Package 'dreamer'

Title: Dose Response Models for Bayesian Model Averaging
Description: Fits dose-response models utilizing a Bayesian model averaging approach as outlined in Gould (2019) <doi:10.1002/bimj.201700211> for both continuous and binary responses. Longitudinal dose-response modeling is also supported in a Bayesian model averaging framework as outlined in Payne, Ray, and Thomann (2024) <doi:10.1080/10543406.2023.2292214>. Functions for plotting and calculating various posterior quantities (e.g. posterior mean, quantiles, probability of minimum efficacious dose, etc.) are also implemented. Copyright Eli Lilly and Company (2019).
Authors: Richard Daniel Payne [aut, cre], William Michael Landau [rev], Mitch Thomann [rev], Eli Lilly and Company [cph]
Maintainer: Richard Daniel Payne <[email protected]>
License: MIT + file LICENSE
Version: 3.2.0
Built: 2024-12-19 12:50:01 UTC
Source: CRAN

Help Index


Calculate MCMC Diagnostics for Parameters

Description

Calculate MCMC diagnostics for individual parameters.

Usage

diagnostics(x)

Arguments

x

MCMC output from a dreamer model.

Value

A tibble listing the Gelman point estimates and upper bounds (obtained from coda::gelman.diag) and effective sample size (obtained from coda::effectiveSize) for each parameter within each model.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e4,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

# for all models
diagnostics(output)

# for a single model
diagnostics(output$mod_quad)

Generate Data from Dose Response Models

Description

See the model definitions below for specifics for each model.

Usage

dreamer_data_linear(
  n_cohorts,
  doses,
  b1,
  b2,
  sigma,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_linear_binary(
  n_cohorts,
  doses,
  b1,
  b2,
  link,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_quad(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  sigma,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_quad_binary(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  link,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_loglinear(
  n_cohorts,
  doses,
  b1,
  b2,
  sigma,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_loglinear_binary(
  n_cohorts,
  doses,
  b1,
  b2,
  link,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_logquad(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  sigma,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_logquad_binary(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  link,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_emax(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  b4,
  sigma,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_emax_binary(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  b4,
  link,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_exp(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  sigma,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_exp_binary(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  link,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_beta(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  b4,
  scale,
  sigma,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_beta_binary(
  n_cohorts,
  doses,
  b1,
  b2,
  b3,
  b4,
  scale,
  link,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_independent(
  n_cohorts,
  doses,
  b1,
  sigma,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

dreamer_data_independent_binary(
  n_cohorts,
  doses,
  b1,
  link,
  times,
  t_max,
  longitudinal = NULL,
  ...
)

Arguments

n_cohorts

a vector listing the size of each cohort.

doses

a vector listing the dose for each cohort.

b1, b2, b3, b4

parameters in the models. See sections below for each parameter's interpretation in a given model.

sigma

standard deviation.

times

the times at which data should be simulated if a longitudinal model is specified.

t_max

the t_max parameter used in the longitudinal model.

longitudinal

a string indicating the longitudinal model to be used. Can be "linear", "itp", or "idp".

...

additional longitudinal parameters.

link

character vector indicating the link function for binary models.

scale

a scaling parameter (fixed, specified by the user) for the beta models.

Value

A dataframe of random subjects from the specified model and parameters.

Functions

  • dreamer_data_linear(): generate data from linear dose response.

  • dreamer_data_linear_binary(): generate data from linear binary dose response.

  • dreamer_data_quad(): generate data from quadratic dose response.

  • dreamer_data_quad_binary(): generate data from quadratic binary dose response.

  • dreamer_data_loglinear(): generate data from log-linear dose response.

  • dreamer_data_loglinear_binary(): generate data from binary log-linear dose response.

  • dreamer_data_logquad(): generate data from log-quadratic dose response.

  • dreamer_data_logquad_binary(): generate data from log-quadratic binary dose response.

  • dreamer_data_emax(): generate data from EMAX dose response.

  • dreamer_data_emax_binary(): generate data from EMAX binary dose response.

  • dreamer_data_exp(): generate data from exponential dose response.

  • dreamer_data_exp_binary(): generate data from exponential binary dose response.

  • dreamer_data_beta(): generate data from Beta dose response.

  • dreamer_data_beta_binary(): generate data from binary Beta dose response.

