--- title: "Demonstration of selected features" author: "James Thorson" output: rmarkdown::html_vignette #output: rmarkdown::pdf_document vignette: > %\VignetteIndexEntry{Demonstration of selected features} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) # Install locally # devtools::install_local( R'(C:\Users\James.Thorson\Desktop\Git\dsem)', force=TRUE ) # Build # setwd(R'(C:\Users\James.Thorson\Desktop\Git\dsem)'); devtools::build_rmd("vignettes/vignette.Rmd"); rmarkdown::render( "vignettes/vignette.Rmd", rmarkdown::pdf_document()) ``` ```{r setup, echo=TRUE, message=FALSE, warning=FALSE} library(dsem) library(dynlm) library(ggplot2) library(reshape) library(gridExtra) library(phylopath) ``` `dsem` is an R package for fitting dynamic structural equation models (DSEMs) with a simple user-interface and generic specification of simultaneous and lagged effects in a non-recursive structure. We here highlight a few features in particular. ## Comparison with dynamic linear models We first demonstrate that `dsem` gives identical results to `dynlm` for a well-known econometric model, the Klein-1 model. ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} data(KleinI, package="AER") TS = ts(data.frame(KleinI, "time"=time(KleinI) - 1931)) # dynlm fm_cons <- dynlm(consumption ~ cprofits + L(cprofits) + I(pwage + gwage), data = TS) fm_inv <- dynlm(invest ~ cprofits + L(cprofits) + capital, data = TS) # fm_pwage <- dynlm(pwage ~ gnp + L(gnp) + time, data = TS) # dsem sem = " # Link, lag, param_name cprofits -> consumption, 0, a1 cprofits -> consumption, 1, a2 pwage -> consumption, 0, a3 gwage -> consumption, 0, a3 cprofits -> invest, 0, b1 cprofits -> invest, 1, b2 capital -> invest, 0, b3 gnp -> pwage, 0, c2 gnp -> pwage, 1, c3 time -> pwage, 0, c1 " tsdata = TS[,c("time","gnp","pwage","cprofits",'consumption', "gwage","invest","capital")] fit = dsem( sem=sem, tsdata = tsdata, estimate_delta0 = TRUE, control = dsem_control( quiet = TRUE, newton_loops = 0) ) # Compile m1 = rbind( summary(fm_cons)$coef[-1,], summary(fm_inv)$coef[-1,], summary(fm_pwage)$coef[-1,] )[,1:2] m2 = summary(fit$sdrep)[1:9,] m = rbind( data.frame("var"=rownames(m1),m1,"method"="OLS","eq"=rep(c("C","I","Wp"),each=3)), data.frame("var"=rownames(m1),m2,"method"="GMRF","eq"=rep(c("C","I","Wp"),each=3)) ) m = cbind(m, "lower"=m$Estimate-m$Std..Error, "upper"=m$Estimate+m$Std..Error ) # ggplot estimates longform = melt( as.data.frame(KleinI) ) longform$year = rep( time(KleinI), 9 ) p1 = ggplot( data=longform, aes(x=year, y=value) ) + facet_grid( rows=vars(variable), scales="free" ) + geom_line( ) p2 = ggplot(data=m, aes(x=interaction(var,eq), y=Estimate, color=method)) + geom_point( position=position_dodge(0.9) ) + geom_errorbar( aes(ymax=as.numeric(upper),ymin=as.numeric(lower)), width=0.25, position=position_dodge(0.9)) # p3 = plot( as_fitted_DAG(fit) ) + expand_limits(x = c(-0.2,1) ) p4 = plot( as_fitted_DAG(fit, lag=1), text_size=4 ) + expand_limits(x = c(-0.2,1), y = c(-0.2,0) ) p1 p2 