE)

One can modify the limits on the y axis by using '+'
p + ggplot2::ylim(-2, 4)

autoplot(yum, dynrModel = rsmod, style = 1,
names.regime = c("Deactivated", "Activated"),
title = "(B) Results from RS-AR model", numSubjDemo = 1,
shape.values = c(1),
text = element_text(size = 16),
is.bw = TRUE)

End(Not run)

dynr.ldl LDL Decomposition for Matrices

Description

LDL Decomposition for Matrices

Usage

dynr.ldl(x)

Arguments

x a numeric matrix
This is a wrapper function around the chol function. The goal is to factor a
square, symmetric, positive (semi-)definite matrix into the product of a lower
triangular matrix, a diagonal matrix, and the transpose of the lower triangular
matrix. The value returned is a lower triangular matrix with the elements of D
on the diagonal.

Value

A matrix

dynr.mi 23

dynr.mi Multiple Imputation of dynrModel objects

Description

Multiple Imputation of dynrModel objects

Usage

dynr.mi(dynrModel, which.aux = NULL, which.lag = NULL, lag = 0,
which.lead = NULL, lead = 0, m = 5, iter = 5, imp.obs = FALSE,
imp.exo = TRUE, diag = TRUE, Rhat = 1.1, conf.level = 0.95,
verbose = TRUE, seed = NA)

Arguments

dynrModel dynrModel object. data and model setup

which.aux character. names of the auxiliary variables used in the imputation model

which.lag character. names of the variables to create lagged responses for imputation pur-
poses

lag integer. number of lags of variables in the imputation model

which.lead character. names of the variables to create leading responses for imputation
purposes

lead integer. number of leads of variables in the imputation model

m integer. number of multiple imputations

iter integer. number of MCMC iterations in each imputation

imp.obs logical. flag to impute the observed dependent variables

imp.exo logical. flag to impute the exogenous variables

diag logical. flag to use convergence diagnostics

Rhat numeric. value of the Rhat statistic used as the criterion in convergence diag-
nostics

conf.level numeric. confidence level used to generate confidence intervals

verbose logical. flag to print the intermediate output during the estimation process

seed integer. random number seed to be used in the MI procedure

Details

See the demo, demo(package='dynr', 'MILinearDiscrete'), for an illustrative example of us-
ing dynr.mi to implement multiple imputation with a vector autoregressive model.

24 dynr.model

Value

an object of ‘dynrMi’ class that is a list containing: 1. the imputation information, including a data
set containing structured lagged and leading variables and a ‘mids’ object from mice() function; 2.
the diagnostic information, including trace plots, an Rhat plot and a matrix containing Rhat values;
3. the estimation results, including parameter estimates, standard error estimates and confidence
intervals.

References

Ji, L., Chow, S-M., Schermerhorn, A.C., Jacobson, N.C., & Cummings, E.M. (2018). Handling
Missing Data in the Modeling of Intensive Longitudinal Data. Structural Equation Modeling: A
Multidisciplinary Journal, 1-22.

Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, and Sy-Miin Chow.
(2019). dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling. International
Journal of Computer, Electrical, Automation, Control and Information Engineering, 13, 302-311.

dynr.model Create a dynrModel object for parameter estimation (cooking dynr)
using dynr.cook

Description

Create a dynrModel object for parameter estimation (cooking dynr) using dynr.cook

Usage

dynr.model(dynamics, measurement, noise, initial, data, ...,
outfile = tempfile())

Arguments

dynamics a dynrDynamics object prepared with prep.formulaDynamics or prep.matrixDynamics

measurement a dynrMeasurement object prepared with prep.loadings or prep.measurement

noise a dynrNoise object prepared with prep.noise

initial a dynrInitial object prepared with prep.initial

data a dynrData object made with dynr.data

... additional arguments specifying other dynrRecipe objects. Argument regimes is
for a dynrRegimes object prepared with prep.regimes and argument transform
is for a dynrTrans object prepared with prep.tfun.

outfile a character string of the name of the output C script of model functions to be
compiled for parameter estimation. The default is the name for a potential tem-
porary file returned by tempfile().

dynr.model 25

Details

A dynrModel is a collection of recipes. The recipes are constructed with the functions prep.measurement,
prep.noise, prep.formulaDynamics, prep.matrixDynamics, prep.initial, and in the case of
regime-switching models prep.regimes. Additionally, data must be prepared with dynr.data and
added to the model.

Several named arguments can be passed into the ... section of the function. These include

• Argument regimes is for a dynrRegimes object prepared with prep.regimes

• Argument transform is for a dynrTrans object prepared with prep.tfun.

• Argument options a list of options. Check the NLopt website https://nlopt.readthedocs.
io/en/latest/NLopt_Reference/#stopping-criteria for details. Available options for
use with a dynrModel object include xtol_rel, stopval, ftol_rel, ftol_abs, maxeval, and max-
time, all of which control the termination conditions for parameter optimization. The examples
below show a case where options were set.

There are several available methods for dynrModel objects.

• The dollar sign ($) can be used to both get objects out of a model and to set pieces of the
model.

• names returns the names of the free parameters in a model.

• printex prints LaTeX expressions for the equations that compose a model. The output can
then be readily typeset for inclusion in presentations and papers.

• nobs gives the total number of observations (e.g. all times across all people)

• coef gives the free parameter starting values. Free parameters can also be assigned with
coef(model) <- aNamedVectorOfCoefficients

Value

Object of class ’dynrModel’

Examples

Create a minimal model called 'model'
without 'cooking' (i.e., estimating parameters)
require(dynr)

meas <- prep.measurement(
values.load=matrix(c(1, 0), 1, 2),
params.load=matrix(c('fixed', 'fixed'), 1, 2),
state.names=c("Position","Velocity"),
obs.names=c("y1"))

ecov <- prep.noise(
values.latent=diag(c(0, 1), 2),
params.latent=diag(c('fixed', 'dnoise'), 2),
values.observed=diag(1.5, 1),
params.observed=diag('mnoise', 1))

initial <- prep.initial(

https://nlopt.readthedocs.io/en/latest/NLopt_Reference/#stopping-criteria
https://nlopt.readthedocs.io/en/latest/NLopt_Reference/#stopping-criteria

26 dynr.plotFreq

values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")

Now here's the model!
model <- dynr.model(dynamics=dynamics, measurement=meas,
noise=ecov, initial=initial, data=data)

dynr.plotFreq Plot of the estimated frequencies of the regimes across all individuals
and time points based on their smoothed regime probabilities

Description

Plot of the estimated frequencies of the regimes across all individuals and time points based on their
smoothed regime probabilities

Usage

dynr.plotFreq(res, dynrModel, names.regime, title, xlab, ylab, textsize = 12,
print = TRUE)

Arguments

res The dynr object returned by dynr.cook().

dynrModel The model object to plot.

names.regime (optional) Names of the regimes (must match the length of the number of regimes)

title (optional) Title of the plot.

xlab (optional) Label of the x-axis.

ylab (optional) Label of the y-axis.

textsize (default = 12) Text size for the axis labels and title (= textsize + 2).

print (default = TRUE) A flag for whether the plot should be printed.

Value

ggplot object

dynr.taste 27

dynr.taste Detect outliers in state space models.

Description

Compute shocks and chi-squared diagnostics following Chow, Hamaker, and Allaire (2009). Using
Innovative Outliers to Detect Discrete Shifts in Dynamics in Group-Based State-Space Models

Usage

dynr.taste(dynrModel, dynrCook = NULL, which.state, which.obs,
conf.level = 0.99, alternative = c("two.sided", "less", "greater"),
debug_flag = FALSE)

Arguments

dynrModel an object of ‘dynrModel’ class.

dynrCook the ‘dynrCook’ object fitted with ‘debug_flag=TRUE’ for the ‘dynrModel’ ob-
ject. The default is NULL. If the dynrCook object were not provided, or the
object were cooked with ‘debug_flag=FALSE’, dynr.taste will fit the dynr-
Model object with ‘debug_flag=TRUE’ internally.

which.state a character vector of the names of latent variables. The outlier detection process
will be applied only to the chosen variable. If the argument is NA, all the latent
variables will be excluded in the outlier detection process. If the argument is
missing (defalut), all the latent variables will be chosen.

which.obs a character vector of the names of measured or observed variables. The outlier
detection process will be applied only to the chosen variable. If the argument is
NA, all the measured variables will be excluded in the outlier detection process.
If the argument is missing (defalut), all the measured variables will be chosen.

conf.level a numeric of confidence level that is used for outliers detection tests (chi-square
test and t-test). The default is 0.99.

alternative a character string specifying the alternative hypothesis of t-test, must be one of
“two.sided” (default), “greater” or “less”.

debug_flag a logical. ’TRUE’ for output of by-products related to t-value calculation

Value

an object of ‘dynrTaste’ class that is a list containing lists of results from the outlier detection
process. Vectors of ID and measured time points are included for later use, such as in dynr.taste2.
The values, p-values, and shock points related to ‘joint’ chi-square, ‘independent’ chi-square, and
t statistic for innovative and additive outliers are following in that order. The estimated delta for
innovative and additive components are in the last. If debug_flag is TRUE, The by-products of the
Kalman filter and smoother (Q, S, s, F_inv, N, u, r) would be added at the end. See the reference
for definition of the notations. The t statistic (estimate of an outlier divided by standard error of the
outlier) of the last time point is NA, because the Kalman smoothing process starts with setting r and

28 dynr.taste2

N to zero for the last time point (core elements of calculating estimates and the standard errors of
outliers) that lead to 0/0 of the t statistic of the last time point. For the time-varing models, more
NAs would appear at the end of times because the Kalman smoother needs more time points to
obtain all elements of r nad N from limited number of observed variables in the model.

The ‘delta_chi’ list comprises magnitude of innovative (Latent) and additive (Observed) outliers,
‘delta.L’ and ‘delta.O’, when chi-square statitics is used to detect outliers. The ‘delta_t’ list com-
prises magnitude of innovative (Latent) and additive (Observed) outliers, ‘delta.L’ and ‘delta.O’,
when t statitics is used to detect outliers.

References

Chow, S.-M., Hamaker, E. L., & Allaire, J. C. (2009). Using innovative outliers to detect discrete
shifts in dynamics in group-based state-space models. _Multivariate Behavioral Research_, 44,
465-496.

Examples

Not run:
See the demo for outlier detection, OutlierDetection.R
dynrCook <- dynr.cook(dynrModel)
dynrTaste <- dynr.taste(dynrModel, dynrCook)

Detect outliers related to 'eta1' out of, say, three latent
variables c("eta1", "eta2", "eta3"), and all measured variables.
dynrTaste <- dynr.taste(dynrModel, dynrCook, which.state=c("eta1"))

End(Not run)

dynr.taste2 Re-fit state-space model using the estimated outliers.

Description

The function dynr.taste2{} update the dynrModel object applying outliers from the dynrTaste
object, or outliers from users. The function then re-cook the model.

Usage

dynr.taste2(dynrModel, dynrCook, dynrTaste, delta_inn = c("t", "ind", "jnt",
"null"), delta_add = c("t", "ind", "jnt", "null"), delta_L = NULL,
delta_O = NULL, cook = TRUE, verbose = FALSE,
newOutfile = "new_taste.c")

Arguments

dynrModel an object of dynrModel class.

dynrCook an object of dynrCook class.

dynrTaste an object of dynrTaste class. The default is NULL.

dynr.taste2 29

delta_inn a character string for a method detecting ‘inn’ovative outliers, which must be
one of “t” (default), “ind”, “jnt” or “null”. According to the method, corre-
sponding delta estimates (magnitude of estimated outliers) will be included in
the new dynrModel in output. ‘t’ represents the t statistic, ‘ind’ represents the
independent chi-square statistic, ‘jnt’ represents the joint chi-square statistic. If
no outliers are assumed, “null” can be used.

delta_add a character string for a method detecting ‘add’itive outliers, which must be one
of “t” (default), “ind”, “jnt” or “null”. According to the method, corresponding
delta estimates will be included in the new dynrModel.

delta_L a data.frame containing user-specified latent outliers. The delta estimates from
dynrTaste will be ignored. The number of rows should equal to the total time
points, and the number of columns should equal to the number of latent vari-
ables.

delta_O a data.frame containing user-specified observed outliers. The delta estimates
from dynrTaste, and arguments of delta_inn and delta_add will be ignored.
The number of rows should equal to the total time points, and the number of
columns should equal to the number of observed variables.

cook a logical specifying whether the newly built model would be cooked by ’dynr.cook’
function. The default is TRUE. When ’cook=FALSE’, only the newly built
model will be saved for the output.

verbose a logical specifying the verbose argument of the new cook object. The default
is FALSE.

newOutfile a character string for outfile argument of dynr.model function to create new
dynrModel object. The default is "new_taste.c".

