
Package: duckplyr (via r-universe)
February 27, 2025

Type Package

Title A 'DuckDB'-Backed Version of 'dplyr'

Version 1.0.1

Description A drop-in replacement for 'dplyr', powered by 'DuckDB' for
performance. Offers convenient utilities for working with
in-memory and larger-than-memory data while retaining full
'dplyr' compatibility.

License MIT + file LICENSE

URL https://duckplyr.tidyverse.org,

https://github.com/tidyverse/duckplyr

BugReports https://github.com/tidyverse/duckplyr/issues

Depends R (>= 4.0.0), dplyr (>= 1.1.4)

Imports cli, collections, DBI, duckdb (>= 1.2.0), glue, jsonlite,
lifecycle, magrittr, memoise, pillar (>= 1.10.1), rlang (>=
1.0.6), tibble, tidyselect, utils, vctrs (>= 0.6.3)

Suggests arrow, brio, callr, conflicted, constructive (>= 1.0.0),
curl, dbplyr, hms, knitr, lobstr, lubridate, nycflights13,
palmerpenguins, prettycode, purrr, readr, rmarkdown, testthat
(>= 3.1.5), usethis, withr

Enhances qs, reprex, rstudioapi

Config/Needs/check anthonynorth/roxyglobals

Config/Needs/website tidyverse/tidytemplate, dbplyr, rmarkdown

Config/testthat/edition 3

Config/testthat/parallel false

Config/testthat/start-first rel_api, tpch, as_duckplyr_df,
dplyr-mutate, dplyr-filter, dplyr-count-tally

Encoding UTF-8

RoxygenNote 7.3.2.9000

VignetteBuilder knitr

1

https://duckplyr.tidyverse.org
https://github.com/tidyverse/duckplyr
https://github.com/tidyverse/duckplyr/issues

2 Contents

NeedsCompilation no

Author Hannes Mühleisen [aut]
(<https://orcid.org/0000-0001-8552-0029>), Kirill Müller [aut,
cre] (<https://orcid.org/0000-0002-1416-3412>), Posit Software,
PBC [cph, fnd]

Maintainer Kirill Müller <kirill@cynkra.com>

Repository CRAN

Date/Publication 2025-02-27 14:30:08 UTC

Config/pak/sysreqs xz-utils

Contents
anti_join.duckplyr_df . 3
arrange.duckplyr_df . 4
collect.duckplyr_df . 5
compute.duckplyr_df . 6
compute_csv . 7
compute_parquet . 8
config . 9
count.duckplyr_df . 11
db_exec . 12
distinct.duckplyr_df . 13
duckdb_tibble . 14
explain.duckplyr_df . 15
fallback . 16
filter.duckplyr_df . 18
flights_df . 19
full_join.duckplyr_df . 19
head.duckplyr_df . 22
inner_join.duckplyr_df . 22
intersect.duckplyr_df . 25
last_rel . 26
left_join.duckplyr_df . 26
methods_overwrite . 29
mutate.duckplyr_df . 30
new_relational . 31
new_relexpr . 35
pull.duckplyr_df . 37
read_csv_duckdb . 38
read_file_duckdb . 40
read_json_duckdb . 41
read_parquet_duckdb . 42
read_sql_duckdb . 42
relocate.duckplyr_df . 43
rename.duckplyr_df . 44
right_join.duckplyr_df . 45

https://orcid.org/0000-0001-8552-0029
https://orcid.org/0000-0002-1416-3412

anti_join.duckplyr_df 3

select.duckplyr_df . 48
semi_join.duckplyr_df . 49
setdiff.duckplyr_df . 50
stats_show . 51
summarise.duckplyr_df . 51
symdiff.duckplyr_df . 53
transmute.duckplyr_df . 54
union.duckplyr_df . 55
union_all.duckplyr_df . 55
unsupported . 56

Index 58

anti_join.duckplyr_df Anti join

Description

This is a method for the dplyr::anti_join() generic. anti_join() returns all rows from x
without a match in y.

Usage

S3 method for class 'duckplyr_df'
anti_join(x, y, by = NULL, copy = FALSE, ..., na_matches = c("na", "never"))

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

4 arrange.duckplyr_df

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other parameters passed onto methods.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

See Also

dplyr::anti_join()

Examples

library(duckplyr)
band_members %>% anti_join(band_instruments)

arrange.duckplyr_df Order rows using column values

Description

This is a method for the dplyr::arrange() generic. See "Fallbacks" section for differences in
implementation. arrange() orders the rows of a data frame by the values of selected columns.

Unlike other dplyr verbs, arrange() largely ignores grouping; you need to explicitly mention
grouping variables (or use .by_group = TRUE) in order to group by them, and functions of vari-
ables are evaluated once per data frame, not once per group.

Usage

S3 method for class 'duckplyr_df'
arrange(.data, ..., .by_group = FALSE, .locale = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Variables, or functions of variables. Use desc() to sort a
variable in descending order.

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data frames
only.

.locale The locale to sort character vectors in.

collect.duckplyr_df 5

• If NULL, the default, uses the "C" locale unless the dplyr.legacy_locale
global option escape hatch is active. See the dplyr-locale help page for more
details.

• If a single string from stringi::stri_locale_list() is supplied, then
this will be used as the locale to sort with. For example, "en" will sort with
the American English locale. This requires the stringi package.

• If "C" is supplied, then character vectors will always be sorted in the C
locale. This does not require stringi and is often much faster than supplying
a locale identifier.

The C locale is not the same as English locales, such as "en", particularly when
it comes to data containing a mix of upper and lower case letters. This is ex-
plained in more detail on the locale help page under the Default locale sec-
tion.

Fallbacks

There is no DuckDB translation in arrange.duckplyr_df()

• with .by_group = TRUE,

• providing a value for the .locale argument,

• providing a value for the dplyr.legacy_locale option.

These features fall back to dplyr::arrange(), see vignette("fallback") for details.

See Also

dplyr::arrange()

Examples

library(duckplyr)
arrange(mtcars, cyl, disp)
arrange(mtcars, desc(disp))

collect.duckplyr_df Force conversion to a data frame

Description

This is a method for the dplyr::collect() generic. collect() converts the input to a tibble,
materializing any lazy operations.

Usage

S3 method for class 'duckplyr_df'
collect(x, ...)

6 compute.duckplyr_df

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... Arguments passed on to methods

See Also

dplyr::collect()

Examples

library(duckplyr)
df <- duckdb_tibble(x = c(1, 2), .lazy = TRUE)
df
try(print(df$x))
df <- collect(df)
df

compute.duckplyr_df Compute results

Description

This is a method for the dplyr::compute() generic. For a duckplyr frame, compute() executes a
query but stores it in a (temporary) table, or in a Parquet or CSV file. The result is a duckplyr frame
that can be used with subsequent dplyr verbs.

Usage

S3 method for class 'duckplyr_df'
compute(
x,
...,
prudence = NULL,
name = NULL,
schema_name = NULL,
temporary = TRUE

)

Arguments

x A duckplyr frame.

... Arguments passed on to methods

prudence Memory protection, controls if DuckDB may convert intermediate results in
DuckDB-managed memory to data frames in R memory.

• "lavish": regardless of size,

compute_csv 7

• "stingy": never,
• "thrifty": up to a maximum size of 1 million cells.

The default is to inherit from the input. This argument is provided here only
for convenience. The same effect can be achieved by forwarding the output to
as_duckdb_tibble() with the desired prudence. See vignette("prudence")
for more information.

name The name of the table to store the result in.

schema_name The schema to store the result in, defaults to the current schema.

temporary Set to FALSE to store the result in a permanent table.

Value

A duckplyr frame.