grid.arrange( arrangeGrob(p3, p4, nrow=2) ) ``` Results show that both packages provide (almost) identical estimates and standard errors. We can also compare results using the Laplace approximation against those obtained via numerical integration of random effects using MCMC. In this example, MCMC results in somewhat higher estimates of exogenous variance parameters (presumably because those follow a chi-squared distribution with positive skewness), but otherwise the two produce similar estimates. ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=5, eval=FALSE} library(tmbstan) # MCMC for both fixed and random effects mcmc = tmbstan( fit$obj, init="last.par.best" ) summary_mcmc = summary(mcmc) ``` ```{r, echo=FALSE, message=FALSE, fig.width=7, fig.height=5, eval=FALSE} saveRDS( summary_mcmc, file=file.path(R'(C:\Users\James.Thorson\Desktop\Git\dsem\inst\tmbstan)',"summary_mcmc.RDS") ) ``` ```{r, echo=FALSE, message=FALSE, fig.width=6, fig.height=4, out.width = "100%", eval=TRUE} summary_mcmc = readRDS( file.path(system.file("tmbstan",package="dsem"),"summary_mcmc.RDS") ) ``` ```{r, echo=TRUE, message=FALSE, fig.width=6, fig.height=4, out.width = "100%", eval=TRUE} # long-form data frame m1 = summary_mcmc$summary[1:17,c('mean','sd')] rownames(m1) = paste0( "b", seq_len(nrow(m1)) ) m2 = summary(fit$sdrep)[1:17,c('Estimate','Std. Error')] m = rbind( data.frame('mean'=m1[,1], 'sd'=m1[,2], 'par'=rownames(m1), "method"="MCMC"), data.frame('mean'=m2[,1], 'sd'=m2[,2], 'par'=rownames(m1), "method"="LA") ) m$lower = m$mean - m$sd m$upper = m$mean + m$sd # plot ggplot(data=m, aes(x=par, y=mean, col=method)) + geom_point( position=position_dodge(0.9) ) + geom_errorbar( aes(ymax=as.numeric(upper),ymin=as.numeric(lower)), width=0.25, position=position_dodge(0.9)) # ``` ## Comparison with vector autoregressive models We next demonstrate that `dsem` gives similar results to a vector autoregressive (VAR) model. To do so, we analyze population abundance of wolf and moose populations on Isle Royale from 1959 to 2019, downloaded from their website (Vucetich, JA and Peterson RO. 2012. The population biology of Isle Royale wolves and moose: an overview. URL: www.isleroyalewolf.org). This dataset was previously analyzed by in Chapter 14 of the User Manual for the R-package MARSS (Holmes, E. E., M. D. Scheuerell, and E. J. Ward (2023) Analysis of multivariate time-series using the MARSS package. Version 3.11.8. NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd E., Seattle, WA 98112, DOI: 10.5281/zenodo.5781847). Here, we compare fits using `dsem` with `dynlm`, as well as a vector autoregressive model package `vars`, and finally with `MARSS`. ```{r, echo=TRUE, message=FALSE, fig.width=5, fig.height=7, warning=FALSE} data(isle_royale) data = ts( log(isle_royale[,2:3]), start=1959) sem = " # Link, lag, param_name wolves -> wolves, 1, arW moose -> wolves, 1, MtoW wolves -> moose, 1, WtoM moose -> moose, 1, arM " # initial first without delta0 (to improve starting values) fit0 = dsem( sem = sem, tsdata = data, estimate_delta0 = FALSE, control = dsem_control( quiet = FALSE, getsd = FALSE) ) # parameters = fit0$obj$env$parList() parameters$delta0_j = rep( 0, ncol(data) ) # Refit with delta0 fit = dsem( sem = sem, tsdata = data, estimate_delta0 = TRUE, control = dsem_control( quiet=TRUE, parameters = parameters ) ) # dynlm fm_wolf = dynlm( wolves ~ 1 + L(wolves) + L(moose), data=data ) # fm_moose = dynlm( moose ~ 1 + L(wolves) + L(moose), data=data ) # # MARSS library(MARSS) z.royale.dat <- t(scale(data.frame(data),center=TRUE,scale=FALSE)) royale.model.1 <- list( Z = "identity", B = "unconstrained", Q = "diagonal and unequal", R = "zero", U = "zero" ) kem.1 <- MARSS(z.royale.dat, model = royale.model.1) SE <- MARSSparamCIs( kem.1 ) # Using VAR package library(vars) var = VAR( data, type="const" ) ### Compile m1 = rbind( summary(fm_wolf)$coef[-1,], summary(fm_moose)$coef[-1,] )[,1:2] m2 = summary(fit$sdrep)[1:4,] #m2 = cbind( "Estimate"=fit$opt$par, "Std. Error"=fit$sdrep$par.fixed )[1:4,] m3 = cbind( SE$parMean[c(1,3,2,4)], SE$par.se$B[c(1,3,2,4)] ) colnames(m3) = colnames(m2) m4 = rbind( summary(var$varresult$wolves)$coef[-3,], summary(var$varresult$moose)$coef[-3,] )[,1:2] # Bundle m = rbind( data.frame("var"=rownames(m1), m1, "method"="dynlm", "eq"=rep(c("Wolf","Moose"),each=2)), data.frame("var"=rownames(m1), m2, "method"="dsem", "eq"=rep(c("Wolf","Moose"),each=2)), data.frame("var"=rownames(m1), m3, "method"="MARSS", "eq"=rep(c("Wolf","Moose"),each=2)), data.frame("var"=rownames(m1), m4, "method"="vars", "eq"=rep(c("Wolf","Moose"),each=2)) ) #knitr::kable( m1, digits=3) #knitr::kable( m2, digits=3) m = cbind(m, "lower"=m$Estimate-m$Std..Error, "upper"=m$Estimate+m$Std..Error ) # ggplot estimates ... interaction(x,y) causes an error sometimes library(ggplot2) library(ggpubr) library(ggraph) longform = reshape( isle_royale, idvar = "year", direction="long", varying=list(2:3), v.names="abundance", timevar="species", times=c("wolves","moose") ) p1 = ggplot( data=longform, aes(x=year, y=abundance) ) + facet_grid( rows=vars(species), scales="free" ) + geom_point( ) p2 = ggplot(data=m, aes(x=interaction(var,eq), y=Estimate, color=method)) + geom_point( position=position_dodge(0.9) ) + geom_errorbar( aes(ymax=as.numeric(upper),ymin=as.numeric(lower)), width=0.25, position=position_dodge(0.9)) # p3 = plot( as_fitted_DAG(fit, lag=1), rotation=0 ) + geom_edge_loop( aes( label=round(weight,2), direction=0)) + #arrow=arrow(), , angle_calc="along", label_dodge=grid::unit(10,"points") ) expand_limits(x = c(-0.1,0) ) ggarrange( p1, p2, p3, labels = c("Time-series data", "Estimated effects", "Fitted path digram"), ncol = 1, nrow = 3) ``` Results again show that `dsem` can estimate parameters for a vector autoregressive model (VAM), and it exactly matches results from `vars`, using `dynlm`, or using `MARSS`. ## Multi-causal ecosystem synthesis We next replicate an analysis involving climate, forage fishes, stomach contents, and recruitment of a predatory fish. ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} data(bering_sea) Z = ts( bering_sea ) family = rep('fixed', ncol(bering_sea)) # Specify model sem = " # Link, lag, param_name log_seaice -> log_CP, 0, seaice_to_CP log_CP -> log_Cfall, 0, CP_to_Cfall log_CP -> log_Esummer, 0, CP_to_E log_PercentEuph -> log_RperS, 0, Seuph_to_RperS log_PercentCop -> log_RperS, 0, Scop_to_RperS log_Esummer -> log_PercentEuph, 0, Esummer_to_Suph log_Cfall -> log_PercentCop, 0, Cfall_to_Scop SSB -> log_RperS, 0, SSB_to_RperS log_seaice -> log_seaice, 1, AR1, 0.001 log_CP -> log_CP, 1, AR2, 0.001 log_Cfall -> log_Cfall, 1, AR4, 0.001 log_Esummer -> log_Esummer, 1, AR5, 0.001 SSB -> SSB, 1, AR6, 0.001 log_RperS -> log_RperS, 1, AR7, 0.001 log_PercentEuph -> log_PercentEuph, 1, AR8, 0.001 log_PercentCop -> log_PercentCop, 1, AR9, 0.001 " # Fit fit = dsem( sem = sem, tsdata = Z, family = family, control = dsem_control(use_REML=FALSE, quiet=TRUE) ) ParHat = fit$obj$env$parList() # summary( fit ) ``` ```{r, echo=TRUE, message=FALSE, fig.width=7, fig.height=7} # Timeseries plot oldpar <- par(no.readonly = TRUE) par( mfcol=c(3,3), mar=c(2,2,2,0), mgp=c(2,0.5,0), tck=-0.02 ) for(i in 1:ncol(bering_sea)){ tmp = bering_sea[,i,drop=FALSE] tmp = cbind( tmp, "pred"=ParHat$x_tj[,i] ) SD = as.list(fit$sdrep,what="Std.")$x_tj[,i] tmp = cbind( tmp, "lower"=tmp[,2] - ifelse(is.na(SD),0,SD), "upper"=tmp[,2] + ifelse(is.na(SD),0,SD) ) # plot( x=rownames(bering_sea), y=tmp[,1], ylim=range(tmp,na.rm=TRUE), type="p", main=colnames(bering_sea)[i], pch=20, cex=2 ) lines( x=rownames(bering_sea), y=tmp[,2], type="l", lwd=2, col="blue", lty="solid" ) polygon( x=c(rownames(bering_sea),rev(rownames(bering_sea))), y=c(tmp[,3],rev(tmp[,4])), col=rgb(0,0,1,0.2), border=NA ) } par(oldpar) ``` ```{r, echo=TRUE, message=FALSE, fig.width=8, fig.height=8} # library(phylopath) library(ggplot2) library(ggpubr) library(reshape) library(gridExtra) longform = melt( bering_sea ) longform$year = rep( 1963:2023, ncol(bering_sea) ) p0 = ggplot( data=longform, aes(x=year, y=value) ) + facet_grid( rows=vars(variable), scales="free" ) + geom_point( ) p1 = plot( (as_fitted_DAG(fit)), edge.width=1, type="width", text_size=4, show.legend=FALSE, arrow = grid::arrow(type='closed', 18, grid::unit(10,'points')) ) + scale_x_continuous(expand = c(0.4, 0.1)) p1$layers[[1]]$mapping$edge_width = 1 p2 = plot( (as_fitted_DAG(fit, what="p_value")), edge.width=1, type="width", text_size=4, show.legend=FALSE, colors=c('black', 'black'), arrow = grid::arrow(type='closed', 18, grid::unit(10,'points')) ) + scale_x_continuous(expand = c(0.4, 0.1)) p2$layers[[1]]$mapping$edge_width = 0.5 #grid.arrange( arrangeGrob( p0+ggtitle("timeseries"), # arrangeGrob( p1+ggtitle("Estimated path diagram"), # p2+ggtitle("Estimated p-values"), nrow=2), ncol=2 ) ) ggarrange(p1, p2, labels = c("Simultaneous effects", "Two-sided p-value"), ncol = 1, nrow = 2) ``` These results are further discussed in the paper describing dsem. ## Site-replicated trophic cascade Finally, we replicate an analysis involving a trophic cascade involving sea