  • dreamer_data_independent(): generate data from an independent dose response.

  • dreamer_data_independent_binary(): generate data from an independent dose response.

Linear

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2df(d) = b_1 + b_2 * d

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Quadratic

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2d+b3d2f(d) = b_1 + b_2 * d + b_3 * d^2

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Log-linear

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2log(d+1)f(d) = b_1 + b_2 * log(d + 1)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Log-quadratic

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2log(d+1)+b3log(d+1)2f(d) = b_1 + b_2 * log(d + 1) + b_3 * log(d + 1)^2

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

EMAX

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+(b2b1)d4b/(exp(b3b4)+d4b)f(d) = b_1 + (b_2 - b_1) * d ^ b_4 / (exp(b_3 * b_4) + d ^ b_4)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

b4N(mub4,sigmab42),(Truncatedabove0)b_4 \sim N(mu_b4, sigma_b4 ^ 2), (Truncated above 0)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Here, b1b_1 is the placebo effect (dose = 0), b2b_2 is the maximum treatment effect, b3b_3 is the log(ED50)log(ED50), and b4b_4 is the hill or rate parameter.

Exponential

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2(1exp(b3d))f(d) = b_1 + b_2 * (1 - exp(- b_3 * d))

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32),(truncatedtobepositive)b_3 \sim N(mu_b3, sigma_b3 ^ 2), (truncated to be positive)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Linear Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2dlink(f(d)) = b_1 + b_2 * d

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

Quadratic Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2d+b3d2link(f(d)) = b_1 + b_2 * d + b_3 * d^2

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

Log-linear Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2log(d+1)link(f(d)) = b_1 + b_2 * log(d + 1)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

Log-quadratic Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2log(d+1)+b3log(d+1)2link(f(d)) = b_1 + b_2 * log(d + 1) + b_3 * log(d + 1)^2

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

EMAX Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+(b2b1)d4b/(exp(b3b4)+d4b)link(f(d)) = b_1 + (b_2 - b_1) * d ^ b_4 / (exp(b_3 * b_4) + d ^ b_4)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

b4N(mub4,sigmab42),(Truncatedabove0)b_4 \sim N(mu_b4, sigma_b4 ^ 2), (Truncated above 0)

Here, on the link(f(d))link(f(d)) scale, b1b_1 is the placebo effect (dose = 0), b2b_2 is the maximum treatment effect, b3b_3 is the log(ED50)log(ED50), and b4b_4 is the hill or rate parameter.

Exponential Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2(exp(b3d)1)link(f(d)) = b_1 + b_2 * (exp(b_3 * d) - 1)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32),(Truncatedbelow0)b_3 \sim N(mu_b3, sigma_b3 ^ 2), (Truncated below 0)

Independent

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1df(d) = b_{1d}

b1dN(mub1[d],sigmab1[d]2)b_{1d} \sim N(mu_b1[d], sigma_b1[d] ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Independent Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1dlink(f(d)) = b_{1d}

b1dN(mub1[d],sigmab1[d])2b_{1d} \sim N(mu_b1[d], sigma_b1[d]) ^ 2

Longitudinal Linear

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+(t/tmax)f(d)g(d, t) = a + (t / t_max) * f(d)

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

Longitudinal ITP

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+f(d)((1exp(c1t))/(1exp(c1tmax)))g(d, t) = a + f(d) * ((1 - exp(- c1 * t))/(1 - exp(- c1 * t_max)))

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

c1Uniform(ac1,bc1)c1 \sim Uniform(a_c1, b_c1)

Longitudinal IDP

Increasing-Decreasing-Plateau (IDP).

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+f(d)(((1exp(c1t))/(1exp(c1d1)))I(t<d1)+(1gam((1exp(c2(td1)))/(1exp(c2(d2d1)))))I(d1<=t<=d2)+(1gam)I(t>d2))g(d, t) = a + f(d) * (((1 - exp(- c1 * t))/(1 - exp(- c1 * d1))) * I(t < d1) + (1 - gam * ((1 - exp(- c2 * (t - d1))) / (1 - exp(- c2 * (d2 - d1))))) * I(d1 <= t <= d2) + (1 - gam) * I(t > d2))