Details

The argument dynrTaste should be the dynrTaste object that is output of the dynr.taste function
the argument dynrModel is applied.

The argument dynrTaste can be NULL, if user-specified outliers are offered by the arguments
delta_L and delta_O.

Value

a list with the two arguments; a new dynrModel object the outliers are applied, and a dynrCook
object the new dynrModel object is cooked.

Examples

Not run:
See the demo for outlier detection, OutlierDetection.R
dynrCook <- dynr.cook(dynrModel)
dynrTaste <- dynr.taste(dynrModel, dynrCook)

Detect outliers related to 'eta1' out of, say, three latent
variables c("eta1", "eta2", "eta3"), and all measured variables.
taste2 <- dynr.taste2(dynrModel, dynrCook, dynrTaste)

End(Not run)

30 dynr.trajectory

dynr.trajectory A Function to perform numerical integration of the chosen ODE sys-
tem, for a user-specified set of initial conditions. Plots the resulting
solution(s) in the phase plane. This function from the phaseR package
written by Michael J. Grayling.

Description

A Function to perform numerical integration of the chosen ODE system, for a user-specified set of
initial conditions. Plots the resulting solution(s) in the phase plane. This function from the phaseR
package written by Michael J. Grayling.

Usage

dynr.trajectory(deriv, y0 = NULL, n = NULL, tlim, tstep = 0.01,
parameters = NULL, system = "two.dim", col = "black", add = TRUE,
state.names = c("x", "y"), ...)

Arguments

deriv A function computing the derivative at a point for the specified ODE system.
See the phaseR package guide for more examples.

y0 The initial condition(s) (ICs). In one-dimensional system, this can either be
a single number indicating a single IC or a vector indicating multiple ICs. In
two-dimensional system, this can either be a vector of length two reflecting the
location of the two dependent variables initially, or it can be matrix where each
row reflects a different set of ICs. Alternatively this can be left blank and the
user can use locator to specify initial condition(s) on a plot. In this case, for
one dimensional systems, all initial conditions are taken at tlim[1], even if not
selected so on the graph. Defaults to NULL.

n If y0 is left NULL so initial conditions can be specified using locator, n sets the
number of initial conditions to be chosen. Defaults to NULL.

tlim Sets the limits of the independent variable for which the solution should be plot-
ted. Should be a vector of length two. If tlim[2] > tlim[1], then tstep should be
negative to indicate a backwards trajectory.

tstep The step length of the independent variable, used in numerical integration. De-
faults to 0.01.

parameters Parameters of the ODE system, to be passed to deriv. Supplied as a vector; the
order of the parameters can be found from the deriv file. Defaults to NULL.

system Set to either "one.dim" or "two.dim" to indicate the type of system being anal-
ysed. Defaults to "two.dim".

col The color(s) to plot the trajectories in. Will be reset accordingly if it is a vector
not of the length of the number of initial conditions. Defaults to "black".

add Logical. Defaults to TRUE. TRUE = the trajectories added to an existing plot;
FALSE = a new plot is created.

dynr.version 31

state.names State names for the ODE functions that do not use positional states

... Additional arguments to be passed to either plot or arrows.

Value

Returns a list with the following components: add, col, deriv, n, parameters, system, tlim, tstep, t,
x, y, ylab, y0. Most of these components correspond simply to their original input values.

The only new elements are: t = A vector containing the values of the independent variable at each
integration step.

x = In the two dimensional system case, a matrix whose columns are the numerically computed
values of the first dependent variable for each set of ICs.

y = In the two dimensional system case, a matrix whose columns are the numerically computed
values of the second dependent variable for each initial condition. In the one dimensional system
case, a matrix whose columns are the numerically computed values of the dependent variable for
each initial condition.

y0 = As per input, but converted to a matrix if supplied as a vector initially.

Note

The phaseR package was taken off cran as off 10/1/2019 so we are exporting some selected func-
tions from phaseR_2.0 published on 8/20/2018. For details of these functions please see original
documentations on the phaseR package.

References

Grayling, Michael J. (2014). phaseR: An R Package for Phase Plane Analysis of Autonomous ODE
Systems. The R Journal, 6(2), 43-51. DOI: 10.32614/RJ-2014-023. Available at https://doi.org/10.32614/RJ-
2014-023

dynr.version Current Version String

Description

Current Version String

Usage

dynr.version(verbose = TRUE)

Arguments

verbose If TRUE, print detailed information to the console (default)
This function returns a string with the current version number of dynr. Option-
ally (with verbose = TRUE (the default)), it prints a message containing the
version of R and the platform. The primary purpose of the function is for bug
reporting.

32 dynrInitial-class

Value

A (length-one) object of class ’package_version’

Examples

dynr.version()
dynr.version(verbose=FALSE)
packageVersion("dynr")

dynrCook-class The dynrCook Class

Description

The dynrCook Class

Details

This is an internal class structure. You should not use it directly. Use dynr.cook instead.

dynrDynamics-class The dynrDynamics Class

Description

The dynrDynamics Class

Details

This is an internal class structure. The classes dynrDynamicsFormula-class and dynrDynamicsMatrix-class
are subclasses of this. However, you should not use it directly. Use prep.matrixDynamics or
prep.formulaDynamics instead.

dynrInitial-class The dynrInitial Class

Description

The dynrInitial Class

Details

This is an internal class structure. You should not use it directly. Use prep.initial instead.

dynrMeasurement-class 33

dynrMeasurement-class The dynrMeasurement Class

Description

The dynrMeasurement Class

Details

This is an internal class structure. You should not use it directly. Use prep.measurement or
prep.loadings instead.

dynrModel-class The dynrModel Class

Description

The dynrModel Class

Details

This is an internal class structure. You should not use it directly. Use dynr.model instead.

dynrNoise-class The dynrNoise Class

Description

The dynrNoise Class

Details

This is an internal class structure. You should not use it directly. Use prep.noise instead.

34 dynrTrans-class

dynrRecipe-class The dynrRecipe Class

Description

The dynrRecipe Class

Details

This is an internal class structure. You should not use it directly. The following are all subclasses of
this class: dynrMeasurement-class, dynrDynamics-class, dynrRegimes-class, dynrInitial-class,
dynrNoise-class, and dynrTrans-class. Recipes are the things that go into a dynrModel-class
using dynr.model. Use the recipe prep functions (prep.measurement, prep.formulaDynamics,
prep.matrixDynamics, prep.regimes, prep.initial, prep.noise, or prep.tfun) to create
these classes instead.

dynrRegimes-class The dynrRegimes Class

Description

The dynrRegimes Class

Details

This is an internal class structure. You should not use it directly. Use prep.regimes instead.

dynrTrans-class The dynrTrans Class

Description

The dynrTrans Class

Details

This is an internal class structure. You should not use it directly. Use prep.tfun instead.

EMG 35

EMG Single-subject time series of facial electromyography data

Description

A dataset obtained and analyzed in Yang and Chow (2010).

Usage

data(EMG)

Format

A data frame with 695 rows and 4 variables

Details

Reference: Yang, M-S. & Chow, S-M. (2010). Using state-space models with regime switching to
represent the dynamics of facial electromyography (EMG) data. Psychometrika, 74(4), 744-771

The variables are as follows:

• id. ID of the participant (= 1 in this case, over 695 time points)

• time Time in seconds

• iEMG. Observed integrated facial electromyograhy data

• SelfReport. Covariate - the individual’s concurrent self-reports

EMGsim Simulated single-subject time series to capture features of facial elec-
tromyography data

Description

A dataset simulated using an autoregressive model of order (AR(1)) with regime-specific AR weight,
intercept, and slope for a covariate. This model is a special case of Model 1 in Yang and Chow
(2010) in which the moving average coefficient is set to zero.

Reference: Yang, M-S. & Chow, S-M. (2010). Using state-space models with regime switching to
represent the dynamics of facial electromyography (EMG) data. Psychometrika, 74(4), 744-771

Usage

data(EMGsim)

Format

A data frame with 500 rows and 6 variables

36 ExpandRandomAsLVModel

Details

The variables are as follows:

• id. ID of the participant (= 1 in this case, over 500 time points)

• EMG. Hypothetical observed facial electromyograhy data

• self. Covariate - the individual’s concurrent self-reports

• truestate. The true score of the individual’s EMG at each time point

• trueregime. The true underlying regime for the individual at each time point

ExpandRandomAsLVModel Extend a user-specified model to include random varibles

Description

Extend a user-specified model to include random varibles

Usage

ExpandRandomAsLVModel(dynrModel)

Arguments

dynrModel a dynrModel object prepared with recipe functions prep.formulaDynamics,
prep.measurement, prep.noise, prep.initial, dynr.data.

Details

A dynrModel is a collection of recipes. The recipes are constructed with the functions unctions
prep.formulaDynamics, prep.measurement, prep.noise, prep.initial. Additionally, data
must be prepared with dynr.data and added to the model.

Value

an object of dynrModel that is the expanede model.

Examples

model <- dynr.model(dynamics=dynm, measurement=meas, noise=mdcov,
initial=initial, data=data, outfile="osc.cpp")
extended_model <- ExpandRandomAsLVModel(model)

For full demo examples, see:
demo(OscWithRand, package="dynr")
demo(VDPwithRand, package="dynr")

getdx 37

getdx A wrapper function to call functions in the fda package to obtain
smoothed estimated derivatives at a specified order

Description

A wrapper function to call functions in the fda package to obtain smoothed estimated derivatives at
a specified order

Usage

getdx(theTimes, norder, roughPenaltyMax, lambda, dataMatrix, derivOrder)

Arguments

theTimes The time points at which derivative estimation are requested

norder Order of Bsplines - usually 2 higher than roughPenaltyMax
roughPenaltyMax

Penalization order. Usually set to 2 higher than the highest-order derivatives
desired

lambda A positive smoothing parameter: larger –> more smoothing

dataMatrix Data of size total number of time points x total number of subjects

derivOrder The order of the desired derivative estimates

Value

A list containing: 1. out (a matrix containing the derivative estimates at the specified order that
matches the dimension of dataMatrix); 2. basisCoef (estimated basis coefficients); 3. basis2 (basis
functions)

References

Chow, S-M. (2019). Practical Tools and Guidelines for Exploring and Fitting Linear and Nonlinear
Dynamical Systems Models. Multivariate Behavioral Research. https://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=1520409

Chow, S-M., *Bendezu, J. J., Cole, P. M., & Ram, N. (2016). A Comparison of Two- Stage Ap-
proaches for Fitting Nonlinear Ordinary Differential Equation (ODE) Models with Mixed Effects.
Multivariate Behavioral Research, 51, 154-184. Doi: 10.1080/00273171.2015.1123138.

Examples

data("LinearOsc")
Number of subjects is 10
numP <- length(unique(LinearOsc$ID))
Number of time points is 100
numT <- max(table(LinearOsc$ID))
out2 <- matrix(LinearOsc$x, ncol=numP, byrow=FALSE)

38 internalModelPrep

theTimes <- LinearOsc$theTimes[1:numT]
Order of Bsplines - usually 2 higher than roughPenaltyMax
norder <- 6
Penalization order
roughPenaltyMax <- 4
Pick lambda value that gives the low GCV
Could/should use plotGCV instead
sp <- 1/2
Smoothed level
x <- getdx(theTimes, norder, roughPenaltyMax, sp, out2, 0)[[1]]
Smoothed 1st derivs
dx <- getdx(theTimes, norder, roughPenaltyMax, sp, out2, 1)[[1]]
Smoothed 2nd derivs
d2x = getdx(theTimes, norder, roughPenaltyMax, sp, out2, 2)[[1]]

internalModelPrep Do internal model preparation for dynr

Description

Principally, this function takes a host of arguments and gives back a list that importantly includes
the function addresses.