See Also

dplyr::collect()

Examples

library(duckplyr)
df <- duckdb_tibble(x = c(1, 2))
df <- mutate(df, y = 2)
explain(df)
df <- compute(df)
explain(df)

compute_csv Compute results to a CSV file

Description

For a duckplyr frame, this function executes the query and stores the results in a CSV file, without
converting it to an R data frame. The result is a duckplyr frame that can be used with subsequent
dplyr verbs. This function can also be used as a CSV writer for regular data frames.

Usage

compute_csv(x, path, ..., prudence = NULL, options = NULL)

Arguments

x A duckplyr frame.

path The path of the Parquet file to create.

... These dots are for future extensions and must be empty.

8 compute_parquet

prudence Memory protection, controls if DuckDB may convert intermediate results in
DuckDB-managed memory to data frames in R memory.

• "lavish": regardless of size,

• "stingy": never,

• "thrifty": up to a maximum size of 1 million cells.

The default is to inherit from the input. This argument is provided here only
for convenience. The same effect can be achieved by forwarding the output to
as_duckdb_tibble() with the desired prudence. See vignette("prudence")
for more information.

options A list of additional options to pass to create the storage format, see https:
//duckdb.org/docs/sql/statements/copy.html#csv-options for details.

Value

A duckplyr frame.

See Also

compute_parquet(), compute.duckplyr_df(), dplyr::collect()

Examples

library(duckplyr)
df <- data.frame(x = c(1, 2))
df <- mutate(df, y = 2)
path <- tempfile(fileext = ".csv")
df <- compute_csv(df, path)
readLines(path)

compute_parquet Compute results to a Parquet file

Description

For a duckplyr frame, this function executes the query and stores the results in a Parquet file, without
converting it to an R data frame. The result is a duckplyr frame that can be used with subsequent
dplyr verbs. This function can also be used as a Parquet writer for regular data frames.

Usage

compute_parquet(x, path, ..., prudence = NULL, options = NULL)

https://duckdb.org/docs/sql/statements/copy.html#csv-options
https://duckdb.org/docs/sql/statements/copy.html#csv-options

config 9

Arguments

x A duckplyr frame.

path The path of the Parquet file to create.

... These dots are for future extensions and must be empty.

prudence Memory protection, controls if DuckDB may convert intermediate results in
DuckDB-managed memory to data frames in R memory.

• "lavish": regardless of size,

• "stingy": never,

• "thrifty": up to a maximum size of 1 million cells.

The default is to inherit from the input. This argument is provided here only
for convenience. The same effect can be achieved by forwarding the output to
as_duckdb_tibble() with the desired prudence. See vignette("prudence")
for more information.

options A list of additional options to pass to create the Parquet file, see https://
duckdb.org/docs/sql/statements/copy.html#parquet-options for details.

Value

A duckplyr frame.

See Also

compute_csv(), compute.duckplyr_df(), dplyr::collect()

Examples

library(duckplyr)
df <- data.frame(x = c(1, 2))
df <- mutate(df, y = 2)
path <- tempfile(fileext = ".parquet")
df <- compute_parquet(df, path)
explain(df)

config Configuration options

Description

The behavior of duckplyr can be fine-tuned with several environment variables, and one option.

https://duckdb.org/docs/sql/statements/copy.html#parquet-options
https://duckdb.org/docs/sql/statements/copy.html#parquet-options

10 config

Environment variables

DUCKPLYR_TEMP_DIR: Set to a path where temporary files can be created. By default, tempdir() is
used.

DUCKPLYR_OUTPUT_ORDER: If TRUE, row output order is preserved. The default may change the row
order where dplyr would keep it stable. Preserving the order leads to more complicated execution
plans with less potential for optimization, and thus may be slower.

DUCKPLYR_FORCE: If TRUE, fail if duckdb cannot handle a request.

DUCKPLYR_CHECK_ROUNDTRIP: If TRUE, check if all columns are roundtripped perfectly when creat-
ing a relational object from a data frame, This is slow, and mostly useful for debugging. The default
is to check roundtrip of attributes.

DUCKPLYR_EXPERIMENTAL: If TRUE, pass experimental = TRUE to certain duckdb functions. Cur-
rently unused.

DUCKPLYR_METHODS_OVERWRITE: If TRUE, call methods_overwrite() when the package is loaded.

See fallback for more options related to printing, logging, and uploading of fallback events.

Examples

Sys.setenv(DUCKPLYR_OUTPUT_ORDER = TRUE)
data.frame(a = 3:1) %>%

as_duckdb_tibble() %>%
inner_join(data.frame(a = 1:4), by = "a")

withr::with_envvar(c(DUCKPLYR_OUTPUT_ORDER = "TRUE"), {
data.frame(a = 3:1) %>%
as_duckdb_tibble() %>%
inner_join(data.frame(a = 1:4), by = "a")

})

Sys.setenv(DUCKPLYR_FORCE = TRUE)
add_one <- function(x) {

x + 1
}

data.frame(a = 3:1) %>%
as_duckdb_tibble() %>%
mutate(b = add_one(a))

try(withr::with_envvar(c(DUCKPLYR_FORCE = "TRUE"), {
data.frame(a = 3:1) %>%
as_duckdb_tibble() %>%
mutate(b = add_one(a))

}))

Sys.setenv(DUCKPLYR_FALLBACK_INFO = TRUE)
withr::with_envvar(c(DUCKPLYR_FALLBACK_INFO = "TRUE"), {

data.frame(a = 3:1) %>%
as_duckdb_tibble() %>%
mutate(b = add_one(a))

})

count.duckplyr_df 11

count.duckplyr_df Count the observations in each group

Description

This is a method for the dplyr::count() generic. See "Fallbacks" section for differences in im-
plementation. count() lets you quickly count the unique values of one or more variables: df %>%
count(a, b) is roughly equivalent to df %>% group_by(a, b) %>% summarise(n = n()). count()
is paired with tally(), a lower-level helper that is equivalent to df %>% summarise(n = n()). Sup-
ply wt to perform weighted counts, switching the summary from n = n() to n = sum(wt).

Usage

S3 method for class 'duckplyr_df'
count(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by.

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect the
output.

12 db_exec

Fallbacks

There is no DuckDB translation in count.duckplyr_df()

• with complex expressions in ...,

• with .drop = FALSE,

• with sort = TRUE.

These features fall back to dplyr::count(), see vignette("fallback") for details.

See Also

dplyr::count()

Examples

library(duckplyr)
count(mtcars, am)

db_exec Execute a statement for the default connection

Description

The duckplyr package relies on a DBI connection to an in-memory database. The db_exec() func-
tion allows running SQL statements with side effects on this connection. It can be used to execute
statements that start with PRAGMA, SET, or ATTACH to, e.g., set up credentials, change configuration
options, or attach other databases. See https://duckdb.org/docs/configuration/overview.
html for more information on the configuration options, and https://duckdb.org/docs/sql/
statements/attach.html for attaching databases.

Usage

db_exec(sql, ..., con = NULL)

Arguments

sql The statement to run.

... These dots are for future extensions and must be empty.

con The connection, defaults to the default connection.

Value

The return value of the DBI::dbExecute() call, invisibly.

See Also

read_sql_duckdb()

https://duckdb.org/docs/configuration/overview.html
https://duckdb.org/docs/configuration/overview.html
https://duckdb.org/docs/sql/statements/attach.html
https://duckdb.org/docs/sql/statements/attach.html

distinct.duckplyr_df 13

Examples

db_exec("SET threads TO 2")

distinct.duckplyr_df Keep distinct/unique rows

Description

This is a method for the dplyr::distinct() generic. Keep only unique/distinct rows from a data
frame. This is similar to unique.data.frame() but considerably faster.

Usage

S3 method for class 'duckplyr_df'
distinct(.data, ..., .keep_all = FALSE)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row will
be preserved. If omitted, will use all variables in the data frame.

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not distinct, this
keeps the first row of values.