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

c1Uniform(ac1,bc1)c1 \sim Uniform(a_c1, b_c1)

c2Uniform(ac2,bc2)c2 \sim Uniform(a_c2, b_c2)

d1Uniform(0,tmax)d1 \sim Uniform(0, t_max)

d2Uniform(d1,tmax)d2 \sim Uniform(d1, t_max)

gamUniform(0,1)gam \sim Uniform(0, 1)

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

head(data)

plot(data$dose, data$response)
abline(a = 1, b = 3)

# longitudinal data
set.seed(889)
data_long <- dreamer_data_linear(
  n_cohorts = c(10, 10, 10, 10), # number of subjects in each cohort
  doses = c(.25, .5, .75, 1.5), # dose administered to each cohort
  b1 = 0, # intercept
  b2 = 2, # slope
  sigma = .5, # standard deviation,
  longitudinal = "itp",
  times = c(0, 12, 24, 52),
  t_max = 52, # maximum time
  a = .5,
  c1 = .1
)

## Not run: 
  ggplot(data_long, aes(time, response, group = dose, color = factor(dose))) +
    geom_point()

## End(Not run)

Bayesian Model Averaging of Dose Response Models

Description

This function performs Bayesian model averaging with a selection of dose response models. See model for all possible models.

Usage

dreamer_mcmc(
  data,
  ...,
  n_adapt = 1000,
  n_burn = 1000,
  n_iter = 10000,
  n_chains = 4,
  silent = FALSE,
  convergence_warn = TRUE
)

Arguments

data

a dataframe with column names of "dose" and "response" for individual patient data. Optional columns "n" and "sample_var" can be specified if aggregate data is supplied, but it is recommended that patient-level data be supplied where possible for continuous models, as the posterior weights differ if aggregated data is used. For aggregated continuous data, "response" should be the average of "n" subjects with a sample variance of "sample_var". For aggregated binary data, "response" should be the number of successes, "n" should be the total number of subjects (the "sample_var" column is irrelevant in binary cases and is ignored).

...

model definitions created using the model creation functions in model. If arguments are named, the names are retained in the return values.

n_adapt

the number of MCMC iterations to tune the MCMC algorithm.

n_burn

the number of burn-in MCMC samples.

n_iter

the number of MCMC samples to collect after tuning and burn-in.

n_chains

the number of separate, independent, MCMC chains to run.

silent

logical indicating if MCMC progress bars should be suppressed.

convergence_warn

logical (default TRUE) indicating if the Gelman-Rubin diagnostics should be run to detect convergence issues. Warnings are thrown if the upper bound of the Gelman-Rubin statistic is greater than 1.1.

Details

The Bayesian model averaging approach uses data, multiple models, priors on each model's parameters, and a prior weight for each model. Using these inputs, each model is fit independently, and the output from the models is used to calculate posterior weights for each model. See Gould (2018) for details.

Value

A named list with S3 class "dreamer_bma" and "dreamer". The list contains the following fields:

  • doses: a vector of the unique ordered doses in the data.

  • times: a vector of the unique ordered times in the data.

  • w_prior: a named vector with the prior probabilities of each model.

  • w_post: a named vector with the posterior probabilities of each model.

  • The individual MCMC fits for each model.

References

Gould, A. L. (2019). BMA-Mod: A Bayesian model averaging strategy for determining dose-response relationships in the presence of model uncertainty. Biometrical Journal, 61(5), 1141-1159.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
  data = data,
  n_adapt = 1e3,
  n_burn = 1e2,
  n_iter = 1e3,
  n_chains = 2,
  silent = TRUE,
  mod_linear = model_linear(
    mu_b1 = 0,
    sigma_b1 = 1,
    mu_b2 = 0,
    sigma_b2 = 1,
    shape = 1,
    rate = .001,
    w_prior = 1 / 2
  ),
  mod_quad = model_quad(
    mu_b1 = 0,
    sigma_b1 = 1,
    mu_b2 = 0,
    sigma_b2 = 1,
    mu_b3 = 0,
    sigma_b3 = 1,
    shape = 1,
    rate = .001,
    w_prior = 1 / 2
  )
)
# posterior weights
output$w_post
# plot posterior dose response
plot(output)