Usage

internalModelPrep(num_regime, dim_latent_var, xstart, ub, lb,
options = default.model.options, isContinuousTime, infile, outfile,
compileLib, verbose)

Arguments

num_regime An integer number of the regimes.

dim_latent_var An integer number of the latent variables.

xstart The starting values for parameter estimation.

ub The upper bounds of the estimated parameters.

lb The lower bounds of the estimated parameters.

options A list of NLopt estimation options. By default, xtol_rel=1e-7, stopval=-9999,
ftol_rel=-1, ftol_abs=-1, maxeval=as.integer(-1), and maxtime=-1.

isContinuousTime

A binary flag indicating whether the model is a continuous-time model (FALSE/0
= no; TRUE/1 = yes)

infile Input file name

outfile Output file name

compileLib Whether to compile the libary anew

verbose Logical flag for verbose output

LinearOsc 39

Value

A list of model statements to be passed to dynr.cook().

LinearOsc Simulated time series data for a deterministic linear damped oscillator
model

Description

The variables are as follows:

Usage

data(LinearOsc)

Format

A data frame with 1000 rows and 3 variables

Details

• ID. ID of the systems (1 to 10)

• x. Latent level variable

• theTimes. Measured time Points

Examples

The following was used to generate the data
#--------------------------------------
Not run:
Osc <- function(t, prevState, parms) {

x1 <- prevState[1] # x1[t]
x2 <- prevState[2] # x2[t]
eta1 = parms[1]
zeta1 = parms[2]
with(as.list(parms), {
dx1 <- x2
dx2 <- eta1*x1 + zeta1*x2
res<-c(dx1,dx2)
list(res)

}
)

}
n = 10 #Number of subjects
T = 100 #Number of time points
deltaT = .1 #dt
lastT = deltaT*T #Value of t_{i,T}
theTimes = seq(0, lastT, length=T) #A list of time values

40 LogisticSetPointSDE

eta = -.8
zeta = -.1
out1 = matrix(NA,T*n,1)
trueOut = matrix(NA,T*n,1)
parms = c(eta, zeta)

for (i in 1:n){
xstart = c(rnorm(1,0,2),rnorm(1,0,.5))
out <- lsoda(as.numeric(xstart), theTimes, Osc, parms)
trueOut[(1+(i-1)*T):(i*T)] = out[,2]
out1[(1+(i-1)*T):(i*T)] = out[,2]+rnorm(T,0,1)
}

LinearOsc= data.frame(ID=rep(1:n,each=T),x=out1[,1],
theTimes=rep(theTimes,n))

save(LinearOsc,file="LinearOsc.rda")

End(Not run)

LogisticSetPointSDE Simulated time series data for a stochastic linear damped oscillator
model with logistic time-varying setpoints

Description

A dataset simulated using a continuous-time stochastic linear damped oscillator model. The vari-
ables are as follows:

Usage

data(LogisticSetPointSDE)

Format

A data frame with 2410 rows and 6 variables

Details

• id. ID of the systems (1 to 10)

• times. Time index (241 time points for each system)

• x. Latent level variable

• y. Latent first derivative variable

• z. True values of time-varying setpoints

• obsy. Observed level

logLik.dynrCook 41

Examples

The following was used to generate the data
#---------------------------------------
Not run:
require(Sim.DiffProc)
freq <- -1
damp <- -.1
mu <- -2
r <- .5
b <- .1
sigma1 <- 0.1
sigma2 <- 0.1
fx <- expression(y, freq*(x-z) + damp*y, r*z*(1-b*z))
gx <- expression(0, sigma1, 0)
r3dall <- c()
for (j in 1:10){

r3dtemp <- c(-5,0,.1)
r3d <- r3dtemp
for (i in seq(0.125, 30, by=0.125)){
mod3dtemp <- snssde3d(drift=fx, diffusion=gx, M=1, t0=i-0.125,

x0=as.numeric(r3dtemp), T=i, N=500, type="str",
method="smilstein")

r3dtemp <- rsde3d(mod3dtemp,at=i)
r3d <-rbind(r3d,r3dtemp)

}
r3dall <- rbind(r3dall, cbind(r3d, id=j))

}

r3dall$obsy <- r3dall$x+rnorm(length(r3dall$x),0,1)
write.table(r3dall, file="LogisticSetPointSDE.txt")

End(Not run)

logLik.dynrCook Extract the log likelihood from a dynrCook Object

Description

Extract the log likelihood from a dynrCook Object

Usage

S3 method for class 'dynrCook'
logLik(object, ...)

S3 method for class 'dynrCook'
deviance(object, ...)

42 logLik.dynrCook

Arguments

object The dynrCook object for which the log likelihood is desired

... further named arguments, ignored for this method

Details

The ’df’ attribute for this object is the number of freely estimated parameters. The ’nobs’ attribute
is the total number of rows of data, adding up the number of time points for each person.

The deviance method returns minus two times the log likelihood.

Value

In the case of logLik, an object of class logLik.

See Also

Other S3 methods coef.dynrCook

Examples

Minimal model
require(dynr)

meas <- prep.measurement(
values.load=matrix(c(1, 0), 1, 2),
params.load=matrix(c('fixed', 'fixed'), 1, 2),
state.names=c("Position","Velocity"),
obs.names=c("y1"))

ecov <- prep.noise(
values.latent=diag(c(0, 1), 2),
params.latent=diag(c('fixed', 'dnoise'), 2),
values.observed=diag(1.5, 1),
params.observed=diag('mnoise', 1))

initial <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")

model <- dynr.model(dynamics=dynamics, measurement=meas,
noise=ecov, initial=initial, data=data)

names,dynrCook-method 43

Not run:
cook <- dynr.cook(model,
verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)

Now get the log likelihood!
logLik(cook)

End(Not run)

names,dynrCook-method Extract the free parameter names of a dynrCook object

Description

Extract the free parameter names of a dynrCook object

Usage

S4 method for signature 'dynrCook'
names(x)

Arguments

x The dynrCook object from which the free parameter names are desired

names,dynrModel-method

Extract the free parameter names of a dynrModel object

Description

Extract the free parameter names of a dynrModel object

Usage

S4 method for signature 'dynrModel'
names(x)

Arguments

x The dynrModel object from which the free parameter names are desired

44 nobs.dynrCook

nobs.dynrCook Extract the number of observations for a dynrCook object

Description

Extract the number of observations for a dynrCook object

Usage

S3 method for class 'dynrCook'
nobs(object, ...)

Arguments

object A fitted model object

... Further named arguments. Ignored.

Details

We return the total number of rows of data, adding up the number of time points for each person.
For some purposes, you may want the mean number of observations per person or the number of
people instead. These are not currently supported via nobs.

Value

A single number. The total number of observations across all IDs.

Examples

Minimal model
require(dynr)

meas <- prep.measurement(
values.load=matrix(c(1, 0), 1, 2),
params.load=matrix(c('fixed', 'fixed'), 1, 2),
state.names=c("Position","Velocity"),
obs.names=c("y1"))

ecov <- prep.noise(
values.latent=diag(c(0, 1), 2),
params.latent=diag(c('fixed', 'dnoise'), 2),
values.observed=diag(1.5, 1),
params.observed=diag('mnoise', 1))

initial <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

nobs.dynrModel 45

dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")

model <- dynr.model(dynamics=dynamics, measurement=meas,
noise=ecov, initial=initial, data=data)

Not run:
cook <- dynr.cook(model,
verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)

Now get the total number of observations
nobs(cook)

End(Not run)

nobs.dynrModel Extract the number of observations for a dynrModel object

Description

Extract the number of observations for a dynrModel object

Usage

S3 method for class 'dynrModel'
nobs(object, ...)

Arguments

object An unfitted model object

... Further named arguments. Ignored.

Details

We return the total number of rows of data, adding up the number of time points for each person.
For some purposes, you may want the mean number of observations per person or the number of
people instead. These are not currently supported via nobs.

Value

A single number. The total number of observations across all IDs.

46 NonlinearDFAsim

Examples

Create a minimal uncooked model called 'model'
That is, without esimating parameters
require(dynr)

meas <- prep.measurement(
values.load=matrix(c(1, 0), 1, 2),
params.load=matrix(c('fixed', 'fixed'), 1, 2),
state.names=c("Position","Velocity"),
obs.names=c("y1"))

ecov <- prep.noise(
values.latent=diag(c(0, 1), 2),
params.latent=diag(c('fixed', 'dnoise'), 2),
values.observed=diag(1.5, 1),
params.observed=diag('mnoise', 1))

initial <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")

model <- dynr.model(dynamics=dynamics, measurement=meas,
noise=ecov, initial=initial, data=data)

Now get the total number of observations!
nobs(model)

NonlinearDFAsim Simulated multi-subject time series based on a dynamic factor analysis
model with nonlinear relations at the latent level

Description

A dataset simulated using a discrete-time nonlinear dynamic factor analysis model with 6 observed
indicators for identifying two latent factors: individuals’ positive and negative emotions. Proposed
by Chow and Zhang (2013), the model was inspired by models of affect and it posits that the two
latent factors follow a vector autoregressive process of order 1 (VAR(1)) with parameters that vary
between two possible regimes: (1) an "independent" regime in which the lagged influences between
positive and negative emotions are zero; (2) a "high-activation" regime to capture instances on which

oscData 47

the lagged influences between PA and NA intensify when an individual’s previous levels of positive
and negative emotions were unusually high or low (see Model 2 in Chow & Zhang).

Reference: Chow, S-M, & Zhang, G. (2013). Regime-switching nonlinear dynamic factor analysis
models. Psychometrika, 78(4), 740-768.

Usage

data(NonlinearDFAsim)

Format

A data frame with 3000 rows and 8 variables

Details

• id. ID of the participant (1 to 10)

• time. Time index (300 time points from each subject)

• y1-y3. Observed indicators for positive emotion

• y4-y6. Observed indicators for negative emotion

oscData Another simulated multilevel multi-subject time series of a damped
oscillator model

Description

The variables are as follows:

Usage

data(oscData)

Format

A data frame with 1,800 rows and 6 variables

Details

• id. Person ID

• times. Continuous time of measurement

• y1. Observed score 1

• u1. Covariate 1

• u2. Covariate 2

• trueb. True value of person-specific random effect

48 Oscillator

Oscillator Simulated time series data of a damped linear oscillator

Description

A dataset simulated using a damped linear oscillator model in continuous time with 1 observed
indicator for identifying two latent factors (position and velocity). The variables are as follows:

Usage

data(Oscillator)

Format

A data frame with 1000 rows and 5 variables

Details

• id. ID of the systems (1 to 1 because this is a single person)

• y1. Noisy observed position

• times. Time index (1000 time points) spaced at one unit intervals

• x1. True latent position

• x2. True latent velocity

Examples

The following was used to generate the data
#--------------------------------------
Data Generation
Not run:
require(mvtnorm)
require(Matrix)

xdim <- 2
udim <- 1
ydim <- 1
tdim <- 1000
set.seed(315)
tA <- matrix(c(0, -.3, 1, -.7), xdim, xdim)
tB <- matrix(c(0), xdim, udim)
tC <- matrix(c(1, 0), ydim, xdim)
tD <- matrix(c(0), ydim, udim)
tQ <- matrix(c(0), xdim, xdim); diag(tQ) <- c(0, 2.2)
tR <- matrix(c(0), ydim, ydim); diag(tR) <- c(1.5)

x0 <- matrix(c(0, 1), xdim, 1)
P0 <- diag(c(1), xdim)
tdx <- matrix(0, xdim, tdim+1)

Outliers 49

tx <- matrix(0, xdim, tdim+1)
tu <- matrix(0, udim, tdim)
ty <- matrix(0, ydim, tdim)

tT <- matrix(0:tdim, nrow=1, ncol=tdim+1)

tI <- diag(1, nrow=xdim)

tx[,1] <- x0
for(i in 2:(tdim+1)){
q <- t(rmvnorm(1, rep(0, xdim), tQ))
tdx[,i] <- tA %*% tx[,i-1] + tB %*% tu[,i-1] + q
expA <- as.matrix(expm(tA * (tT[,i]-tT[,i-1])))
intA <- solve(tA) %*% (expA - tI)
tx[,i] <- expA %*% tx[, i-1] + intA %*% tB %*% tu[,i-1] + intA %*% q
ty[,i-1] <- tC %*% tx[,i] + tD %*% tu[,i-1] + t(rmvnorm(1, rep(0, ydim), tR))

}

rownames(ty) <- paste('y', 1:ydim, sep='')
rownames(tx) <- paste('x', 1:xdim, sep='')
simdata <- cbind(id=rep(1, tdim), t(ty), times=tT[,-1], t(tx)[-1,])
write.table(simdata, file='Oscillator.txt', row.names=FALSE, col.names=TRUE)

plot(tx[1,], type='l')
plot(tT[,-1], ty[1,], type='l')

End(Not run)

Outliers Simulated time series data for detecting outliers.