See Also

dplyr::distinct()

Examples

df <- duckdb_tibble(
x = sample(10, 100, rep = TRUE),
y = sample(10, 100, rep = TRUE)

)
nrow(df)
nrow(distinct(df))

14 duckdb_tibble

duckdb_tibble duckplyr data frames

Description

Data frames backed by duckplyr have a special class, "duckplyr_df", in addition to the default
classes. This ensures that dplyr methods are dispatched correctly. For such objects, dplyr verbs
such as dplyr::mutate(), dplyr::select() or dplyr::filter() will use DuckDB.

duckdb_tibble() works like tibble::tibble().

as_duckdb_tibble() converts a data frame or a dplyr lazy table to a duckplyr data frame. This is
a generic function that can be overridden for custom classes.

is_duckdb_tibble() returns TRUE if x is a duckplyr data frame.

Usage

duckdb_tibble(..., .prudence = c("lavish", "thrifty", "stingy"))

as_duckdb_tibble(x, ..., prudence = c("lavish", "thrifty", "stingy"))

is_duckdb_tibble(x)

Arguments

... For duckdb_tibble(), passed on to tibble::tibble(). For as_duckdb_tibble(),
passed on to methods.

x The object to convert or to test.
prudence, .prudence

Memory protection, controls if DuckDB may convert intermediate results in
DuckDB-managed memory to data frames in R memory.

• "lavish": regardless of size,
• "stingy": never,
• "thrifty": up to a maximum size of 1 million cells.

The default is "lavish" for duckdb_tibble() and as_duckdb_tibble(), and
may be different for other functions. See vignette("prudence") for more
information.

Value

For duckdb_tibble() and as_duckdb_tibble(), an object with the following classes:

• "prudent_duckplyr_df" if prudence is not "lavish"

• "duckplyr_df"

• Classes of a tibble::tibble

For is_duckdb_tibble(), a scalar logical.

explain.duckplyr_df 15

Fine-tuning prudence

[Experimental]

The prudence argument can also be a named numeric vector with at least one of cells or rows to
limit the cells (values) and rows in the resulting data frame after automatic materialization. If both
limits are specified, both are enforced. The equivalent of "thrifty" is c(cells = 1e6).

Examples

x <- duckdb_tibble(a = 1)
x

library(dplyr)
x %>%

mutate(b = 2)

x$a

y <- duckdb_tibble(a = 1, .prudence = "stingy")
y
try(length(y$a))
length(collect(y)$a)

explain.duckplyr_df Explain details of a tbl

Description

This is a method for the dplyr::explain() generic. This is a generic function which gives more
details about an object than print(), and is more focused on human readable output than str().

Usage

S3 method for class 'duckplyr_df'
explain(x, ...)

Arguments

x An object to explain

... Other parameters possibly used by generic

Value

The input, invisibly.

See Also

dplyr::explain()

16 fallback

Examples

library(duckplyr)
df <- duckdb_tibble(x = c(1, 2))
df <- mutate(df, y = 2)
explain(df)

fallback Fallback to dplyr

Description

The duckplyr package aims at providing a fully compatible drop-in replacement for dplyr. To
achieve this, only a carefully selected subset of dplyr’s operations, R functions, and R data types
are implemented. Whenever a request cannot be handled by DuckDB, duckplyr falls back to dplyr.
See vignette("fallback")‘ for details.

To assist future development, the fallback situations can be logged to the console or to a local file
and uploaded for analysis. By default, duckplyr will not log or upload anything. The functions and
environment variables on this page control the process.

fallback_sitrep() prints the current settings for fallback printing, logging, and uploading, the
number of reports ready for upload, and the location of the logs.

fallback_config() configures the current settings for fallback printing, logging, and uploading.
Only settings that do not affect computation results can be configured, this is by design. The config-
uration is stored in a file under tools::R_user_dir("duckplyr", "config") . When the duck-
plyr package is loaded, the configuration is read from this file, and the corresponding environment
variables are set.

fallback_review() prints the available reports for review to the console.

fallback_upload() uploads the available reports to a central server for analysis. The server is
hosted on AWS and the reports are stored in a private S3 bucket. Only authorized personnel have
access to the reports.

fallback_purge() deletes some or all available reports.

Usage

fallback_sitrep()

fallback_config(
...,
reset_all = FALSE,
info = NULL,
logging = NULL,
autoupload = NULL,
log_dir = NULL,
verbose = NULL

)

fallback 17

fallback_review(oldest = NULL, newest = NULL, detail = TRUE)

fallback_upload(oldest = NULL, newest = NULL, strict = TRUE)

fallback_purge(oldest = NULL, newest = NULL)

Arguments

... These dots are for future extensions and must be empty.

reset_all Set to TRUE to reset all settings to their defaults. The R session must be restarted
for the changes to take effect.

info Set to TRUE to enable fallback printing.

logging Set to FALSE to disable fallback logging, set to TRUE to explicitly enable it.

autoupload Set to TRUE to enable automatic fallback uploading, set to FALSE to disable it.

log_dir Set the location of the logs in the file system. The directory will be created if it
does not exist.

verbose Set to TRUE to enable verbose logging.

oldest, newest The number of oldest or newest reports to review. If not specified, all reports are
dispayed.

detail Print the full content of the reports. Set to FALSE to only print the file names.

strict If TRUE, the function aborts if any of the reports fail to upload. With FALSE, only
a message is printed.

Details

Logging is on by default, but can be turned off. Uploading is opt-in.

The following environment variables control the logging and uploading:

• DUCKPLYR_FALLBACK_INFO controls human-friendly alerts for fallback events. If TRUE, a mes-
sage is printed when a fallback to dplyr occurs because DuckDB cannot handle a request.
These messages are never logged.

• DUCKPLYR_FALLBACK_COLLECT controls logging, set it to 1 or greater to enable logging. If the
value is 0, logging is disabled. Future versions of duckplyr may start logging additional data
and thus require a higher value to enable logging. Set to 99 to enable logging for all future
versions. Use usethis::edit_r_environ() to edit the environment file.

• DUCKPLYR_FALLBACK_AUTOUPLOAD controls uploading, set it to 1 or greater to enable upload-
ing. If the value is 0, uploading is disabled. Currently, uploading is active if the value is 1
or greater. Future versions of duckplyr may start logging additional data and thus require a
higher value to enable uploading. Set to 99 to enable uploading for all future versions. Use
usethis::edit_r_environ() to edit the environment file.

• DUCKPLYR_FALLBACK_LOG_DIR controls the location of the logs. It must point to a directory
(existing or not) where the logs will be written. By default, logs are written to a directory in
the user’s cache directory as returned by tools::R_user_dir("duckplyr", "cache").

18 filter.duckplyr_df

• DUCKPLYR_FALLBACK_VERBOSE controls printing of log data, set it to TRUE or FALSE to enable
or disable printing. If the value is TRUE, a message is printed to the console for each fallback
situation. This setting is only relevant if logging is enabled, and mostly useful for duckplyr’s
internal tests.

All code related to fallback logging and uploading is in the fallback.R and telemetry.R files.

Examples

fallback_sitrep()

filter.duckplyr_df Keep rows that match a condition

Description

This is a method for the dplyr::filter() generic. See "Fallbacks" section for differences in
implementation. The filter() function is used to subset a data frame, retaining all rows that
satisfy your conditions. To be retained, the row must produce a value of TRUE for all conditions.
Note that when a condition evaluates to NA the row will be dropped, unlike base subsetting with [.

Usage

S3 method for class 'duckplyr_df'
filter(.data, ..., .by = NULL, .preserve = FALSE)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept.

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Fallbacks

There is no DuckDB translation in filter.duckplyr_df()

• with no filter conditions,
• nor for a grouped operation (if .by is set).

These features fall back to dplyr::filter(), see vignette("fallback") for details.

https://github.com/tidyverse/duckplyr/blob/main/R/fallback.R
https://github.com/tidyverse/duckplyr/blob/main/R/telemetry.R

flights_df 19

See Also

dplyr::filter()

Examples

df <- duckdb_tibble(x = 1:3, y = 3:1)
filter(df, x >= 2)

flights_df Flight data

Description

Provides a variant of nycflights13::flights that is compatible with duckplyr, as a tibble: the
timezone has been set to UTC to work around a current limitation of duckplyr, see vignette("limits").
Call as_duckdb_tibble() to enable duckplyr operations.