# LONGITUDINAL
library(ggplot2)
set.seed(889)
data_long <- dreamer_data_linear(
  n_cohorts = c(10, 10, 10, 10), # number of subjects in each cohort
  doses = c(.25, .5, .75, 1.5), # dose administered to each cohort
  b1 = 0, # intercept
  b2 = 2, # slope
  sigma = .5, # standard deviation,
  longitudinal = "itp",
  times = c(0, 12, 24, 52),
  t_max = 52, # maximum time
  a = .5,
  c1 = .1
)

## Not run: 
ggplot(data_long, aes(time, response, group = dose, color = factor(dose))) +
   geom_point()

## End(Not run)

output_long <- dreamer_mcmc(
   data = data_long,
   n_adapt = 1e3,
   n_burn = 1e2,
   n_iter = 1e3,
   n_chains = 2,
   silent = TRUE, # make rjags be quiet,
   mod_linear = model_linear(
      mu_b1 = 0,
      sigma_b1 = 1,
      mu_b2 = 0,
      sigma_b2 = 1,
      shape = 1,
      rate = .001,
      w_prior = 1 / 2, # prior probability of the model
      longitudinal = model_longitudinal_itp(
         mu_a = 0,
         sigma_a = 1,
         a_c1 = 0,
         b_c1 = 1,
         t_max = 52
      )
   ),
   mod_quad = model_quad(
      mu_b1 = 0,
      sigma_b1 = 1,
      mu_b2 = 0,
      sigma_b2 = 1,
      mu_b3 = 0,
      sigma_b3 = 1,
      shape = 1,
      rate = .001,
      w_prior = 1 / 2,
      longitudinal = model_longitudinal_linear(
         mu_a = 0,
         sigma_a = 1,
         t_max = 52
      )
   )
)

## Not run: 
# plot longitudinal dose-response profile
plot(output_long, data = data_long)
plot(output_long$mod_quad, data = data_long) # single model

# plot dose response at final timepoint
plot(output_long, data = data_long, times = 52)
plot(output_long$mod_quad, data = data_long, times = 52) # single model

## End(Not run)

Plot Prior

Description

Plot the prior over the dose range. This is intended to help the user choose appropriate priors.

Usage

dreamer_plot_prior(
  n_samples = 10000,
  probs = c(0.025, 0.975),
  doses,
  n_chains = 1,
  ...,
  times = NULL,
  plot_draws = FALSE,
  alpha = 0.2
)

Arguments

n_samples

the number of MCMC samples per MCMC chain used to generate the plot.

probs

A vector of length 2 indicating the lower and upper percentiles to plot. Not applicable when plot_draws = TRUE.

doses

a vector of doses at which to evaluate and interpolate between.

n_chains

the number of MCMC chains.

...

model objects. See model and examples below.

times

a vector of times at which to plot the prior.

plot_draws

if TRUE, the individual draws from the prior are plotted. If FALSE, only the prior mean and quantiles are drawn.

alpha

the transparency setting for the prior draws in (0, 1]. Only applies if plot_draws = TRUE.

Value

The ggplot object.

Examples

# Plot prior for one model
set.seed(8111)
dreamer_plot_prior(
 doses = c(0, 2.5, 5),
 mod_quad_binary = model_quad_binary(
   mu_b1 = -.5,
   sigma_b1 = .2,
   mu_b2 = -.5,
   sigma_b2 = .2,
   mu_b3 = .5,
   sigma_b3 = .1,
   link = "logit",
   w_prior = 1
 )
)

# plot individual draws
dreamer_plot_prior(
 doses = seq(from = 0, to = 5, length.out = 50),
 n_samples = 100,
 plot_draws = TRUE,
 mod_quad_binary = model_quad_binary(
   mu_b1 = -.5,
   sigma_b1 = .2,
   mu_b2 = -.5,
   sigma_b2 = .2,
   mu_b3 = .5,
   sigma_b3 = .1,
   link = "logit",
   w_prior = 1
 )
)

# plot prior from mixture of models
dreamer_plot_prior(
 doses = c(0, 2.5, 5),
 mod_linear_binary = model_linear_binary(
   mu_b1 = -1,
   sigma_b1 = .1,
   mu_b2 = 1,
   sigma_b2 = .1,
   link = "logit",
   w_prior = .75
 ),
 mod_quad_binary = model_quad_binary(
   mu_b1 = -.5,
   sigma_b1 = .2,
   mu_b2 = -.5,
   sigma_b2 = .2,
   mu_b3 = .5,
   sigma_b3 = .1,
   link = "logit",
   w_prior = .25
 )
)

Posterior Plot of Bayesian Model Averaging

Description

Plots the posterior mean and quantiles over the dose range and plots error bars at the observed doses. If the data argument is specified, the observed means at each dose are also plotted.