Description

This is a list object containing true outliers, the dataset, and the saved result from running dynr.taste.

Usage

data(Outliers)

Format

A data frame with 6000 rows and 6 variables

Details

The true outliers for observed variables are saved in ‘Outliers$generated$shockO’.

• id. Six outliers were added for each ID.

50 Outliers

• time_O. Time points where the outliers were added.

• obs. Variable indices where the outliers were added.

• shock.O. The magnitude of outliers.

The true outliers for state variables are saved in ‘Outliers$generated$shockL’.

• id. Three outliers were added for each ID.

• time_L. Time points where the outliers were added.

• lat. Variable indices where the outliers were added.

• shock.L. The magnitude of outliers.

A dataset simulated based on state-space model including the outliers. The data is saved in ‘Out-
liers$generated$y’. The variables are as follows:

• id. ID of the systems (1 to 100)

• times. Time indices (100 time points for each participant)

• V1 - V6. observed variables

The detected innovative outliers from dynr.taste for this dataset, which is used for testing whether
the dynr.taste replicate the same result. The data is saved in ‘Outliers$detect_O’. The variables are
as follows:

• id. IDs

• time_L. Time points where the outliers were detected

• obs. Variable indices for observed variables where the outliers were detected

The detected additive outliers from dynr.taste for this dataset, which is used for testing whether the
dynr.taste replicate the same result. The data is saved in ‘Outliers$detect_L’. The variables are as
follows:

• id. IDs

• time_L. Time points where the outliers were detected

• obs. Variable indices for latent variables where the outliers were detected

Examples

Not run:
#The following was used to generate the data
#---------------------------------------
lambda <- matrix(c(1.0, 0.0,
0.9, 0.0,
0.8, 0.0,
0.0, 1.0,
0.0, 0.9,
0.0, 0.8), ncol=2, byrow=TRUE)
psi <- matrix(c(0.3, -0.1,

-0.1, 0.3), ncol=2, byrow=TRUE)
beta <- matrix(c(0.8, -0.2,

PFAsim 51

-0.2, 0.7), ncol=2, byrow=TRUE)
theta <- diag(c(0.2, 0.2, 0.2, 0.2, 0.2, 0.2), ncol=6, nrow=6)
nlat <- 2; nobs <- 6
mean_0 <- rep(0, nlat)
psi_inf <- diag(1, 2*2) - kronecker(beta, beta)
psi_inf_inv <- try(solve(psi_inf), silent=TRUE)
if("try-error" %in% class(psi_inf_inv)) {
psi_inf_inv <- MASS::ginv(psi_inf)}

psi_0 <- psi_inf_inv %*% as.vector(psi)
dim(psi_0) <- c(2, 2)
measurement error covariance matrix
mea_cov <- lambda %*% psi_0 %*% t(lambda) + theta
resL <- lapply(1:100, function(subj) {

initial state
eta_0 <- mvtnorm::rmvnorm(1, mean=mean_0, sigma=psi_0)#[1,nlat]
zeta_0 <- mvtnorm::rmvnorm(1, mean=rep(0, nlat), sigma=psi)
eta <- matrix(0, nrow=time, ncol=nlat)
eta[1,] <- beta %*% t(eta_0) + t(zeta_0)
zeta <- mvtnorm::rmvnorm(time, mean=rep(0, nlat), sigma=psi)
random shock generation
to avoid shock appearing too early or late (first and last 3)
shkLat_time <- sample(4:(time-3), nshockLat)
shk_lat <- sample(1:nlat, nshockLat, replace=TRUE)
shockLatIdx <- matrix(c(shkLat_time, shk_lat), ncol=2)
shockSignL <- sample(c(1,-1), nshockLat, replace=TRUE)
colnames(shockLatIdx) <- c("time_L","lat")
shockLatV <- shockSignL*(shockMag*sqrt(diag(shockPsi)))[shockLatIdx[,"lat"]]
shockLatM <- matrix(0, time, nlat)
shockLatM[shockLatIdx] <- shockLatV
shkObs_time <- sample(4:(time-3), nshockObs)
shk_obs <- sample(1:nobs, nshockObs, replace=TRUE)
shockObsIdx <- matrix(c(shkObs_time, shk_obs), ncol=2)
shockSignO <- sample(c(1,-1), nshockObs, replace=TRUE)
colnames(shockObsIdx) <- c("time_O","obs")
shockObsV <- shockSignO*(shockMag*sqrt(diag(mea_cov)))[shockObsIdx[,"obs"]]
shockObsM <- matrix(0, time, nobs)
shockObsM[shockObsIdx] <- shockObsV
generate state process WITH shock
for (t in 1:(time-1)) {

eta[t+1,] <- shockLatM[t,] + beta %*% eta[t,] + zeta[t,]
}
generate observed process
y <- shockObsM + eta %*% t(lambda) +

mvtnorm::rmvnorm(time, mean=rep(0, nobs), sigma=theta)# epsilon
}

End(Not run)

PFAsim Simulated time series data of a multisubject process factor analysis

52 PFAsim

Description

A multiple subject dataset simulated using a two factor process factor analysis model in discrete
time with 6 observed indicators for identifying two latent factors. The variables are as follows:

Usage

data(PFAsim)

Format

A data frame with 2,500 rows and 10 variables

Details

• ID. Person ID variable (1 to 50 because there are 50 simulated people)

• Time. Time ID variable (1 to 50 because there are 50 time points)

• V1. Noisy observed variable 1

• V2. Noisy observed variable 2

• V3. Noisy observed variable 3

• V4. Noisy observed variable 4

• V5. Noisy observed variable 5

• V6. Noisy observed variable 6

• F1. True latent variable 1 scores

• F2. True latent variable 2 scores

Variables V1, V2, and V3 load on F1, whereas variables V4, V5, V6 load on F2. The true values
of the factor loadings are 1, 2, 1, 1, 2, and 1, respectively. The true measurement error variance is
0.5 for all variables. The true dynamic noise covariance has F1 with a variance of 2.77, F2 with a
variance of 8.40, and their covariance is 2.47. The across-time dynamics have autoregressive effects
of 0.5 for both F1 and F2 with a cross-lagged effect from F1 to F2 at 0.4. The cross-lagged effect
from F2 to F1 is zero. The true initial latent state distribution as mean zero and a diagonal covariance
matrix with var(F1) = 2 and var(F2) = 1. The generating model is the same for all individuals.

Examples

The following was used to generate the data
Not run:
set.seed(12345678)
library(mvtnorm)
setting up matrices
time <- 50
Occasions to throw out to wash away the effects of initial condition
npad <- 0
np <- 50
ne <- 2 #Number of latent variables
ny <- 6 #Number of manifest variables
Residual variance-covariance matrix
psi <- matrix(c(2.77, 2.47,

PFAsim 53

2.47, 8.40),
ncol = ne, byrow = T)

Lambda matrix containing contemporaneous relations among
observed variables and 2 latent variables.
lambda <- matrix(c(1, 0,

2, 0,
1, 0,
0, 1,
0, 2,
0, 1),

ncol = ne, byrow = TRUE)
Measurement error variances
theta <- diag(.5, ncol = ny, nrow = ny)
Lagged directed relations among variables
beta <- matrix(c(0.5, 0,

0.4, 0.5),
ncol = ne, byrow = TRUE)

a0 <- mvtnorm::rmvnorm(1, mean = c(0, 0),
sigma = matrix(c(2,0,0,1),ncol=ne))

yall <- matrix(0,nrow = time*np, ncol = ny)
eall <- matrix(0,nrow = time*np, ncol = ne)
for (p in 1:np){

Latent variable residuals
zeta <- mvtnorm::rmvnorm(time+npad, mean = c(0, 0), sigma = psi)
Measurement errors
epsilon <- rmvnorm(time, mean = c(0, 0, 0, 0, 0, 0), sigma = theta)
Set up matrix for contemporaneous variables
etaC <- matrix(0, nrow = ne, ncol = time + npad)
Set up matrix for lagged variables
etaL <- matrix(0, nrow = ne, ncol = time + npad + 1)

etaL[,1] <- a0
etaC[,1] <- a0
generate factors
for (i in 2:(time+npad)){
etaL[,i] <- etaC[,i-1]
etaC[,i] <- beta %*% etaL[,i] + zeta[i,]

}
etaC <- etaC[,(npad+1):(npad+time)]
eta <- t(etaC)

generate observed series
y <- matrix(0, nrow = time, ncol = ny)
for (i in 1:nrow(y)){

y[i,] <- lambda %*% eta[i,] + epsilon[i,]
}
yall[(1+(p-1)*time):(p*time),] <- y
eall[(1+(p-1)*time):(p*time),] <- eta

}
yall <- cbind(rep(1:np,each=time),rep(1:time,np),yall)
yeall <- cbind(yall,eall)
write.table(yeall,'PFAsim.txt',row.names=FALSE,

col.names=c("ID", "Time", paste0("V", 1:ny), paste0("F", 1:ne)))

54 plot.dynrCook

End(Not run)

plot.dynrCook Plot method for dynrCook objects

Description

Plot method for dynrCook objects

Usage

S3 method for class 'dynrCook'
plot(x, dynrModel, style = 1, names.state, names.observed,
printDyn = TRUE, printMeas = TRUE, textsize = 4, ...)

Arguments

x dynrCook object

dynrModel model object

style The style of the plot in the first panel. If style is 1 (default), user-selected
smoothed state variables are plotted. If style is 2, user-selected observed-versus-
predicted values are plotted.

names.state (optional) The names of the states to be plotted, which should be a subset of the
state.names slot of the measurement slot of dynrModel.

names.observed (optional) The names of the observed variables to be plotted, which should be a
subset of the obs.names slot of the measurement slot of dynrModel.

printDyn A logical value indicating whether or not to plot the formulas for the dynamic
model

printMeas A logical value indicating whether or not to plot the formulas for the measure-
ment model

textsize numeric. Font size used in the plot.

... Further named arguments

Details

This is a wrapper around dynr.ggplot. A great benefit of it is that it shows the model equations in
a plot.

Value

ggplot object.

plotFormula 55

plotFormula Plot the formula from a model

Description

Plot the formula from a model

Usage

plotFormula(dynrModel, ParameterAs, printDyn = TRUE, printMeas = TRUE,
printRS = FALSE, textsize = 4)

Arguments

dynrModel The model object to plot.

ParameterAs The parameter values or names to plot. The underscores in parameter names
are saved for use of subscripts. Greek letters can be specified as correspond-
ing LaTeX symbols without backslashes (e.g., "lambda") and printed as greek
letters.

printDyn A logical value indicating whether or not to plot the formulas for the dynamic
model.

printMeas A logical value indicating whether or not to plot the formulas for the measure-
ment model

printRS logical. Whether or not to print the regime-switching model. The default is
FALSE.

textsize The text size use in the plot.

Details

This function typesets a set of formulas that represent the model. Typical inputs to the ParameterAs
argument are (1) the starting values for a model, (2) the final estimated values for a model, and
(3) the parameter names. These are accessible with (1) model$xstart, (2) coef(cook), and (3)
model$param.names or names(coef(cook)), respectively.