Usage

flights_df()

Examples

flights_df()

full_join.duckplyr_df Full join

Description

This is a method for the dplyr::full_join() generic. See "Fallbacks" section for differences in
implementation. A full_join() keeps all observations in x and y.

Usage

S3 method for class 'duckplyr_df'
full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),

20 full_join.duckplyr_df

multiple = "all",
relationship = NULL

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

full_join.duckplyr_df 21

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is provided
to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

Fallbacks

There is no DuckDB translation in full_join.duckplyr_df()

• for an implicit cross join,

• for a value of the multiple argument that isn’t the default "all".

These features fall back to dplyr::full_join(), see vignette("fallback") for details.

See Also

dplyr::full_join()

Examples

library(duckplyr)
full_join(band_members, band_instruments)

22 inner_join.duckplyr_df

head.duckplyr_df Return the First Parts of an Object

Description

This is a method for the head() generic. See "Fallbacks" section for differences in implementation.
Return the first rows of a data.frame

Usage

S3 method for class 'duckplyr_df'
head(x, n = 6L, ...)

Arguments

x A data.frame

n A positive integer, how many rows to return.

... Not used yet.

Fallbacks

There is no DuckDB translation in head.duckplyr_df()

• with a negative n.

These features fall back to head(), see vignette("fallback") for details.

See Also

head()

Examples

head(mtcars, 2)

inner_join.duckplyr_df

Inner join

Description

This is a method for the dplyr::inner_join() generic. See "Fallbacks" section for differences in
implementation. An inner_join() only keeps observations from x that have a matching key in y.

inner_join.duckplyr_df 23

Usage

S3 method for class 'duckplyr_df'
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

24 inner_join.duckplyr_df

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:

intersect.duckplyr_df 25

– Each row in y matches at most 1 row in x.
• "many-to-one" expects:

– Each row in x matches at most 1 row in y.
• "many-to-many" doesn’t perform any relationship checks, but is provided

to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

Fallbacks

There is no DuckDB translation in inner_join.duckplyr_df()

• for an implicit crossjoin,

• for a value of the multiple argument that isn’t the default "all".

• for a value of the unmatched argument that isn’t the default "drop".

These features fall back to dplyr::inner_join(), see vignette("fallback") for details.

See Also

dplyr::inner_join()

Examples

library(duckplyr)
inner_join(band_members, band_instruments)

intersect.duckplyr_df Intersect

Description

This is a method for the dplyr::intersect() generic. See "Fallbacks" section for differences in
implementation. intersect(x, y) finds all rows in both x and y.

Usage

S3 method for class 'duckplyr_df'
intersect(x, y, ...)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... These dots are for future extensions and must be empty.

26 left_join.duckplyr_df

Fallbacks

There is no DuckDB translation in intersect.duckplyr_df()

• if column names are duplicated in one of the tables,

• if column names are different in both tables.

These features fall back to dplyr::intersect(), see vignette("fallback") for details.

See Also

dplyr::intersect()

Examples

df1 <- duckdb_tibble(x = 1:3)
df2 <- duckdb_tibble(x = 3:5)
intersect(df1, df2)

last_rel Retrieve details about the most recent computation

Description

Before a result is computed, it is specified as a "relation" object. This function retrieves this object
for the last computation that led to the materialization of a data frame.

Usage

last_rel()

Value

A duckdb "relation" object, or NULL if no computation has been performed yet.

left_join.duckplyr_df Left join

Description

This is a method for the dplyr::left_join() generic. See "Fallbacks" section for differences in
implementation. A left_join() keeps all observations in x.

left_join.duckplyr_df 27

Usage

S3 method for class 'duckplyr_df'
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

28 left_join.duckplyr_df

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:

methods_overwrite 29

– Each row in y matches at most 1 row in x.
• "many-to-one" expects:

– Each row in x matches at most 1 row in y.
• "many-to-many" doesn’t perform any relationship checks, but is provided

to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

Fallbacks

There is no DuckDB translation in left_join.duckplyr_df()

• for an implicit cross join,

• for a value of the multiple argument that isn’t the default "all".

• for a value of the unmatched argument that isn’t the default "drop".

These features fall back to dplyr::left_join(), see vignette("fallback") for details.

See Also

dplyr::left_join()

Examples

library(duckplyr)
left_join(band_members, band_instruments)

methods_overwrite Forward all dplyr methods to duckplyr

Description

After calling methods_overwrite(), all dplyr methods are redirected to duckplyr for the duraton
of the session, or until a call to methods_restore(). The methods_overwrite() function is called
automatically when the package is loaded if the environment variable DUCKPLYR_METHODS_OVERWRITE
is set to TRUE.

Usage

methods_overwrite()

methods_restore()

Value

Called for their side effects.

30 mutate.duckplyr_df

Examples

tibble(a = 1:3) %>%
mutate(b = a + 1)

methods_overwrite()

tibble(a = 1:3) %>%
mutate(b = a + 1)

methods_restore()

tibble(a = 1:3) %>%
mutate(b = a + 1)

mutate.duckplyr_df Create, modify, and delete columns

Description

This is a method for the dplyr::mutate() generic. mutate() creates new columns that are func-
tions of existing variables. It can also modify (if the name is the same as an existing column) and
delete columns (by setting their value to NULL).

Usage

S3 method for class 'duckplyr_df'
mutate(
.data,
...,
.by = NULL,
.keep = c("all", "used", "unused", "none"),
.before = NULL,
.after = NULL

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.

new_relational 31

• A data frame or tibble, to create multiple columns in the output.

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.keep Control which columns from .data are retained in the output. Grouping columns
and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns. This

is useful for checking your work, as it displays inputs and outputs side-by-
side.

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the columns
used to generate them.

• "none" doesn’t retain any extra columns from .data. Only the grouping
variables and columns created by ... are kept.

.before, .after <tidy-select> Optionally, control where new columns should appear (the de-
fault is to add to the right hand side). See relocate() for more details.

See Also

dplyr::mutate()

Examples

library(duckplyr)
df <- data.frame(x = c(1, 2))
df <- mutate(df, y = 2)
df

new_relational Relational implementer’s interface

Description

The constructor and generics described here define a class that helps separating dplyr’s user inter-
face from the actual underlying operations. In the longer term, this will help packages that imple-
ment the dplyr interface (such as dbplyr, dtplyr, arrow and similar) to focus on the core details of
their functionality, rather than on the intricacies of dplyr’s user interface.

new_relational() constructs an object of class "relational". Users are encouraged to provide
the class argument. The typical use case will be to create a wrapper function.

rel_to_df() extracts a data frame representation from a relational object, to be used by dplyr::collect().

rel_filter() keeps rows that match a predicate, to be used by dplyr::filter().

rel_project() selects columns or creates new columns, to be used by dplyr::select(), dplyr::rename(),
dplyr::mutate(), dplyr::relocate(), and others.

32 new_relational

rel_aggregate() combines several rows into one, to be used by dplyr::summarize().

rel_order() reorders rows by columns or expressions, to be used by dplyr::arrange().

rel_join() joins or merges two tables, to be used by dplyr::left_join(), dplyr::right_join(),
dplyr::inner_join(), dplyr::full_join(), dplyr::cross_join(), dplyr::semi_join(), and
dplyr::anti_join().

rel_limit() limits the number of rows in a table, to be used by utils::head().

rel_distinct() only keeps the distinct rows in a table, to be used by dplyr::distinct().

rel_set_intersect() returns rows present in both tables, to be used by generics::intersect().

rel_set_diff() returns rows present in any of both tables, to be used by generics::setdiff().

rel_set_symdiff() returns rows present in any of both tables, to be used by dplyr::symdiff().

rel_union_all() returns rows present in any of both tables, to be used by dplyr::union_all().

rel_explain() prints an explanation of the plan executed by the relational object.

rel_alias() returns the alias name for a relational object.

rel_set_alias() sets the alias name for a relational object.

rel_names() returns the column names as character vector, to be used by colnames().