stars predators, sea urchin consumers, and kelp producers. ```{r, echo=TRUE, message=FALSE, fig.width=5, fig.height=7, warning=FALSE} data(sea_otter) Z = ts( sea_otter[,-1] ) # Specify model sem = " Pycno_CANNERY_DC -> log_Urchins_CANNERY_DC, 0, x2 log_Urchins_CANNERY_DC -> log_Kelp_CANNERY_DC, 0, x3 log_Otter_Count_CANNERY_DC -> log_Kelp_CANNERY_DC, 0, x4 Pycno_CANNERY_UC -> log_Urchins_CANNERY_UC, 0, x2 log_Urchins_CANNERY_UC -> log_Kelp_CANNERY_UC, 0, x3 log_Otter_Count_CANNERY_UC -> log_Kelp_CANNERY_UC, 0, x4 Pycno_HOPKINS_DC -> log_Urchins_HOPKINS_DC, 0, x2 log_Urchins_HOPKINS_DC -> log_Kelp_HOPKINS_DC, 0, x3 log_Otter_Count_HOPKINS_DC -> log_Kelp_HOPKINS_DC, 0, x4 Pycno_HOPKINS_UC -> log_Urchins_HOPKINS_UC, 0, x2 log_Urchins_HOPKINS_UC -> log_Kelp_HOPKINS_UC, 0, x3 log_Otter_Count_HOPKINS_UC -> log_Kelp_HOPKINS_UC, 0, x4 Pycno_LOVERS_DC -> log_Urchins_LOVERS_DC, 0, x2 log_Urchins_LOVERS_DC -> log_Kelp_LOVERS_DC, 0, x3 log_Otter_Count_LOVERS_DC -> log_Kelp_LOVERS_DC, 0, x4 Pycno_LOVERS_UC -> log_Urchins_LOVERS_UC, 0, x2 log_Urchins_LOVERS_UC -> log_Kelp_LOVERS_UC, 0, x3 log_Otter_Count_LOVERS_UC -> log_Kelp_LOVERS_UC, 0, x4 Pycno_MACABEE_DC -> log_Urchins_MACABEE_DC, 0, x2 log_Urchins_MACABEE_DC -> log_Kelp_MACABEE_DC, 0, x3 log_Otter_Count_MACABEE_DC -> log_Kelp_MACABEE_DC, 0, x4 Pycno_MACABEE_UC -> log_Urchins_MACABEE_UC, 0, x2 log_Urchins_MACABEE_UC -> log_Kelp_MACABEE_UC, 0, x3 log_Otter_Count_MACABEE_UC -> log_Kelp_MACABEE_UC, 0, x4 Pycno_OTTER_PT_DC -> log_Urchins_OTTER_PT_DC, 0, x2 log_Urchins_OTTER_PT_DC -> log_Kelp_OTTER_PT_DC, 0, x3 log_Otter_Count_OTTER_PT_DC -> log_Kelp_OTTER_PT_DC, 0, x4 Pycno_OTTER_PT_UC -> log_Urchins_OTTER_PT_UC, 0, x2 log_Urchins_OTTER_PT_UC -> log_Kelp_OTTER_PT_UC, 0, x3 log_Otter_Count_OTTER_PT_UC -> log_Kelp_OTTER_PT_UC, 0, x4 Pycno_PINOS_CEN -> log_Urchins_PINOS_CEN, 0, x2 log_Urchins_PINOS_CEN -> log_Kelp_PINOS_CEN, 0, x3 log_Otter_Count_PINOS_CEN -> log_Kelp_PINOS_CEN, 0, x4 Pycno_SIREN_CEN -> log_Urchins_SIREN_CEN, 0, x2 log_Urchins_SIREN_CEN -> log_Kelp_SIREN_CEN, 0, x3 log_Otter_Count_SIREN_CEN -> log_Kelp_SIREN_CEN, 0, x4 # AR1 Pycno_CANNERY_DC -> Pycno_CANNERY_DC, 1, ar1 log_Urchins_CANNERY_DC -> log_Urchins_CANNERY_DC, 1, ar2 log_Otter_Count_CANNERY_DC -> log_Otter_Count_CANNERY_DC, 1, ar3 log_Kelp_CANNERY_DC -> log_Kelp_CANNERY_DC, 1, ar4 Pycno_CANNERY_UC -> Pycno_CANNERY_UC, 1, ar1 log_Urchins_CANNERY_UC -> log_Urchins_CANNERY_UC, 1, ar2 log_Otter_Count_CANNERY_UC -> log_Otter_Count_CANNERY_UC, 1, ar3 log_Kelp_CANNERY_UC -> log_Kelp_CANNERY_UC, 1, ar4 Pycno_HOPKINS_DC -> Pycno_HOPKINS_DC, 1, ar1 log_Urchins_HOPKINS_DC -> log_Urchins_HOPKINS_DC, 1, ar2 log_Otter_Count_HOPKINS_DC -> log_Otter_Count_HOPKINS_DC, 1, ar3 log_Kelp_HOPKINS_DC -> log_Kelp_HOPKINS_DC, 1, ar4 Pycno_HOPKINS_UC -> Pycno_HOPKINS_UC, 1, ar1 log_Urchins_HOPKINS_UC -> log_Urchins_HOPKINS_UC, 1, ar2 log_Otter_Count_HOPKINS_UC -> log_Otter_Count_HOPKINS_UC, 1, ar3 log_Kelp_HOPKINS_UC -> log_Kelp_HOPKINS_UC, 1, ar4 Pycno_LOVERS_DC -> Pycno_LOVERS_DC, 1, ar1 