Value

ggplot object

56 plotGCV

plotGCV A function to evaluate the generalized cross-validation (GCV) values
associated with derivative estimates via Bsplines at a range of speci-
fied smoothing parameter (lambda) values

Description

A function to evaluate the generalized cross-validation (GCV) values associated with derivative
estimates via Bsplines at a range of specified smoothing parameter (lambda) values

Usage

plotGCV(theTimes, norder, roughPenaltyMax, dataMatrix, lowLambda, upLambda,
lambdaInt, isPlot)

Arguments

theTimes The time points at which derivative estimation are requested

norder Order of Bsplines - usually 2 higher than roughPenaltyMax
roughPenaltyMax

Penalization order. Usually set to 2 higher than the highest-order derivatives
desired

dataMatrix Data of size total number of time points x total number of subjects

lowLambda Lower limit of lambda values to be tested. Here, lambda is a positive smoothing
parameter, with larger values resulting in greater smoothing)

upLambda Upper limit of lambda

lambdaInt The interval of lambda values to be tested.

isPlot A binary flag on whether to plot the gcv values (0 = no, 1 = yes)

Value

A data frame containing: 1. lambda values; 2. edf (effective degrees of freedom); 3. GCV (Gener-
alized cross-validation value as averaged across units (e.g., subjects))

References

Chow, S-M. (2019). Practical Tools and Guidelines for Exploring and Fitting Linear and Nonlinear
Dynamical Systems Models. Multivariate Behavioral Research. https://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=1520409

Chow, S-M., *Bendezu, J. J., Cole, P. M., & Ram, N. (2016). A Comparison of Two- Stage Ap-
proaches for Fitting Nonlinear Ordinary Differential Equation (ODE) Models with Mixed Effects.
Multivariate Behavioral Research, 51, 154-184. Doi: 10.1080/00273171.2015.1123138.

PPsim 57

PPsim Simulated time series data for multiple eco-systems based on a
predator-and-prey model

Description

A dataset simulated using a continuous-time nonlinear predator-and-prey model with 2 observed
indicators for identifying two latent factors. The variables are as follows:

Usage

data(PPsim)

Format

A data frame with 1000 rows and 6 variables

Details

• id. ID of the systems (1 to 20)

• time. Time index (50 time points for each system)

• prey. The true population of the prey species

• predator. The true population of the predator species

• x. Observed indicator for the population of the prey species

• y. Observed indicator for the population of the predator species

predict.dynrModel predict method for dynrModel objects

Description

predict method for dynrModel objects

Usage

S3 method for class 'dynrModel'
predict(object, newdata = NULL, interval = c("none",
"confidence", "prediction"), method = c("kalman", "ensemble"),
level = 0.95, type = c("latent", "observed"), ...)

58 prep.formulaDynamics

Arguments

object a dynrModel object from which predictions are desired

newdata an optional data.frame or ts object. See details.

interval character indicating what kind of intervals are desired. ’none’ gives no intervals,
’confidence’, gives confidence intervals, ’prediction’ gives prediction intervals.

method character the method used to create the forecasts. See details.

level the confidence or predictions level, ignored if not using intervals

type character the type of thing you want predicted: latent variables or manifest vari-
ables.

... further named arguments, e.g., size for the ensemble size when using the en-
semble prediction

Details

The newdata argument is either a data.frame or ts object. It passed as the dataframe argument
of dynr.data and must accept the same further arguments as the data in the model passed in the
object argument (e.g., same id, time, observed, and covariates arguments).

The available methods for prediction are ’kalman’ and ’ensemble’. The ’kalman’ method uses the
Kalman filter to create predictions. The ’ensemble’ method simulates a set of initial conditions and
lets those run forward in time. The distribution of this ensemble provides the predictions. The mean
is the value predicted. The quantiles of the distribution provide the intervals.

Value

A list of the prediction estimates, intervals, and ensemble members.

prep.formulaDynamics Recipe function for specifying dynamic functions using formulas

Description

Recipe function for specifying dynamic functions using formulas

Usage

prep.formulaDynamics(formula, startval = numeric(0),
isContinuousTime = FALSE, jacobian, ...)

Arguments

formula a list of formulas specifying the drift or state-transition equations for the latent
variables in continuous or discrete time, respectively.

startval a named vector of starting values of the parameters in the formulas for estimation
with parameter names as its name. If there are no free parameters in the dynamic
functions, leave startval as the default numeric(0).

prep.formulaDynamics 59

isContinuousTime

if True, the left hand side of the formulas represent the first-order derivatives of
the specified variables; if False, the left hand side of the formulas represent the
current state of the specified variable while the same variable on the righ hand
side is its previous state.

jacobian (optional) a list of formulas specifying the analytic jacobian matrices contain-
ing the analytic differentiation function of the dynamic functions with respect
to the latent variables. If this is not provided, dynr will invoke an automatic
differentiation procedure to compute the jacobian functions.

... further named arguments. Some of these arguments may include:
theta.formula specifies a list consisting of formula(s) of the form list (par ~
1 * b_0 + covariate_1 * b_1 + ... + covariate_p * b_p + 1 * rand_par), where
par is a parameter is a unit- (e.g., person-) specific that appears in a dynamic
formula and is assumed to follow a linear mixed effects structure. Here, b_p are
fixed effects parameters; covariate_1, ..., covariate_p are known covariates
as predeclared in dynr.data, and rand_par is a random effect component rep-
resenting unit i’s random deviation in par value from that predicted by b_0 +
covariate_1*b_1 + ... + covariate_p*b_p.
random.names specifies names of random effect components in the theta.formula
random.params.inicov specifies names of elements in the covariance matrix
of the random effect components
random.values.inicov specifies starting values of elements in the covariance
matrix of the random effect components

Details

This function defines the dynamic functions of the model either in discrete time or in continuous
time. The function can be either linear or nonlinear, with free or fixed parameters, numerical con-
stants, covariates, and other mathematical functions that define the dynamics of the latent variables.
Every latent variable in the model needs to be defined by a differential (for continuous time model),
or difference (for discrete time model) equation. The names of the latent variables should match the
specification in prep.measurement(). For nonlinear models, the estimation algorithm generally
needs a Jacobian matrix that contains elements of first differentiations of the dynamic functions
with respect to the latent variables in the model. For most nonlinear models, such differentiations
can be handled automatically by dynr. However, in some cases, such as when the absolute function
(abs) is used, the automatic differentiation would fail and the user may need to provide his/her own
Jacobian functions. When theta.formula and other accompanying elements in "..." are pro-
vided, the program automatically inserts the random effect components specified in random.names
as additional latent (state) variables in the model, and estimate (cook) this expanded model. Do
check that the expanded model satisfies conditions such as observability for the estimation to work.

Value

Object of class ’dynrDynamicsFormula’

Examples

In this example, we present how to define the dynamics of a bivariate dual change score model

60 prep.formulaDynamics

(McArdle, 2009). This is a linear model and the user does not need to worry about
providing any jacobian function (the default).

We start by creating a list of formula that describes the model. In this model, we have four
latent variables, which are "readLevel", "readSlope", "mathLevel", and "math Slope". The right-
hand side of each formula gives a function that defines the dynamics.

formula <- list(
list(readLevel~ (1+beta.read)*readLevel + readSlope + gamma.read*mathLevel,
readSlope~ readSlope,
mathLevel~ (1+beta.math)*mathLevel + mathSlope + gamma.math*readLevel,
mathSlope~ mathSlope
))

Then we use prep.formulaDynamics() to define the formula, starting value of the parameters in
the model, and state the model is in discrete time by setting isContinuousTime=FALSE.

dynm <- prep.formulaDynamics(formula=formula,
startval=c(beta.read = -.5, beta.math = -.5,

gamma.read = .3, gamma.math = .03
), isContinuousTime=FALSE)

For a full demo example of regime switching nonlinear discrete time model, you
may refer to a tutorial on
\url{https://quantdev.ssri.psu.edu/tutorials/dynr-rsnonlineardiscreteexample}

#Not run:
#For a full demo example that uses user-supplied analytic jacobian functions see:
#demo(RSNonlinearDiscrete, package="dynr")
formula <- list(

list(
x1 ~ a1*x1,
x2 ~ a2*x2),

list(
x1 ~ a1*x1 + c12*(exp(abs(x2)))/(1+exp(abs(x2)))*x2,
x2 ~ a2*x2 + c21*(exp(abs(x1)))/(1+exp(abs(x1)))*x1)

)
jacob <- list(

list(x1~x1~a1,
x2~x2~a2),

list(x1~x1~a1,
x1~x2~c12*(exp(abs(x2))/(exp(abs(x2))+1)+x2*sign(x2)*exp(abs(x2))/(1+exp(abs(x2))^2)),

x2~x2~a2,
x2~x1~c21*(exp(abs(x1))/(exp(abs(x1))+1)+x1*sign(x1)*exp(abs(x1))/(1+exp(abs(x1))^2))))

dynm <- prep.formulaDynamics(formula=formula, startval=c(a1=.3, a2=.4, c12=-.5, c21=-.5),
isContinuousTime=FALSE, jacobian=jacob)

#For a full demo example that uses automatic jacobian functions (the default) see:
#demo(RSNonlinearODE , package="dynr")
formula=list(prey ~ a*prey - b*prey*predator, predator ~ -c*predator + d*prey*predator)
dynm <- prep.formulaDynamics(formula=formula,

startval=c(a = 2.1, c = 0.8, b = 1.9, d = 1.1),

prep.initial 61

isContinuousTime=TRUE)

#For a full demo example that includes unit-specific random effects in theta.formula see:
#demo(OscWithRand, package="dynr")
formula <- list(x ~ dx,

dx ~ eta_i * x + zeta*dx)
theta.formula = list (eta_i ~ 1 * eta0 + u1 * eta1 + u2 * eta2 + 1 * b_eta)
dynm <- prep.formulaDynamics(formula=formula,

startval=c(eta0=-1, eta1=.1, eta2=-.1,zeta=-.02),
isContinuousTime=TRUE,
theta.formula=theta.formula,
random.names=c('b_eta'),

random.params.inicov=matrix(c('sigma2_b_eta'), ncol=1,byrow=TRUE),
random.values.inicov=matrix(c(0.1), ncol=1,byrow=TRUE))

prep.initial Recipe function for preparing the initial conditions for the model.

Description

Recipe function for preparing the initial conditions for the model.

Usage

prep.initial(values.inistate, params.inistate, values.inicov, params.inicov,
values.regimep = 1, params.regimep = 0, covariates, deviation = FALSE,
refRow)

Arguments

values.inistate

a vector or list of vectors of the starting or fixed values of the initial state vector
in one or more regimes. May also be a matrix or list of matrices.

params.inistate

a vector or list of vectors of the parameter names that appear in the initial state
vector in one or more regimes. If an element is 0 or "fixed", the correspond-
ing element is fixed at the value specified in the values vector; Otherwise, the
corresponding element is to be estimated with the starting value specified in the
values vector. May also be a matrix or list of matrices.

values.inicov a positive definite matrix or a list of positive definite matrices of the starting or
fixed values of the initial error covariance structure(s) in one or more regimes.
If only one matrix is specified for a regime-switching dynamic model, the initial
error covariance structure stays the same across regimes. To ensure the matrix
is positive definite in estimation, we apply LDL transformation to the matrix.
Values are hence automatically adjusted for this purpose.

62 prep.initial

params.inicov a matrix or list of matrices of the parameter names that appear in the initial error
covariance(s) in one or more regimes. If an element is 0 or "fixed", the corre-
sponding element is fixed at the value specified in the values matrix; Otherwise,
the corresponding element is to be estimated with the starting value specified
in the values matrix. If only one matrix is specified for a regime-switching dy-
namic model, the process noise structure stays the same across regimes. If a list
is specified, any two sets of the parameter names as in two matrices should be
either the same or totally different to ensure proper parameter estimation.

values.regimep a vector/matrix of the starting or fixed values of the initial probabilities of being
in each regime. By default, the initial probability of being in the first regime is
fixed at 1.

params.regimep a vector/matrix of the parameter indices of the initial probabilities of being in
each regime. If an element is 0 or "fixed", the corresponding element is fixed
at the value specified in the "values" vector/matrix; Otherwise, the correspond-
ing element is to be estimated with the starting value specified in the values
vector/matrix.

covariates character vector of the names of the (person-level) covariates

deviation logical. Whether to use the deviation form or not. See Details.

refRow numeric. Which row is treated at the reference. See Details.