Usage

new_relational(..., class = NULL)

rel_to_df(rel, ...)

rel_filter(rel, exprs, ...)

rel_project(rel, exprs, ...)

rel_aggregate(rel, groups, aggregates, ...)

rel_order(rel, orders, ascending, ...)

rel_join(
left,
right,
conds,
join = c("inner", "left", "right", "outer", "cross", "semi", "anti"),
join_ref_type = c("regular", "natural", "cross", "positional", "asof"),
...

)

rel_limit(rel, n, ...)

rel_distinct(rel, ...)

rel_set_intersect(rel_a, rel_b, ...)

new_relational 33

rel_set_diff(rel_a, rel_b, ...)

rel_set_symdiff(rel_a, rel_b, ...)

rel_union_all(rel_a, rel_b, ...)

rel_explain(rel, ...)

rel_alias(rel, ...)

rel_set_alias(rel, alias, ...)

rel_names(rel, ...)

Arguments

... Reserved for future extensions, must be empty.

class Classes added in front of the "relational" base class.
rel, rel_a, rel_b, left, right

A relational object.

exprs A list of "relational_relexpr" objects to filter by, created by new_relexpr().

groups A list of expressions to group by.

aggregates A list of expressions with aggregates to compute.

orders A list of expressions to order by.

ascending A logical vector describing the sort order.

conds A list of expressions to use for the join.

join The type of join.

join_ref_type The ref type of join.

n The number of rows.

alias the new alias

Value

• new_relational() returns a new relational object.

• rel_to_df() returns a data frame.

• rel_names() returns a character vector.

• All other generics return a modified relational object.

Examples

new_dfrel <- function(x) {
stopifnot(is.data.frame(x))
new_relational(list(x), class = "dfrel")

}
mtcars_rel <- new_dfrel(mtcars[1:5, 1:4])

34 new_relational

rel_to_df.dfrel <- function(rel, ...) {
unclass(rel)[[1]]

}
rel_to_df(mtcars_rel)

rel_filter.dfrel <- function(rel, exprs, ...) {
df <- unclass(rel)[[1]]

A real implementation would evaluate the predicates defined
by the exprs argument
new_dfrel(df[seq_len(min(3, nrow(df))),])

}

rel_filter(
mtcars_rel,
list(
relexpr_function(

"gt",
list(relexpr_reference("cyl"), relexpr_constant("6"))

)
)

)

rel_project.dfrel <- function(rel, exprs, ...) {
df <- unclass(rel)[[1]]

A real implementation would evaluate the expressions defined
by the exprs argument
new_dfrel(df[seq_len(min(3, ncol(df)))])

}

rel_project(
mtcars_rel,
list(relexpr_reference("cyl"), relexpr_reference("disp"))

)

rel_order.dfrel <- function(rel, exprs, ...) {
df <- unclass(rel)[[1]]

A real implementation would evaluate the expressions defined
by the exprs argument
new_dfrel(df[order(df[[1]]),])

}

rel_order(
mtcars_rel,
list(relexpr_reference("mpg"))

)

rel_join.dfrel <- function(left, right, conds, join, ...) {
left_df <- unclass(left)[[1]]
right_df <- unclass(right)[[1]]

new_relexpr 35

A real implementation would evaluate the expressions
defined by the conds argument,
use different join types based on the join argument,
and implement the join itself instead of relaying to left_join().
new_dfrel(dplyr::left_join(left_df, right_df))

}

rel_join(new_dfrel(data.frame(mpg = 21)), mtcars_rel)

rel_limit.dfrel <- function(rel, n, ...) {
df <- unclass(rel)[[1]]

new_dfrel(df[seq_len(n),])
}

rel_limit(mtcars_rel, 3)

rel_distinct.dfrel <- function(rel, ...) {
df <- unclass(rel)[[1]]

new_dfrel(df[!duplicated(df),])
}

rel_distinct(new_dfrel(mtcars[1:3, 1:4]))

rel_names.dfrel <- function(rel, ...) {
df <- unclass(rel)[[1]]

names(df)
}

rel_names(mtcars_rel)

new_relexpr Relational expressions

Description

These functions provide a backend-agnostic way to construct expression trees built of column ref-
erences, constants, and functions. All subexpressions in an expression tree can have an alias.

new_relexpr() constructs an object of class "relational_relexpr". It is used by the higher-level
constructors, users should rarely need to call it directly.

relexpr_reference() constructs a reference to a column.

relexpr_constant() wraps a constant value.

relexpr_function() applies a function. The arguments to this function are a list of other expres-
sion objects.

36 new_relexpr

relexpr_comparison() wraps a comparison expression.

relexpr_window() applies a function over a window, similarly to the SQL OVER clause.

relexpr_set_alias() assigns an alias to an expression.

Usage

new_relexpr(x, class = NULL)

relexpr_reference(name, rel = NULL, alias = NULL)

relexpr_constant(val, alias = NULL)

relexpr_function(name, args, alias = NULL)

relexpr_comparison(cmp_op, exprs)

relexpr_window(
expr,
partitions,
order_bys = list(),
offset_expr = NULL,
default_expr = NULL,
alias = NULL

)

relexpr_set_alias(expr, alias = NULL)

Arguments

x An object.

class Classes added in front of the "relational_relexpr" base class.

name The name of the column or function to reference.

rel The name of the relation to reference.

alias An alias for the new expression.

val The value to use in the constant expression.

args Function arguments, a list of expr objects.

cmp_op Comparison operator, e.g., "<" or "==".

exprs Expressions to compare, a list of expr objects.

expr An expr object.

partitions Partitions, a list of expr objects.

order_bys which variables to order results by (list).

offset_expr offset relational expression.

default_expr default relational expression.

pull.duckplyr_df 37

Value

an object of class "relational_relexpr"

an object of class "relational_relexpr"

an object of class "relational_relexpr"

an object of class "relational_relexpr"

an object of class "relational_relexpr"

an object of class "relational_relexpr"

Examples

relexpr_set_alias(
alias = "my_predicate",
relexpr_function(
"<",
list(

relexpr_reference("my_number"),
relexpr_constant(42)

)
)

)

pull.duckplyr_df Extract a single column

Description

This is a method for the dplyr::pull() generic. See "Fallbacks" section for differences in imple-
mentation. pull() is similar to $. It’s mostly useful because it looks a little nicer in pipes, it also
works with remote data frames, and it can optionally name the output.

Usage

S3 method for class 'duckplyr_df'
pull(.data, var = -1, name = NULL, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

var A variable specified as:

• a literal variable name
• a positive integer, giving the position counting from the left
• a negative integer, giving the position counting from the right.

38 read_csv_duckdb

The default returns the last column (on the assumption that’s the column you’ve
created most recently).

This argument is taken by expression and supports quasiquotation (you can un-
quote column names and column locations).

name An optional parameter that specifies the column to be used as names for a named
vector. Specified in a similar manner as var.

... For use by methods.

Fallbacks

There is no DuckDB translation in pull.duckplyr_df()

• with a selection that returns no columns.

These features fall back to dplyr::pull(), see vignette("fallback") for details.

See Also

dplyr::pull()

Examples

library(duckplyr)
pull(mtcars, cyl)
pull(mtcars, 1)

read_csv_duckdb Read CSV files using DuckDB

Description

read_csv_duckdb() reads a CSV file using DuckDB’s read_csv_auto() table function.

Usage

read_csv_duckdb(
path,
...,
prudence = c("thrifty", "lavish", "stingy"),
options = list()

)

read_csv_duckdb 39

Arguments

path Path to files, glob patterns * and ? are supported.