Usage

## S3 method for class 'dreamer_mcmc'
plot(
  x,
  doses = attr(x, "doses"),
  times = attr(x, "times"),
  probs = c(0.025, 0.975),
  data = NULL,
  n_smooth = 50,
  predictive = 0,
  width = bar_width(doses),
  reference_dose = NULL,
  ...
)

Arguments

x

output from a call to dreamer_mcmc.

doses

a vector of doses at which to plot the dose response curve.

times

a vector of the times at which to plot the posterior (for longitudinal models only).

probs

quantiles of the posterior to be calculated.

data

a dataframe with column names of "dose" and "response" for individual patient data. Optional columns "n" and "sample_var" can be specified if aggregate data is supplied, but it is recommended that patient-level data be supplied where possible for continuous models, as the posterior weights differ if aggregated data is used. For aggregated continuous data, "response" should be the average of "n" subjects with a sample variance of "sample_var". For aggregated binary data, "response" should be the number of successes, "n" should be the total number of subjects (the "sample_var" column is irrelevant in binary cases and is ignored).

n_smooth

the number of points to calculate the smooth dose response interpolation. Must be sufficiently high to accurately depict the dose response curve.

predictive

the size of sample for which to plot posterior predictive intervals for the mean.

width

the width of the error bars.

reference_dose

the dose at which to adjust the posterior plot. Specifying a dose returns the plot of pr(trt_dose - trt_{reference_dose} | data).

...

model definitions created using the model creation functions in model. If arguments are named, the names are retained in the return values.

Value

Returns the ggplot object.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e4,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

plot(output)

## Not run: 
# with data
plot(output, data = data)

# predictive distribution
plot(output, data = data, predictive = 1)

# single model
plot(output$mod_linear)

## End(Not run)

Model Creation

Description

Functions which set the hyperparameters, seeds, and prior weight for each model to be used in Bayesian model averaging via dreamer_mcmc().

See each function's section below for the model's details. In the following, yy denotes the response variable and dd represents the dose.

For the longitudinal specifications, see documentation on model_longitudinal.

Usage

model_linear(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  shape,
  rate,
  w_prior = 1,
  longitudinal = NULL
)

model_quad(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  shape,
  rate,
  w_prior = 1,
  longitudinal = NULL
)

model_loglinear(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  shape,
  rate,
  w_prior = 1,
  longitudinal = NULL
)

model_logquad(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  shape,
  rate,
  w_prior = 1,
  longitudinal = NULL
)

model_emax(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  mu_b4,
  sigma_b4,
  shape,
  rate,
  w_prior = 1,
  longitudinal = NULL
)

model_exp(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  shape,
  rate,
  w_prior = 1,
  longitudinal = NULL
)

model_beta(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  mu_b4,
  sigma_b4,
  shape,
  rate,
  scale = NULL,
  w_prior = 1,
  longitudinal = NULL
)

model_independent(
  mu_b1,
  sigma_b1,
  shape,
  rate,
  doses = NULL,
  w_prior = 1,
  longitudinal = NULL
)

model_linear_binary(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  link,
  w_prior = 1,
  longitudinal = NULL
)

model_quad_binary(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  link,
  w_prior = 1,
  longitudinal = NULL
)

model_loglinear_binary(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  link,
  w_prior = 1,
  longitudinal = NULL
)

model_logquad_binary(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  link,
  w_prior = 1,
  longitudinal = NULL
)

model_emax_binary(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  mu_b4,
  sigma_b4,
  link,
  w_prior = 1,
  longitudinal = NULL
)

model_exp_binary(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  link,
  w_prior = 1,
  longitudinal = NULL
)

model_beta_binary(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  mu_b4,
  sigma_b4,
  scale = NULL,
  link,
  w_prior = 1,
  longitudinal = NULL
)

model_independent_binary(
  mu_b1,
  sigma_b1,
  doses = NULL,
  link,
  w_prior = 1,
  longitudinal = NULL
)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3, mu_b4, sigma_b4, shape, rate

models parameters. See sections below for interpretation in specific models.

w_prior

a scalar between 0 and 1 indicating the prior weight of the model.

longitudinal

output from a call to one of the model_longitudinal_*() functions. This is used to specify a longitudinal dose-response model.

scale

a scale parameter in the Beta model. Default is 1.2 * max(dose).

doses

the doses in the dataset to be modeled. The order of the doses corresponds to the order in which the priors are specified in mu_b1 and sigma_b1.

link

a character string of either "logit" or "probit" indicating the link function for binary model.