Details

The initial condition model includes specifications for the intial state vector, initial error covariance
matrix, initial probabilities of being in each regime and all associated parameter specifications.
The initial probabilities are specified in multinomial logistic regression form. When there are no
covariates, this implies multinomial logistic regression with intercepts only. In particular, the initial
probabilities not not specified on a 0 to 1 probability scale, but rather a negative infinity to positive
infinity log odds scale. Fixing an initial regime probability to zero does not mean zero probability.
It translates to a comparison log odds scale against which other regimes will be judged.

The structure of the initial state vector and the initial probability vector depends on the pres-
ence of covariates. When there are no covariates these should be vectors, or equivalently single-
column matrices. When there are covariates they should have c + 1 columns for c covariates. For
values.regimep and params.regimep the number of rows should be the number of regimes. For
inistate and inicov the number of rows should be the number of latent states. Of course, inicov
is a square and symmetric so its number of rows should be the same as its number of columns.

When deviation=FALSE, the non-deviation form of the multinomial logistic regression is used.
This form has a separate intercept term for each entry of the initial probability vector. When
deviation=TRUE, the deviation form of the multinomial logistic regression is used. This form
has an intercept term that is common to all rows of the initial probability vector. The rows are then
distinguished by their own individual deviations from the common intercept. The deviation form
requires the same reference row constraint as the non-deviation form (described below). By default
the reference row is taken to be the row with all zero covariate effects. Of course, if there are no
covariates and the deviation form is desired, then the user must provide the reference row.

The refRow argument determines which row is used as the intercept row. It is only used in the
deviation form (i.e. deviation=TRUE). In the deviation form, one row of values.regimep and
params.regimep contains the intercepts, other rows contain deviations from these intercepts. The

prep.initial 63

refRow argument says which row contains the intercept terms. The default behavior for refRow is to
detect the reference row automatically based on which parameters are fixed. If we have problems
detecting which is the reference row, then we provide error messages that are as helpful as we can
make them.

Value

Object of class ’dynrInitial’

See Also

Methods that can be used include: print, printex, show

Examples

No-covariates
Single regime, no covariates
latent states are position and velocity
initial position is free and called 'inipos'
initial slope is fixed at 1
initial covariance is fixed to a diagonal matrix of 1s
initialNoC <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))

One covariate
Single regime, one covariate on the inital mean
latent states are position and velocity
initial covariance is fixed to a diagonal matrix of 1s
initial latent means have
nrow = numLatentState, ncol = numCovariates + 1
initial position has free intercept and free u1 effect
initial slope is fixed at 1
initialOneC <- prep.initial(
values.inistate=matrix(
c(0, .5,

1, 0), byrow=TRUE,
nrow=2, ncol=2),
params.inistate=matrix(
c('iniPosInt', 'iniPosSlopeU1',
'fixed', 'fixed'), byrow=TRUE,
nrow=2, ncol=2),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2),
covariates='u1')

Regime-switching, one covariate
latent states are position and velocity
initial covariance is fixed to a diagonal matrix of 1s
initial latent means have

64 prep.loadings

nrow = numLatentState, ncol = numCovariates + 1
initial position has free intercept and free u1 effect
initial slope is fixed at 1
There are 3 regimes but the mean and covariance
are not regime-switching.
initialRSOneC <- prep.initial(
values.regimep=matrix(
c(1, 1,
0, 1,
0, 0), byrow=TRUE,

nrow=3, ncol=2),
params.regimep=matrix(
c('r1int', 'r1slopeU1',

'r2int', 'r2slopeU2',
'fixed', 'fixed'), byrow=TRUE,

nrow=3, ncol=2),
values.inistate=matrix(
c(0, .5,
1, 0), byrow=TRUE,

nrow=2, ncol=2),
params.inistate=matrix(
c('iniPosInt', 'iniPosSlopeU1',
'fixed', 'fixed'), byrow=TRUE,
nrow=2, ncol=2),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2),
covariates='u1')

prep.loadings Recipe function to quickly create factor loadings

Description

Recipe function to quickly create factor loadings

Usage

prep.loadings(map, params = NULL, idvar, exo.names = character(0),
intercept = FALSE)

Arguments

map list giving how the latent variables map onto the observed variables

params parameter numbers

idvar names of the variables used to identify the factors

exo.names names of the exogenous covariates

intercept logical. Whether to include freely esimated intercepts

prep.loadings 65

Details

The default pattern for ’idvar’ is to fix the first factor loading for each factor to one. The variable
names listed in ’idvar’ have their factor loadings fixed to one. However, if the names of the latent
variables are used for ’idvar’, then all the factor loadings will be freely estimated and you should
fix the factor variances in the noise part of the model (e.g. prep.noise).

This function does not have the full set of features possible in the dynr package. In particular, it
does not have any regime-swtiching. Covariates can be included with the exo.names argument, but
all covariate effects are freely estimated and the starting values are all zero. Likewise, intercepts
can be included with the intercept logical argument, but all intercept terms are freely estimated
with zero as the starting value. For complete functionality use prep.measurement.

Value

Object of class ’dynrMeasurement’

Examples

#Single factor model with one latent variable fixing first loading
prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 2:4))

#Single factor model with one latent variable fixing the fourth loading
prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 1:3), idvar='y4')

#Single factor model with one latent variable freeing all loadings
prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 1:4), idvar='eta1')

#Single factor model with one latent variable fixing first loading
and freely estimated intercept
prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 2:4),
intercept=TRUE)

#Single factor model with one latent variable fixing first loading
and freely estimated covariate effects for u1 and u2
prep.loadings(list(eta1=paste0('y', 1:4)), paste0("lambda_", 2:4),
exo.names=paste0('u', 1:2))

Two factor model with simple structure
prep.loadings(list(eta1=paste0('y', 1:4), eta2=paste0('y', 5:7)),
paste0("lambda_", c(2:4, 6:7)))

#Two factor model with repeated use of a free parameter
prep.loadings(list(eta1=paste0('y', 1:4), eta2=paste0('y', 5:8)),
paste0("lambda_", c(2:4, 6:7, 4)))

#Two factor model with a cross loading
prep.loadings(list(eta1=paste0('y', 1:4), eta2=c('y5', 'y2', 'y6')),
paste0("lambda_", c("21", "31", "41", "22", "62")))

66 prep.matrixDynamics

prep.matrixDynamics Recipe function for creating Linear Dynamics using matrices

Description

Recipe function for creating Linear Dynamics using matrices

Usage

prep.matrixDynamics(params.dyn = NULL, values.dyn, params.exo = NULL,
values.exo = NULL, params.int = NULL, values.int = NULL, covariates,
isContinuousTime)

Arguments

params.dyn the matrix of parameter names for the transition matrix in the specified linear
dynamic model

values.dyn the matrix of starting/fixed values for the transition matrix in the specified linear
dynamic model

params.exo the matrix of parameter names for the regression slopes of covariates on the
latent variables (see details)

values.exo matrix of starting/fixed values for the regression slopes of covariates on the latent
variables (see details)

params.int vector of names for intercept parameters in the dynamic model specified as a
matrix or list of matrices.

values.int vector of intercept values in the dynamic model specified as matrix or list of
matrices. Contains starting/fixed values of the intercepts.

covariates the names or the index numbers of the covariates used in the dynamic model
isContinuousTime

logical. When TRUE, use a continuous time model. When FALSE use a discrete
time model.

Details

A recipe function for specifying the deterministic portion of a set of linear dynamic functions as:

Discrete-time model: eta(t+1) = int + dyn*eta(t) + exo*x(t), where eta(t) is a vector of latent vari-
ables, x(t) is a vector of covariates, int, dyn, and exo are vectors and matrices specified via the
arguments *.int, *.dyn, and *.exo.

Continuous-time model: d/dt eta(t) = int + dyn*eta(t) + exo*x(t), where eta(t) is a vector of latent
variables, x(t) is a vector of covariates, int, dyn, and exo are vectors and matrices specified via the
arguments *.int, *.dyn, and *.exo.

The left-hand side of the dynamic model consists of a vector of latent variables for the next time
point in the discrete-time case, and the vector of derivatives for the latent variables at the current
time point in the continuous-time case.

prep.measurement 67

For models with regime-switching dynamic functions, the user will need to provide a list of the *.int,
*.dyn, and *.exo arguments. (when they are specified to take on values other than the default of zero
vectors and matrices), or if a single set of vectors/matrices are provided, the same vectors/matrices
are assumed to hold across regimes.

prep.matrixDynamics serves as an alternative to prep.formulaDynamics.

Value

Object of class ’dynrDynamicsMatrix’

See Also

Methods that can be used include: print, show

Examples

#Single-regime, continuous-time model. For further details run:
#demo(RSNonlinearDiscrete, package="dynr"))
dynamics <- prep.matrixDynamics(

values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)

#Two-regime, continuous-time model. For further details run:
#demo(RSNonlinearDiscrete, package="dynr"))
dynamics <- prep.matrixDynamics(

values.dyn=list(matrix(c(0, -0.1, 1, -0.2), 2, 2),
matrix(c(0, -0.1, 1, 0), 2, 2)),

params.dyn=list(matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
matrix(c('fixed', 'spring', 'fixed', 'fixed'), 2, 2)),

isContinuousTime=TRUE)

prep.measurement Prepare the measurement recipe

Description

Prepare the measurement recipe

Usage

prep.measurement(values.load, params.load = NULL, values.exo = NULL,
params.exo = NULL, values.int = NULL, params.int = NULL, obs.names,
state.names, exo.names)

68 prep.measurement

Arguments

values.load matrix of starting or fixed values for factor loadings. For models with regime-
specific factor loadings provide a list of matrices of factor loadings.

params.load matrix or list of matrices. Contains parameter names of the factor loadings.

values.exo matrix or list of matrices. Contains starting/fixed values of the covariate regres-
sion slopes.

params.exo matrix or list of matrices. Parameter names of the covariate regression slopes.

values.int vector of intercept values specified as matrix or list of matrices. Contains start-
ing/fixed values of the intercepts.

params.int vector of names for intercept parameters specified as a matrix or list of matrices.

obs.names vector of names for the observed variables in the order they appear in the mea-
surement model.

state.names vector of names for the latent variables in the order they appear in the measure-
ment model.

exo.names (optional) vector of names for the exogenous variables in the order they appear
in the measurement model.

Details

The values.* arguments give the starting and fixed values for their respective matrices. The params.*
arguments give the free parameter labels for their respective matrices. Numbers can be used as
labels. The number 0 and the character ’fixed’ are reserved for fixed parameters.

When a single matrix is given to values.*, that matrix is not regime-switching. Correspondingly,
when a list of length r is given, that matrix is regime-switching with values and params for the r
regimes in the elements of the list.

Value

Object of class ’dynrMeasurement’

See Also

Methods that can be used include: print, printex, show

Examples

prep.measurement(diag(1, 5), diag("lambda", 5))
prep.measurement(matrix(1, 5, 5), diag(paste0("lambda_", 1:5)))
prep.measurement(diag(1, 5), diag(0, 5)) #identity measurement model

#Regime-switching measurement model where the first latent variable is
active for regime 1, and the second latent variable is active for regime 2
No free parameters are present.
prep.measurement(values.load=list(matrix(c(1,0), 1, 2), matrix(c(0, 1), 1, 2)))

prep.noise 69

prep.noise Recipe function for specifying the measurement error and process
noise covariance structures

Description

Recipe function for specifying the measurement error and process noise covariance structures

Usage

prep.noise(values.latent, params.latent, values.observed, params.observed, ...)