... These dots are for future extensions and must be empty.

prudence Memory protection, controls if DuckDB may convert intermediate results in
DuckDB-managed memory to data frames in R memory.

• "thrifty": up to a maximum size of 1 million cells,

• "lavish": regardless of size,

• "stingy": never.

The default is "thrifty" for the ingestion functions, and may be different for
other functions. See vignette("prudence") for more information.

options Arguments to the DuckDB read_csv_auto table function.

See Also

read_parquet_duckdb(), read_json_duckdb()

Examples

Create simple CSV file
path <- tempfile("duckplyr_test_", fileext = ".csv")
write.csv(data.frame(a = 1:3, b = letters[4:6]), path, row.names = FALSE)

Reading is immediate
df <- read_csv_duckdb(path)

Names are always available
names(df)

Materialization upon access is turned off by default
try(print(df$a))

Materialize explicitly
collect(df)$a

Automatic materialization with prudence = "lavish"
df <- read_csv_duckdb(path, prudence = "lavish")
df$a

Specify column types
read_csv_duckdb(
path,
options = list(delim = ",", types = list(c("DOUBLE", "VARCHAR")))

)

40 read_file_duckdb

read_file_duckdb Read files using DuckDB

Description

read_file_duckdb() uses arbitrary readers to read data. See https://duckdb.org/docs/data/
overview for a documentation of the available functions and their options. To read multiple files
with the same schema, pass a wildcard or a character vector to the path argument,

Usage

read_file_duckdb(
path,
table_function,
...,
prudence = c("thrifty", "lavish", "stingy"),
options = list()

)

Arguments

path Path to files, glob patterns * and ? are supported.

table_function The name of a table-valued DuckDB function such as "read_parquet", "read_csv",
"read_csv_auto" or "read_json".

... These dots are for future extensions and must be empty.

prudence Memory protection, controls if DuckDB may convert intermediate results in
DuckDB-managed memory to data frames in R memory.

• "thrifty": up to a maximum size of 1 million cells,
• "lavish": regardless of size,
• "stingy": never.

The default is "thrifty" for the ingestion functions, and may be different for
other functions. See vignette("prudence") for more information.

options Arguments to the DuckDB function indicated by table_function.

Value

A duckplyr frame, see as_duckdb_tibble() for details.

Fine-tuning prudence

[Experimental]

The prudence argument can also be a named numeric vector with at least one of cells or rows to
limit the cells (values) and rows in the resulting data frame after automatic materialization. If both
limits are specified, both are enforced. The equivalent of "thrifty" is c(cells = 1e6).

https://duckdb.org/docs/data/overview
https://duckdb.org/docs/data/overview

read_json_duckdb 41

See Also

read_csv_duckdb(), read_parquet_duckdb(), read_json_duckdb()

read_json_duckdb Read JSON files using DuckDB

Description

read_json_duckdb() reads a JSON file using DuckDB’s read_json() table function.

Usage

read_json_duckdb(
path,
...,
prudence = c("thrifty", "lavish", "stingy"),
options = list()

)

Arguments

path Path to files, glob patterns * and ? are supported.
... These dots are for future extensions and must be empty.
prudence Memory protection, controls if DuckDB may convert intermediate results in

DuckDB-managed memory to data frames in R memory.
• "thrifty": up to a maximum size of 1 million cells,
• "lavish": regardless of size,
• "stingy": never.

The default is "thrifty" for the ingestion functions, and may be different for
other functions. See vignette("prudence") for more information.

options Arguments to the DuckDB read_json table function.

See Also

read_csv_duckdb(), read_parquet_duckdb()

Examples

Create and read a simple JSON file
path <- tempfile("duckplyr_test_", fileext = ".json")
writeLines('[{"a": 1, "b": "x"}, {"a": 2, "b": "y"}]', path)

Reading needs the json extension
db_exec("INSTALL json")
db_exec("LOAD json")
read_json_duckdb(path)

42 read_sql_duckdb

read_parquet_duckdb Read Parquet files using DuckDB

Description

read_parquet_duckdb() reads a Parquet file using DuckDB’s read_parquet() table function.

Usage

read_parquet_duckdb(
path,
...,
prudence = c("thrifty", "lavish", "stingy"),
options = list()

)

Arguments

path Path to files, glob patterns * and ? are supported.

... These dots are for future extensions and must be empty.

prudence Memory protection, controls if DuckDB may convert intermediate results in
DuckDB-managed memory to data frames in R memory.

• "thrifty": up to a maximum size of 1 million cells,
• "lavish": regardless of size,
• "stingy": never.

The default is "thrifty" for the ingestion functions, and may be different for
other functions. See vignette("prudence") for more information.

options Arguments to the DuckDB read_parquet table function.

See Also

read_csv_duckdb(), read_json_duckdb()

read_sql_duckdb Return SQL query as duckdb_tibble

Description

[Experimental]

Runs a query and returns it as a duckplyr frame.

relocate.duckplyr_df 43

Usage

read_sql_duckdb(
sql,
...,
prudence = c("thrifty", "lavish", "stingy"),
con = NULL

)

Arguments

sql The SQL to run.
... These dots are for future extensions and must be empty.
prudence Memory protection, controls if DuckDB may convert intermediate results in

DuckDB-managed memory to data frames in R memory.
• "thrifty": up to a maximum size of 1 million cells,
• "lavish": regardless of size,
• "stingy": never.

The default is "thrifty" for the ingestion functions, and may be different for
other functions. See vignette("prudence") for more information.

con The connection, defaults to the default connection.

Details

Using data frames from the calling environment is not supported yet, see https://github.com/
duckdb/duckdb-r/issues/645 for details.

See Also

db_exec()

Examples

read_sql_duckdb("FROM duckdb_settings()")

relocate.duckplyr_df Change column order

Description

This is a method for the dplyr::relocate() generic. See "Fallbacks" section for differences in
implementation. Use relocate() to change column positions, using the same syntax as select()
to make it easy to move blocks of columns at once.

Usage

S3 method for class 'duckplyr_df'
relocate(.data, ..., .before = NULL, .after = NULL)

https://github.com/duckdb/duckdb-r/issues/645
https://github.com/duckdb/duckdb-r/issues/645

44 rename.duckplyr_df

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <tidy-select> Columns to move.

.before, .after <tidy-select> Destination of columns selected by Supplying neither will
move columns to the left-hand side; specifying both is an error.

Fallbacks

There is no DuckDB translation in relocate.duckplyr_df()

• with a selection that returns no columns.

These features fall back to dplyr::relocate(), see vignette("fallback") for details.

See Also

dplyr::relocate()

Examples

df <- duckdb_tibble(a = 1, b = 1, c = 1, d = "a", e = "a", f = "a")
relocate(df, f)

rename.duckplyr_df Rename columns

Description

This is a method for the dplyr::rename() generic. See "Fallbacks" section for differences in
implementation. rename() changes the names of individual variables using new_name = old_name
syntax.

Usage

S3 method for class 'duckplyr_df'
rename(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.
For rename_with(): additional arguments passed onto .fn.

right_join.duckplyr_df 45

Fallbacks

There is no DuckDB translation in rename.duckplyr_df()

• with a selection that returns no columns.

These features fall back to dplyr::rename(), see vignette("fallback") for details.

See Also

dplyr::rename()

Examples

library(duckplyr)
rename(mtcars, thing = mpg)

right_join.duckplyr_df

Right join

Description

This is a method for the dplyr::right_join() generic. See "Fallbacks" section for differences in
implementation. A right_join() keeps all observations in y.

Usage

S3 method for class 'duckplyr_df'
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL

)

46 right_join.duckplyr_df

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

right_join.duckplyr_df 47

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is provided
to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

Fallbacks

There is no DuckDB translation in right_join.duckplyr_df()

• for an implicit cross join,

• for a value of the multiple argument that isn’t the default "all".