Value

A named list of the arguments in the function call. The list has S3 classes assigned which are used internally within dreamer_mcmc().

Linear

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2df(d) = b_1 + b_2 * d

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Quadratic

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2d+b3d2f(d) = b_1 + b_2 * d + b_3 * d^2

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Log-linear

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2log(d+1)f(d) = b_1 + b_2 * log(d + 1)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Log-quadratic

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2log(d+1)+b3log(d+1)2f(d) = b_1 + b_2 * log(d + 1) + b_3 * log(d + 1)^2

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

EMAX

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+(b2b1)d4b/(exp(b3b4)+d4b)f(d) = b_1 + (b_2 - b_1) * d ^ b_4 / (exp(b_3 * b_4) + d ^ b_4)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

b4N(mub4,sigmab42),(Truncatedabove0)b_4 \sim N(mu_b4, sigma_b4 ^ 2), (Truncated above 0)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Here, b1b_1 is the placebo effect (dose = 0), b2b_2 is the maximum treatment effect, b3b_3 is the log(ED50)log(ED50), and b4b_4 is the hill or rate parameter.

Exponential

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2(1exp(b3d))f(d) = b_1 + b_2 * (1 - exp(- b_3 * d))

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32),(truncatedtobepositive)b_3 \sim N(mu_b3, sigma_b3 ^ 2), (truncated to be positive)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Beta

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1+b2((b3+b4)(b3+b4))/(b3b3b4b4)(d/scale)b3(1d/scale)b4f(d) = b_1 + b_2 * ((b3 + b4) ^ (b3 + b4)) / (b3 ^ b3 * b4 ^ b4) * (d / scale) ^ b3 * (1 - d / scale) ^ b4

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32),Truncatedabove0b_3 \sim N(mu_b3, sigma_b3 ^ 2), Truncated above 0

b4N(mub4,sigmab42),Truncatedabove0b_4 \sim N(mu_b4, sigma_b4 ^ 2), Truncated above 0

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Note that scalescale is a hyperparameter specified by the user.

Independent

yN(f(d),σ2)y \sim N(f(d), \sigma^2)

f(d)=b1df(d) = b_{1d}

b1dN(mub1[d],sigmab1[d]2)b_{1d} \sim N(mu_b1[d], sigma_b1[d] ^ 2)

1/σ2Gamma(shape,rate)1 / \sigma^2 \sim Gamma(shape, rate)

Independent Details

The independent model models the effect of each dose independently. Vectors can be supplied to mu_b1 and sigma_b1 to set a different prior for each dose in the order the doses are supplied to doses. If scalars are supplied to mu_b1 and sigma_b1, then the same prior is used for each dose, and the doses argument is not needed.

Linear Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2dlink(f(d)) = b_1 + b_2 * d

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

Quadratic Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2d+b3d2link(f(d)) = b_1 + b_2 * d + b_3 * d^2

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

Log-linear Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2log(d+1)link(f(d)) = b_1 + b_2 * log(d + 1)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

Log-quadratic Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2log(d+1)+b3log(d+1)2link(f(d)) = b_1 + b_2 * log(d + 1) + b_3 * log(d + 1)^2

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

EMAX Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+(b2b1)d4b/(exp(b3b4)+d4b)link(f(d)) = b_1 + (b_2 - b_1) * d ^ b_4 / (exp(b_3 * b_4) + d ^ b_4)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32)b_3 \sim N(mu_b3, sigma_b3 ^ 2)

b4N(mub4,sigmab42),(Truncatedabove0)b_4 \sim N(mu_b4, sigma_b4 ^ 2), (Truncated above 0)

Here, on the link(f(d))link(f(d)) scale, b1b_1 is the placebo effect (dose = 0), b2b_2 is the maximum treatment effect, b3b_3 is the log(ED50)log(ED50), and b4b_4 is the hill or rate parameter.