Arguments

values.latent a positive definite matrix or a list of positive definite matrices of the starting or
fixed values of the process noise covariance structure(s) in one or more regimes.
If only one matrix is specified for a regime-switching dynamic model, the pro-
cess noise covariance structure stays the same across regimes. To ensure the
matrix is positive definite in estimation, we apply LDL transformation to the
matrix. Values are hence automatically adjusted for this purpose.

params.latent a matrix or list of matrices of the parameter names that appear in the process
noise covariance(s) in one or more regimes. If an element is 0 or "fixed", the
corresponding element is fixed at the value specified in the values matrix; Other-
wise, the corresponding element is to be estimated with the starting value spec-
ified in the values matrix. If only one matrix is specified for a regime-switching
dynamic model, the process noise structure stays the same across regimes. If a
list is specified, any two sets of the parameter names as in two matrices should
be either the same or totally different to ensure proper parameter estimation. See
Details.

values.observed

a positive definite matrix or a list of positive definite matrices of the start-
ing or fixed values of the measurement error covariance structure(s) in one or
more regimes. If only one matrix is specified for a regime-switching measure-
ment model, the measurement noise covariance structure stays the same across
regimes. To ensure the matrix is positive definite in estimation, we apply LDL
transformation to the matrix. Values are hence automatically adjusted for this
purpose.

params.observed

a matrix or list of matrices of the parameter names that appear in the measure-
ment error covariance(s) in one or more regimes. If an element is 0 or "fixed",
the corresponding element is fixed at the value specified in the values matrix;
Otherwise, the corresponding element is to be estimated with the starting value
specified in the values matrix. If only one matrix is specified for a regime-
switching dynamic model, the process noise structure stays the same across
regimes. If a list is specified, any two sets of the parameter names as in two
matrices should be either the same or totally different to ensure proper parame-
ter estimation. See Details.

70 prep.noise

... Further named arguments. Currently we only accept ’covariates’ and ’var.formula’.

Details

The arguments of this function should generally be either matrices or lists of matrices. Lists of
matrices are used for regime-switching models with each list element corresponding to a regime.
Thus, a list of three matrices implies a three-regime model. Single matrices are for non-regime-
switching models. Some checking is done to ensure that the number of regimes implied by one part
of the model matches that implied by the others. For example, the noise model (prep.noise) cannot
suggest three regimes when the measurement model (prep.measurement) suggests two regimes.
An exception to this rule is single-regime (i.e. non-regime-switching) components. For instance,
the noise model can have three regimes even though the measurement model implies one regime.
The single-regime components are simply assumed to be invariant across regimes.

Care should be taken that the parameters names for the latent covariances do not overlap with the
parameters in the observed covariances. Likewise, the parameter names for the latent covariances
in each regime should either be identical or completely distinct. Because the LDL’ transformation
is applied to the covariances, sharing a parameter across regimes may cause problems with the
parameter estimation.

Use $ to show specific arguments from a dynrNoise object (see examples).

Value

Object of class ’dynrNoise’

See Also

printex to show the covariance matrices in latex.

Examples

Two latent variables and one observed variable in a one-regime model
Noise <- prep.noise(values.latent=diag(c(0.8, 1)),

params.latent=diag(c('fixed', "e_x")),
values.observed=diag(1.5,1), params.observed=diag("e_y", 1))

For matrices that can be import to latex:
printex(Noise, show=TRUE)
If you want to check specific arguments you've specified, for example,
values for variance structure of the latent variables
Noise$values.latent

Two latent variables and one observed variable in a two-regime model
Noise <- prep.noise(values.latent=list(diag(c(0.8, 1)), diag(c(0.8, 1))),

params.latent=list(diag(c('fixed', "e_x1")), diag(c('fixed', "e_x2"))),
values.observed=list(diag(1.5,1), diag(0.5,1)),
params.observed=list(diag("e_y1", 1), diag("e_y2",1)))

If the error and noise structures are assumed to be the same across regimes,
it is okay to use matrices instead of lists.

prep.regimes 71

prep.regimes Recipe function for creating regime switching (Markov transition)
functions

Description

Recipe function for creating regime switching (Markov transition) functions

Usage

prep.regimes(values, params, covariates, deviation = FALSE, refRow)

Arguments

values matrix giving the values. Should have (number of Regimes) rows and (number
of regimes x number of covariates) columns

params matrix of the same size as "values" consisting of the names of the parameters

covariates a vector of the names of the covariates to be used in the regime-switching func-
tions

deviation logical. Whether to use the deviation form or not. See Details.

refRow numeric. Which row is treated at the reference. See Details.

Details

Note that each row of the transition probability matrix must sum to one. To accomplish this fix
at least one transition log odds parameter in each row of "values" (including its intercept and the
regression slopes of all covariates) to 0.

When deviation=FALSE, the non-deviation form of the multinomial logistic regression is used.
This form has a separate intercept term for each entry of the transition probability matrix (TPM).
When deviation=TRUE, the deviation form of the multinomial logistic regression is used. This
form has an intercept term that is common to each column of the TPM. The rows are then distin-
guished by their own individual deviations from the common intercept. The deviation form requires
the same reference column constraint as the non-deviation form; however, the deviation form also
requires one row to be indicated as the reference row (described below). By default the reference
row is taken to be the same as the reference column.

The refRow argument determines which row is used as the intercept row. It is only used in the
deviation form (i.e. deviation=TRUE). In the deviation form, one row of values and params
contains the intercepts, other rows contain deviations from these intercepts. The refRow argument
says which row contains the intercept terms. The default behavior for refRow is to be the same
as the reference column. The reference column is automatically detected. If we have problems
detecting which is the reference column, then we provide error messages that are as helpful as we
can make them.

Value

Object of class ’dynrRegimes’

72 prep.regimes

See Also

Methods that can be used include: print, printex, show

Examples

#Two-regime example with a covariate, x; log odds (LO) parameters represented in default form,
#2nd regime set to be the reference regime (i.e., have LO parameters all set to 0).
#The values and params matrices are of size 2 (numRegimes=2) x 4 (numRegimes*(numCovariates+1)).
The LO of staying within the 1st regime (corresponding to the (1,1) entry in the
2 x 2 transition probability matrix for the 2 regimes) = a_11 + d_11*x
The log odds of switching from the 1st to the 2nd regime (the (1,2) entry in the
transition probability matrix) = 0
The log odds of moving from regime 2 to regime 1 (the (2,1) entry) = a_21 + d_21*x
The log odds of staying within the 2nd regime (the (2,2) entry) = 0
b <- prep.regimes(
values=matrix(c(8,-1,rep(0,2),

-4,.1,rep(0,2)),
nrow=2, ncol=4, byrow=TRUE),

params=matrix(c("a_11","d_11x",rep("fixed",2),
"a_21","d_21x",rep("fixed",2)),

nrow=2, ncol=4, byrow=TRUE), covariates=c("x"))

Same example as above, but expressed in deviation form by specifying 'deviation = TRUE'
The LO of staying within the 1st regime (corresponding to the (1,1) entry in the
2 x 2 transition probability matrix for the 2 regimes) = a_21 + a_11 + d_11*x
The log odds of switching from the 1st to the 2nd regime (the (1,2) entry in the
transition probability matrix) = 0
The log odds of moving from regime 2 to regime 1 (the (2,1) entry) = a_21 + d_21*x
The log odds of staying within the 2nd regime (the (2,2) entry) = 0
b <- prep.regimes(
values=matrix(c(8,-1,rep(0,2),

-4,.1,rep(0,2)),
nrow=2, ncol=4, byrow=TRUE),

params=matrix(c("a_11","d_11x",rep("fixed",2),
"a_21","d_21x",rep("fixed",2)),

nrow=2, ncol=4, byrow=TRUE), covariates=c("x"), deviation = TRUE)

#An example of regime-switching with no covariates. The diagonal entries are fixed
#at zero for identification purposes
b <- prep.regimes(values=matrix(0, 3, 3),
params=matrix(c('fixed', 'p12', 'p13',

'p21', 'fixed', 'p23',
'p31', 'p32', 'fixed'), 3, 3, byrow=TRUE))

#An example of regime-switching with no covariates. The parameters for the second regime are
fixed at zero for identification purposes, making the second regime the reference regime.
b <- prep.regimes(values=matrix(0, 3, 3),
params=matrix(c('p11', 'fixed', 'p13',

'p21', 'fixed', 'p23',
'p31', 'fixed', 'p33'), 3, 3, byrow=TRUE))

#2 regimes with three covariates

prep.tfun 73

b <- prep.regimes(values=matrix(c(0), 2, 8),
params=matrix(c(paste0('p', 8:15), rep(0, 8)), 2, 8),
covariates=c('x1', 'x2', 'x3'))

prep.tfun Create a dynrTrans object to handle the transformations and inverse
transformations of model paramters

Description

Create a dynrTrans object to handle the transformations and inverse transformations of model
paramters

Usage

prep.tfun(formula.trans, formula.inv, transCcode = TRUE)

Arguments

formula.trans a list of formulae for transforming freed parameters other than variance-covariance
parameters during the optimization process. These transformation functions
may be helpful for transforming parameters that would normally appear on a
constrained scale to an unconstrained scale (e.g., parameters that can only take
on positive values can be subjected to exponential transformation to ensure pos-
itivity.)

formula.inv a list of formulae that inverse the transformation on the free parameters and will
be used to calculate the starting values of the parameters.

transCcode a logical value indicating whether the functions in formula.trans need to be trans-
formed to functions in C. The default for transCcode is TRUE, which means that
the formulae will be translated to C functions and utilized during the optimiza-
tion process. If transCcode = FALSE, the transformations are only performed at
the end of the optimization process for standard error calculations but not during
the optimization process. ##’

Details

Prepares a dynr recipe that specifies the names of the parameters that are to be subjected to user-
supplied transformation functions and the corresponding transformation and reverse-transformation
functions. This can be very handy in fitting dynamic models in which certain parameters can only
take on permissible values in particular ranges (e.g., a parameter may have to positive). Note that
all variance-covariance parameters in the model are automatically subjected to transformation func-
tions to ensure that the resultant covariance matrices are positive-definite. Thus, no additional
transformation functions are needed for variance-covariance parameters.

Value

Object of class ’dynrTrans’

74 printex

Examples

#Specifies a transformation recipe, r20, that subjects the parameters
#'r10' and 'r20' to exponential transformation to ensure that they are positive.
trans <-prep.tfun(formula.trans=list(r10~exp(r10), r20~exp(r20)),

formula.inv=list(r10~log(r10),r20~log(r20)))

printex The printex Method

Description

The printex Method

Usage

printex(object, ParameterAs, printDyn = TRUE, printMeas = TRUE,
printInit = FALSE, printRS = FALSE, outFile, show, ...)

Arguments

object The dynr object (recipe, model, or cooked model).
ParameterAs The parameter values or names to plot. The underscores in parameter names

are saved for use of subscripts. Greek letters can be specified as corresponding
LaTeX symbols without ##’ backslashes (e.g., "lambda") and printed as greek
letters.

printDyn logical. Whether or not to print the dynamic model. The default is TRUE.
printMeas logical. Whether or not to print the measurement model. The default is TRUE.
printInit logical. Whether or not to print the initial conditions. The default is FALSE.
printRS logical. Whether or not to print the regime-switching model. The default is

FALSE.
outFile The name of the output tex file.
show logical indicator of whether or not to show the result in the console.
... Further named arguments, passed to internal method. AsMatrix is a logical

indicator of whether to put the object in matrix form.

Details

This is a general way of getting a LaTeX string for recipes, models, and cooked models. It is a
great way to check that you specified the model or recipe you think you did before estimating its
free parameters (cooking). After the model is cooked, you can use it to get LaTeX code with the
estimated parameters in it.

Typical inputs to the ParameterAs argument are (1) the starting values for a model, (2) the fi-
nal estimated values for a model, and (3) the parameter names. These are accessible with (1)
model$xstart, (2) coef(cook), and (3) model$param.names or names(coef(cook)), respec-
tively.