• for a value of the unmatched argument that isn’t the default "drop".

These features fall back to dplyr::right_join(), see vignette("fallback") for details.

48 select.duckplyr_df

See Also

dplyr::right_join()

Examples

library(duckplyr)
right_join(band_members, band_instruments)

select.duckplyr_df Keep or drop columns using their names and types

Description

This is a method for the dplyr::select() generic. See "Fallbacks" section for differences in
implementation. Select (and optionally rename) variables in a data frame, using a concise mini-
language that makes it easy to refer to variables based on their name (e.g. a:f selects all columns
from a on the left to f on the right) or type (e.g. where(is.numeric) selects all numeric columns).

Usage

S3 method for class 'duckplyr_df'
select(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <tidy-select> One or more unquoted expressions separated by commas. Vari-
able names can be used as if they were positions in the data frame, so expressions
like x:y can be used to select a range of variables.

Fallbacks

There is no DuckDB translation in select.duckplyr_df()

• with no expression,

• nor with a selection that returns no columns.

These features fall back to dplyr::select(), see vignette("fallback") for details.

See Also

dplyr::select()

Examples

library(duckplyr)
select(mtcars, mpg)

semi_join.duckplyr_df 49

semi_join.duckplyr_df Semi join

Description

This is a method for the dplyr::semi_join() generic. semi_join() returns all rows from x with
a match in y.

Usage

S3 method for class 'duckplyr_df'
semi_join(x, y, by = NULL, copy = FALSE, ..., na_matches = c("na", "never"))

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other parameters passed onto methods.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

50 setdiff.duckplyr_df

See Also

dplyr::semi_join()

Examples

library(duckplyr)
band_members %>% semi_join(band_instruments)

setdiff.duckplyr_df Set difference

Description

This is a method for the dplyr::setdiff() generic. See "Fallbacks" section for differences in
implementation. setdiff(x, y) finds all rows in x that aren’t in y.

Usage

S3 method for class 'duckplyr_df'
setdiff(x, y, ...)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... These dots are for future extensions and must be empty.

Fallbacks

There is no DuckDB translation in setdiff.duckplyr_df()

• if column names are duplicated in one of the tables,

• if column names are different in both tables.

These features fall back to dplyr::setdiff(), see vignette("fallback") for details.

See Also

dplyr::setdiff()

Examples

df1 <- duckdb_tibble(x = 1:3)
df2 <- duckdb_tibble(x = 3:5)
setdiff(df1, df2)
setdiff(df2, df1)

stats_show 51

stats_show Show stats

Description

Prints statistics on how many calls were handled by DuckDB. The output shows the total number
of requests in the current session, split by fallbacks to dplyr and requests handled by duckdb.

Usage

stats_show()

Value

Called for its side effect.

Examples

stats_show()

tibble(a = 1:3) %>%
as_duckplyr_tibble() %>%
mutate(b = a + 1)

stats_show()

summarise.duckplyr_df Summarise each group down to one row

Description

This is a method for the dplyr::summarise() generic. See "Fallbacks" section for differences in
implementation. summarise() creates a new data frame. It returns one row for each combination of
grouping variables; if there are no grouping variables, the output will have a single row summarising
all observations in the input. It will contain one column for each grouping variable and one column
for each of the summary statistics that you have specified.

Usage

S3 method for class 'duckplyr_df'
summarise(.data, ..., .by = NULL, .groups = NULL)

52 summarise.duckplyr_df

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.groups [Experimental] Grouping structure of the result.

• "drop_last": dropping the last level of grouping. This was the only sup-
ported option before version 1.0.0.

• "drop": All levels of grouping are dropped.
• "keep": Same grouping structure as .data.
• "rowwise": Each row is its own group.

When .groups is not specified, it is chosen based on the number of rows of the
results:

• If all the results have 1 row, you get "drop_last".
• If the number of rows varies, you get "keep" (note that returning a variable

number of rows was deprecated in favor of reframe(), which also uncon-
ditionally drops all levels of grouping).

In addition, a message informs you of that choice, unless the result is ungrouped,
the option "dplyr.summarise.inform" is set to FALSE, or when summarise() is
called from a function in a package.

Fallbacks

There is no DuckDB translation in summarise.duckplyr_df()

• with .groups = "rowwise".

These features fall back to dplyr::summarise(), see vignette("fallback") for details.

See Also

dplyr::summarise()

Examples

library(duckplyr)
summarise(mtcars, mean = mean(disp), n = n())

symdiff.duckplyr_df 53

symdiff.duckplyr_df Symmetric difference

Description

This is a method for the dplyr::symdiff() generic. See "Fallbacks" section for differences in
implementation. symdiff(x, y) computes the symmetric difference, i.e. all rows in x that aren’t in
y and all rows in y that aren’t in x.

Usage

S3 method for class 'duckplyr_df'
symdiff(x, y, ...)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... These dots are for future extensions and must be empty.

Fallbacks

There is no DuckDB translation in symdiff.duckplyr_df()

• if column names are duplicated in one of the tables,

• if column names are different in both tables.

These features fall back to dplyr::symdiff(), see vignette("fallback") for details.

See Also

dplyr::symdiff()

Examples

df1 <- duckdb_tibble(x = 1:3)
df2 <- duckdb_tibble(x = 3:5)
symdiff(df1, df2)

54 transmute.duckplyr_df

transmute.duckplyr_df Create, modify, and delete columns

Description

This is a method for the dplyr::transmute() generic. See "Fallbacks" section for differences in
implementation. transmute() creates a new data frame containing only the specified computations.
It’s superseded because you can perform the same job with mutate(.keep = "none").

Usage

S3 method for class 'duckplyr_df'
transmute(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Fallbacks

There is no DuckDB translation in transmute.duckplyr_df()

• with a selection that returns no columns:

These features fall back to dplyr::transmute(), see vignette("fallback") for details.

See Also

dplyr::transmute()

Examples

library(duckplyr)
transmute(mtcars, mpg2 = mpg*2)

union.duckplyr_df 55

union.duckplyr_df Union

Description

This is a method for the dplyr::union() generic. union(x, y) finds all rows in either x or y,
excluding duplicates. The implementation forwards to distinct(union_all(x, y)).

Usage

S3 method for class 'duckplyr_df'
union(x, y, ...)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... These dots are for future extensions and must be empty.

See Also

dplyr::union()

Examples

df1 <- duckdb_tibble(x = 1:3)
df2 <- duckdb_tibble(x = 3:5)
union(df1, df2)

union_all.duckplyr_df Union of all

Description

This is a method for the dplyr::union_all() generic. See "Fallbacks" section for differences in
implementation. union_all(x, y) finds all rows in either x or y, including duplicates.

Usage

S3 method for class 'duckplyr_df'
union_all(x, y, ...)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... These dots are for future extensions and must be empty.

56 unsupported

Fallbacks

There is no DuckDB translation in union_all.duckplyr_df()

• if column names are duplicated in one of the tables,

• if column names are different in both tables.

These features fall back to dplyr::union_all(), see vignette("fallback") for details.

See Also

dplyr::union_all()

Examples

df1 <- duckdb_tibble(x = 1:3)
df2 <- duckdb_tibble(x = 3:5)
union_all(df1, df2)

unsupported Verbs not implemented in duckplyr

Description

The following dplyr generics have no counterpart method in duckplyr. If you want to help add a new
verb, please refer to our contributing guide https://duckplyr.tidyverse.org/CONTRIBUTING.
html#support-new-verbs

Unsupported verbs

For these verbs, duckplyr will fall back to dplyr.