log_Urchins_LOVERS_DC -> log_Urchins_LOVERS_DC, 1, ar2 log_Otter_Count_LOVERS_DC -> log_Otter_Count_LOVERS_DC, 1, ar3 log_Kelp_LOVERS_DC -> log_Kelp_LOVERS_DC, 1, ar4 Pycno_LOVERS_UC -> Pycno_LOVERS_UC, 1, ar1 log_Urchins_LOVERS_UC -> log_Urchins_LOVERS_UC, 1, ar2 log_Otter_Count_LOVERS_UC -> log_Otter_Count_LOVERS_UC, 1, ar3 log_Kelp_LOVERS_UC -> log_Kelp_LOVERS_UC, 1, ar4 Pycno_MACABEE_DC -> Pycno_MACABEE_DC, 1, ar1 log_Urchins_MACABEE_DC -> log_Urchins_MACABEE_DC, 1, ar2 log_Otter_Count_MACABEE_DC -> log_Otter_Count_MACABEE_DC, 1, ar3 log_Kelp_MACABEE_DC -> log_Kelp_MACABEE_DC, 1, ar4 Pycno_MACABEE_UC -> Pycno_MACABEE_UC, 1, ar1 log_Urchins_MACABEE_UC -> log_Urchins_MACABEE_UC, 1, ar2 log_Otter_Count_MACABEE_UC -> log_Otter_Count_MACABEE_UC, 1, ar3 log_Kelp_MACABEE_UC -> log_Kelp_MACABEE_UC, 1, ar4 Pycno_OTTER_PT_DC -> Pycno_OTTER_PT_DC, 1, ar1 log_Urchins_OTTER_PT_DC -> log_Urchins_OTTER_PT_DC, 1, ar2 log_Otter_Count_OTTER_PT_DC -> log_Otter_Count_OTTER_PT_DC, 1, ar3 log_Kelp_OTTER_PT_DC -> log_Kelp_OTTER_PT_DC, 1, ar4 Pycno_OTTER_PT_UC -> Pycno_OTTER_PT_UC, 1, ar1 log_Urchins_OTTER_PT_UC -> log_Urchins_OTTER_PT_UC, 1, ar2 log_Otter_Count_OTTER_PT_UC -> log_Otter_Count_OTTER_PT_UC, 1, ar3 log_Kelp_OTTER_PT_UC -> log_Kelp_OTTER_PT_UC, 1, ar4 Pycno_PINOS_CEN -> Pycno_PINOS_CEN, 1, ar1 log_Urchins_PINOS_CEN -> log_Urchins_PINOS_CEN, 1, ar2 log_Otter_Count_PINOS_CEN -> log_Otter_Count_PINOS_CEN, 1, ar3 log_Kelp_PINOS_CEN -> log_Kelp_PINOS_CEN, 1, ar4 Pycno_SIREN_CEN -> Pycno_SIREN_CEN, 1, ar1 log_Urchins_SIREN_CEN -> log_Urchins_SIREN_CEN, 1, ar2 log_Otter_Count_SIREN_CEN -> log_Otter_Count_SIREN_CEN, 1, ar3 log_Kelp_SIREN_CEN -> log_Kelp_SIREN_CEN, 1, ar4 " # Fit model fit = dsem( sem = sem, tsdata = Z, control = dsem_control(use_REML=FALSE, quiet=TRUE) ) # summary( fit ) # library(phylopath) library(ggplot2) library(ggpubr) get_part = function(x){ vars = c("log_Kelp","log_Otter","log_Urchin","Pycno") index = sapply( vars, FUN=\(y) grep(y,rownames(x$coef))[1] ) x$coef = x$coef[index,index] dimnames(x$coef) = list( vars, vars ) return(x) } p1 = plot( get_part(as_fitted_DAG(fit)), type="width", show.legend=FALSE) p1$layers[[1]]$mapping$edge_width = 0.5 p2 = plot( get_part(as_fitted_DAG(fit, what="p_value" )), type="width", show.legend=FALSE, colors=c('black', 'black')) p2$layers[[1]]$mapping$edge_width = 0.1 longform = melt( sea_otter[,-1], as.is=TRUE ) longform$X1 = 1999:2019[longform$X1] longform$Site = gsub( "log_Kelp_", "", gsub( "log_Urchins_", "", gsub( "Pycno_", "", gsub( "log_Otter_Count_", "", longform$X2)))) longform$Species = sapply( seq_len(nrow(longform)), FUN=\(i)gsub(longform$Site[i],"",longform$X2[i]) ) p3 = ggplot( data=longform, aes(x=X1, y=value, col=Species) ) + facet_grid( rows=vars(Site), scales="free" ) + geom_line( ) ggarrange(p1 + scale_x_continuous(expand = c(0.3, 0)), p2 + scale_x_continuous(expand = c(0.3, 0)), labels = c("Simultaneous effects", "Two-sided p-value"), ncol = 1, nrow = 2) ``` Again, these results are further discussed in the paper describing dsem.