RSPPsim 75

Value

character text suitable for use fiel LaTeX

See Also

A way to put this in a plot with plotFormula

RSPPsim Simulated time series data for multiple eco-systems based on a regime-
switching predator-and-prey model

Description

A dataset simulated using a regime-switching continuous-time nonlinear predator-and-prey model
with 2 observed indicators for identifying two latent factors. The variables are as follows:

Usage

data(RSPPsim)

Format

A data frame with 6000 rows and 8 variables

Details

• id. ID of the systems (1 to 20)

• time. Time index (300 time points for each system)

• prey. The true population of the prey species

• predator. The true population of the predator species

• x. Observed indicator for the population of the prey species

• y. Observed indicator for the population of the predator species

• cond. A time-varying covariate indicating the conditions of the respective eco-system across
time which affects the regime-switching transition matrix

• regime. The true regime indicators across time (1 and 2).

76 theta_plot

summary.dynrCook Get the summary of a dynrCook object

Description

Get the summary of a dynrCook object

Usage

S3 method for class 'dynrCook'
summary(object, ...)

Arguments

object The dynrCook object for which the summary is desired.

... Further named arguments, passed to the print method (e.g., digits and signif.stars).

Details

The summary gives information on the free parameters estimated: names, parameter values, numer-
ical Hessian-based standard errors, t-values (values divided by standard errors), and standard-error
based confidence intervals. Additionally, the likelihood, AIC, and BIC are provided.

Note that an exclamation point (!) in the final column of the summary table indicates that the
standard error and confidence interval for this parameter may not be trustworthy. The corresponding
element of the (transformed, inverse) Hessian was negative and an absolute value was taken to make
it positive.

Value

Object of class summary.dynrCook. Primarily used for showing the results of a fitted model.

theta_plot A function to plot simple slopes and region of significance.

Description

A function to plot simple slopes and region of significance.

Usage

theta_plot(.lm, predictor, moderator, alpha = 0.05, jn = F, title0,
predictorLab, moderatorLab)

TrueInit_Y14 77

Arguments

.lm A regression object from running a linear model of the form: lm(y~ x1+x2+x1:x2),
yielding: y = b0 + b1*x1 + b2*x2 + b3*x1*x2 + residual. In this case, one may
rewrite the lm as y = b0 + (b1+b3*x2)*x1 + b2*x2 + residual, where (b1+b3*x2)
is referred to as the simple slope of x1, x1 is the predictor, and x2 is the moder-
ator whose values yield different simple slope values for x1.

predictor The independent variable for which simple slope is requested

moderator The moderator whose values affect the simple slopes of the predictor. Appears
on the horizontal axis.

alpha The designated alpha level for the Johnson-Neyman technique

jn A binary flag requesting the Johnson-Neyman test (T or F)

title0 Title for the plot

predictorLab Label for the predictor

moderatorLab Label for the moderator

Value

A region of significance plot with simple slopes of the predictor on the vertical axis, and values of
the moderator on the horizontal axis.

References

Adapted from functions written by Marco Bachl to perform the Johnson-Neyman test and produce
a plot of simple slopes and region of significance available at: https://rpubs.com/bachl/jn-plot

TrueInit_Y14 Simulated multilevel multi-subject time series of a Van der Pol Oscil-
lator

Description

A dataset simulated using methods described in the reference below.

Reference: Chow, S., Lu, Z., Sherwood, A., and Zhu, H. (2016). Fitting Nonlinear Ordinary Differ-
ential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic
Approximation Expectation-Maximization (SAEM) Algorithm. Psychometrika, 81(1), 102-134.

Usage

data(TrueInit_Y14)

Format

A data frame with 60,000 rows and 10 variables

78 VARsim

Details

The variables are as follows:

• batch. Batch number from simulation
• kk. Unclear
• trueInit. True initial condition
• id. Person ID
• time. Continuous time of measurement
• y1. Observed score 1
• y2. Observed score 2
• y3. Observed score 3
• co1. Covariate 1
• co2. Covariate 2

VARsim Simulated time series data for multiple imputation in dynamic model-
ing.

Description

A dataset simulated using a vector autoregressive (VAR) model of order 1 with two observed vari-
ables and two covariates. Data are generated following the simulation design illustrated by Ji and
colleagues (2018). Specifically, missing data are generated following the missing at random (MAR)
condition under which the probability of missingness in both dependent variables and covariates is
conditioned on two completely observed auxiliary variables.

Usage

data(VARsim)

Format

A data frame with 10000 rows and 8 variables

Details

The variables are as follows:

• ID. ID of the participant (1 to 100)
• Time. Time index (100 time points from each subject)
• ca. Covariate 1
• cn. Covariate 2
• wp. Dependent variable 1
• hp. Dependent variable 2
• x1. Auxiliary variable 1
• x2. Auxiliary variable 2

vcov.dynrCook 79

References

Ji, L., Chow, S-M., Schermerhorn, A.C., Jacobson, N.C., & Cummings, E.M. (2018). Handling
Missing Data in the Modeling of Intensive Longitudinal Data. Structural Equation Modeling: A
Multidisciplinary Journal, 1-22.

vcov.dynrCook Extract the Variance-Covariance Matrix of a dynrCook object

Description

Extract the Variance-Covariance Matrix of a dynrCook object

Usage

S3 method for class 'dynrCook'
vcov(object, ...)

Arguments

object The dynrCook object for which the variance-covariance matrix is desired

... further named arguments, ignored by this method

Details

This is the inverse Hessian of the transformed parameters.

Value

matrix. Asymptotic variance-covariance matrix of the transformed parameters.

vdpData Another simulated multilevel multi-subject time series of a Van der Pol
Oscillator

Description

A dataset simulated using methods described in the reference below.

Reference: Chow, S., Lu, Z., Sherwood, A., and Zhu, H. (2016). Fitting Nonlinear Ordinary Differ-
ential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic
Approximation Expectation-Maximization (SAEM) Algorithm. Psychometrika, 81(1), 102-134.

Usage

data(vdpData)

80 vdpData

Format

A data frame with 10,000 rows and 11 variables

Details

The variables are as follows:

• batch. Batch number from simulation

• kk. Unclear

• trueInit. True initial condition

• id. Person ID

• time. Continuous time of measurement

• y1. Observed score 1

• y2. Observed score 2

• y3. Observed score 3

• u1. Covariate 1

• u2. Covariate 2

• trueb. True value of person-specific random effect

Index

∗ State-space modeling
dynr-package, 4

∗ Time series
dynr-package, 4

∗ datasets
EMG, 35
EMGsim, 35
LinearOsc, 39
LogisticSetPointSDE, 40
NonlinearDFAsim, 46
oscData, 47
Oscillator, 48
Outliers, 49
PFAsim, 51
PPsim, 57
RSPPsim, 75
TrueInit_Y14, 77
VARsim, 78
vdpData, 79

∗ differential equation
dynr-package, 4

∗ dynamic model
dynr-package, 4

∗ nonlinear
dynr-package, 4

∗ regime switching
dynr-package, 4

$,dynrCook-method (dynrCook-class), 32
$,dynrModel-method (dynrModel-class), 33
$,dynrRecipe-method (dynrRecipe-class),

34
$<-,dynrModel-method (dynrModel-class),

33

autoplot, 16
autoplot.dynrCook (dynr.ggplot), 20
autoplot.dynrTaste, 9

chol, 22
coef, 16

coef.dynrCook, 42
coef.dynrCook (coef.dynrModel), 10
coef.dynrModel, 10
coef<- (coef.dynrModel), 10
confint, 16
confint.dynrCook, 11

deviance, 16
deviance.dynrCook (logLik.dynrCook), 41
diag, 13
diag (diag,character-method), 13
diag,character-method, 13
diag.character (diag,character-method),

13
dynr (dynr-package), 4
dynr-package, 4
dynr.config, 14
dynr.cook, 15, 17, 24, 32
dynr.data, 17, 24, 25, 36
dynr.flowField, 18
dynr.ggplot, 20, 54
dynr.ldl, 22
dynr.mi, 23
dynr.model, 24, 33, 34
dynr.plotFreq, 26
dynr.taste, 27
dynr.taste2, 28
dynr.trajectory, 30
dynr.version, 31
dynrCook-class, 32
dynrDebug-class (dynrCook-class), 32
dynrDynamics-class, 32
dynrDynamicsFormula-class

(dynrDynamics-class), 32
dynrDynamicsMatrix-class

(dynrDynamics-class), 32
dynrInitial-class, 32
dynrMeasurement-class, 33
dynrModel-class, 33
dynrNoise-class, 33

81

82 INDEX

dynrRecipe-class, 34
dynrRegimes-class, 34
dynrTrans-class, 34

EMG, 35
EMGsim, 35
ExpandRandomAsLVModel, 36

getdx, 37

initialize, 16
internalModelPrep, 38

LinearOsc, 39
LogisticSetPointSDE, 40
logLik, 16
logLik.dynrCook, 10, 41

names, 16
names,dynrCook-method, 43
names,dynrModel-method, 43
nobs, 16
nobs.dynrCook, 44
nobs.dynrModel, 45
NonlinearDFAsim, 46

oscData, 47
Oscillator, 48
Outliers, 49

PFAsim, 51
plot, 16
plot.dynrCook, 54
plotFormula, 55, 75
plotGCV, 56
PPsim, 57
predict.dynrModel, 57
prep.formulaDynamics, 24, 25, 32, 34, 36,

58, 67
prep.initial, 24, 25, 32, 34, 36, 61
prep.loadings, 24, 33, 64
prep.matrixDynamics, 24, 25, 32, 34, 66
prep.measurement, 24, 25, 33, 34, 36, 65, 67,

70
prep.noise, 24, 25, 33, 34, 36, 65, 69
prep.regimes, 24, 25, 34, 71
prep.tfun, 24, 25, 34, 73
print, 16, 63, 67, 68, 72
print,dynrCook-method (dynrCook-class),

32

print,dynrModel-method
(dynrModel-class), 33

print,dynrRecipe-method
(dynrRecipe-class), 34

printex, 25, 63, 68, 70, 72, 74
printex,dynrCook-method (printex), 74
printex,dynrDynamicsFormula-method

(printex), 74
printex,dynrDynamicsMatrix-method

(printex), 74
printex,dynrInitial-method (printex), 74
printex,dynrMeasurement-method

(printex), 74
printex,dynrModel-method (printex), 74
printex,dynrNoise-method (printex), 74
printex,dynrRegimes-method (printex), 74

RSPPsim, 75

show, 16, 63, 67, 68, 72
show,dynrCook-method (dynrCook-class),

32
show,dynrModel-method

(dynrModel-class), 33
show,dynrRecipe-method

(dynrRecipe-class), 34
summary, 16
summary.dynrCook, 76

theta_plot, 76
TrueInit_Y14, 77

VARsim, 78
vcov, 16
vcov.dynrCook, 79
vdpData, 79

	dynr-package
	autoplot.dynrTaste
	coef.dynrModel
	confint.dynrCook
	diag,character-method
	dynr.config
	dynr.cook
	dynr.data
	dynr.flowField
	dynr.ggplot
	dynr.ldl
	dynr.mi
	dynr.model
	dynr.plotFreq
	dynr.taste
	dynr.taste2
	dynr.trajectory
	dynr.version
	dynrCook-class
	dynrDynamics-class
	dynrInitial-class
	dynrMeasurement-class
	dynrModel-class
	dynrNoise-class
	dynrRecipe-class
	dynrRegimes-class
	dynrTrans-class
	EMG
	EMGsim
	ExpandRandomAsLVModel
	getdx
	internalModelPrep
	LinearOsc
	LogisticSetPointSDE
	logLik.dynrCook
	names,dynrCook-method
	names,dynrModel-method
	nobs.dynrCook
	nobs.dynrModel
	NonlinearDFAsim
	oscData
	Oscillator
	Outliers
	PFAsim
	plot.dynrCook
	plotFormula
	plotGCV
	PPsim
	predict.dynrModel
	prep.formulaDynamics
	prep.initial
	prep.loadings
	prep.matrixDynamics
	prep.measurement
	prep.noise
	prep.regimes
	prep.tfun
	printex
	RSPPsim
	summary.dynrCook
	theta_plot
	TrueInit_Y14
	VARsim
	vcov.dynrCook
	vdpData
	Index