• dplyr::add_count()

• dplyr::cross_join()

• dplyr::do()

• dplyr::group_by()

• dplyr::group_indices()

• dplyr::group_keys()

• dplyr::group_map()

• dplyr::group_modify()

• dplyr::group_nest()

• dplyr::group_size()

• dplyr::group_split()

• dplyr::group_trim()

• dplyr::groups()

https://duckplyr.tidyverse.org/CONTRIBUTING.html#support-new-verbs
https://duckplyr.tidyverse.org/CONTRIBUTING.html#support-new-verbs

unsupported 57

• dplyr::n_groups()

• dplyr::nest_by()

• dplyr::nest_join()

• dplyr::reframe()

• dplyr::rename_with()

• dplyr::rows_append()

• dplyr::rows_delete()

• dplyr::rows_insert()

• dplyr::rows_patch()

• dplyr::rows_update()

• dplyr::rows_upsert()

• dplyr::rowwise()

• generics::setequal()

• dplyr::slice_head()

• dplyr::slice_sample()

• dplyr::slice_tail()

• dplyr::slice()

• dplyr::ungroup()

Index

?dplyr_by, 18, 31, 52
?join_by, 3, 20, 23, 27, 46, 49

anti_join.duckplyr_df, 3
arrange.duckplyr_df, 4
as_duckdb_tibble (duckdb_tibble), 14
as_duckdb_tibble(), 7–9, 19, 40

collect.duckplyr_df, 5
colnames(), 32
compute.duckplyr_df, 6
compute.duckplyr_df(), 8, 9
compute_csv, 7
compute_csv(), 9
compute_parquet, 8
compute_parquet(), 8
config, 9
count.duckplyr_df, 11
cross_join(), 3, 20, 23, 27, 46, 49

db_exec, 12
db_exec(), 43
DBI::dbExecute(), 12
desc(), 4
distinct.duckplyr_df, 13
dplyr-locale, 5
dplyr::add_count(), 56
dplyr::anti_join(), 3, 4, 32
dplyr::arrange(), 4, 5, 32
dplyr::collect(), 5–9, 31
dplyr::compute(), 6
dplyr::count(), 11, 12
dplyr::cross_join(), 32, 56
dplyr::distinct(), 13, 32
dplyr::do(), 56
dplyr::explain(), 15
dplyr::filter(), 14, 18, 19, 31
dplyr::full_join(), 19, 21, 32
dplyr::group_by(), 56
dplyr::group_indices(), 56

dplyr::group_keys(), 56
dplyr::group_map(), 56
dplyr::group_modify(), 56
dplyr::group_nest(), 56
dplyr::group_size(), 56
dplyr::group_split(), 56
dplyr::group_trim(), 56
dplyr::groups(), 56
dplyr::inner_join(), 22, 25, 32
dplyr::intersect(), 25, 26
dplyr::left_join(), 26, 29, 32
dplyr::mutate(), 14, 30, 31
dplyr::n_groups(), 57
dplyr::nest_by(), 57
dplyr::nest_join(), 57
dplyr::pull(), 37, 38
dplyr::reframe(), 57
dplyr::relocate(), 31, 43, 44
dplyr::rename(), 31, 44, 45
dplyr::rename_with(), 57
dplyr::right_join(), 32, 45, 47, 48
dplyr::rows_append(), 57
dplyr::rows_delete(), 57
dplyr::rows_insert(), 57
dplyr::rows_patch(), 57
dplyr::rows_update(), 57
dplyr::rows_upsert(), 57
dplyr::rowwise(), 57
dplyr::select(), 14, 31, 48
dplyr::semi_join(), 32, 49, 50
dplyr::setdiff(), 50
dplyr::slice(), 57
dplyr::slice_head(), 57
dplyr::slice_sample(), 57
dplyr::slice_tail(), 57
dplyr::summarise(), 51, 52
dplyr::summarize(), 32
dplyr::symdiff(), 32, 53
dplyr::transmute(), 54

58

INDEX 59

dplyr::ungroup(), 57
dplyr::union(), 55
dplyr::union_all(), 32, 55, 56
duckdb_tibble, 14

explain.duckplyr_df, 15

fallback, 10, 16
fallback_config (fallback), 16
fallback_purge (fallback), 16
fallback_review (fallback), 16
fallback_sitrep (fallback), 16
fallback_upload (fallback), 16
filter.duckplyr_df, 18
flights_df, 19
full_join.duckplyr_df, 19

generics::intersect(), 32
generics::setdiff(), 32
generics::setequal(), 57
group_by(), 11, 18, 31, 52

head(), 22
head.duckplyr_df, 22

inner_join.duckplyr_df, 22
intersect.duckplyr_df, 25
is_duckdb_tibble (duckdb_tibble), 14

join_by(), 3, 20, 23, 27, 46, 49

last_rel, 26
left_join.duckplyr_df, 26
locale, 5

match(), 4, 20, 24, 28, 46, 49
merge(), 4, 20, 24, 28, 46, 49
methods_overwrite, 29
methods_restore (methods_overwrite), 29
mutate.duckplyr_df, 30

new_relational, 31
new_relexpr, 35
new_relexpr(), 33

pull.duckplyr_df, 37

quasiquotation, 38

read_csv_duckdb, 38
read_csv_duckdb(), 41, 42

read_file_duckdb, 40
read_json_duckdb, 41
read_json_duckdb(), 39, 41, 42
read_parquet_duckdb, 42
read_parquet_duckdb(), 39, 41
read_sql_duckdb, 42
read_sql_duckdb(), 12
reframe(), 52
rel_aggregate (new_relational), 31
rel_alias (new_relational), 31
rel_distinct (new_relational), 31
rel_explain (new_relational), 31
rel_filter (new_relational), 31
rel_join (new_relational), 31
rel_limit (new_relational), 31
rel_names (new_relational), 31
rel_order (new_relational), 31
rel_project (new_relational), 31
rel_set_alias (new_relational), 31
rel_set_diff (new_relational), 31
rel_set_intersect (new_relational), 31
rel_set_symdiff (new_relational), 31
rel_to_df (new_relational), 31
rel_union_all (new_relational), 31
relexpr_comparison (new_relexpr), 35
relexpr_constant (new_relexpr), 35
relexpr_function (new_relexpr), 35
relexpr_reference (new_relexpr), 35
relexpr_set_alias (new_relexpr), 35
relexpr_window (new_relexpr), 35
relocate(), 31
relocate.duckplyr_df, 43
rename.duckplyr_df, 44
right_join.duckplyr_df, 45

select.duckplyr_df, 48
semi_join.duckplyr_df, 49
setdiff.duckplyr_df, 50
stats_show, 51
stringi::stri_locale_list(), 5
summarise.duckplyr_df, 51
symdiff.duckplyr_df, 53

tempdir(), 10
tibble::tibble, 14
tibble::tibble(), 14
transmute.duckplyr_df, 54

union.duckplyr_df, 55

60 INDEX

union_all.duckplyr_df, 55
unsupported, 56
usethis::edit_r_environ(), 17
utils::head(), 32

	anti_join.duckplyr_df
	arrange.duckplyr_df
	collect.duckplyr_df
	compute.duckplyr_df
	compute_csv
	compute_parquet
	config
	count.duckplyr_df
	db_exec
	distinct.duckplyr_df
	duckdb_tibble
	explain.duckplyr_df
	fallback
	filter.duckplyr_df
	flights_df
	full_join.duckplyr_df
	head.duckplyr_df
	inner_join.duckplyr_df
	intersect.duckplyr_df
	last_rel
	left_join.duckplyr_df
	methods_overwrite
	mutate.duckplyr_df
	new_relational
	new_relexpr
	pull.duckplyr_df
	read_csv_duckdb
	read_file_duckdb
	read_json_duckdb
	read_parquet_duckdb
	read_sql_duckdb
	relocate.duckplyr_df
	rename.duckplyr_df
	right_join.duckplyr_df
	select.duckplyr_df
	semi_join.duckplyr_df
	setdiff.duckplyr_df
	stats_show
	summarise.duckplyr_df
	symdiff.duckplyr_df
	transmute.duckplyr_df
	union.duckplyr_df
	union_all.duckplyr_df
	unsupported
	Index