Exponential Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1+b2(exp(b3d)1)link(f(d)) = b_1 + b_2 * (exp(b_3 * d) - 1)

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32),(Truncatedbelow0)b_3 \sim N(mu_b3, sigma_b3 ^ 2), (Truncated below 0)

Beta Binary

yBinomial(n,f(d)y \sim Binomial(n, f(d)

link(f(d))=b1+b2((b3+b4)(b3+b4))/(b3b3b4b4)(d/scale)b3(1d/scale)b4link(f(d)) = b_1 + b_2 * ((b3 + b4) ^ (b3 + b4)) / (b3 ^ b3 * b4 ^ b4) * (d / scale) ^ b3 * (1 - d / scale) ^ b4

b1N(mub1,sigmab12)b_1 \sim N(mu_b1, sigma_b1 ^ 2)

b2N(mub2,sigmab22)b_2 \sim N(mu_b2, sigma_b2 ^ 2)

b3N(mub3,sigmab32),Truncatedabove0b_3 \sim N(mu_b3, sigma_b3 ^ 2), Truncated above 0

b4N(mub4,sigmab42),Truncatedabove0b_4 \sim N(mu_b4, sigma_b4 ^ 2), Truncated above 0

Note that scalescale is a hyperparameter specified by the user.

Independent Binary

yBinomial(n,f(d))y \sim Binomial(n, f(d))

link(f(d))=b1dlink(f(d)) = b_{1d}

b1dN(mub1[d],sigmab1[d])2b_{1d} \sim N(mu_b1[d], sigma_b1[d]) ^ 2

Independent Binary Details

The independent model models the effect of each dose independently. Vectors can be supplied to mu_b1 and sigma_b1 to set a different prior for each dose in the order the doses are supplied to doses. If scalars are supplied to mu_b1 and sigma_b1, then the same prior is used for each dose, and the doses argument is not needed.

Longitudinal Linear

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+(t/tmax)f(d)g(d, t) = a + (t / t_max) * f(d)

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

Longitudinal ITP

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+f(d)((1exp(c1t))/(1exp(c1tmax)))g(d, t) = a + f(d) * ((1 - exp(- c1 * t))/(1 - exp(- c1 * t_max)))

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

c1Uniform(ac1,bc1)c1 \sim Uniform(a_c1, b_c1)

Longitudinal IDP

Increasing-Decreasing-Plateau (IDP).

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+f(d)(((1exp(c1t))/(1exp(c1d1)))I(t<d1)+(1gam((1exp(c2(td1)))/(1exp(c2(d2d1)))))I(d1<=t<=d2)+(1gam)I(t>d2))g(d, t) = a + f(d) * (((1 - exp(- c1 * t))/(1 - exp(- c1 * d1))) * I(t < d1) + (1 - gam * ((1 - exp(- c2 * (t - d1))) / (1 - exp(- c2 * (d2 - d1))))) * I(d1 <= t <= d2) + (1 - gam) * I(t > d2))

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

c1Uniform(ac1,bc1)c1 \sim Uniform(a_c1, b_c1)

c2Uniform(ac2,bc2)c2 \sim Uniform(a_c2, b_c2)

d1Uniform(0,tmax)d1 \sim Uniform(0, t_max)

d2Uniform(d1,tmax)d2 \sim Uniform(d1, t_max)

gamUniform(0,1)gam \sim Uniform(0, 1)

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
  data = data,
  n_adapt = 1e3,
  n_burn = 1e2,
  n_iter = 1e3,
  n_chains = 2,
  silent = TRUE,
  mod_linear = model_linear(
    mu_b1 = 0,
    sigma_b1 = 1,
    mu_b2 = 0,
    sigma_b2 = 1,
    shape = 1,
    rate = .001,
    w_prior = 1 / 2
  ),
  mod_quad = model_quad(
    mu_b1 = 0,
    sigma_b1 = 1,
    mu_b2 = 0,
    sigma_b2 = 1,
    mu_b3 = 0,
    sigma_b3 = 1,
    shape = 1,
    rate = .001,
    w_prior = 1 / 2
  )
)
# posterior weights
output$w_post
# plot posterior dose response
plot(output)

# LONGITUDINAL
library(ggplot2)
set.seed(889)
data_long <- dreamer_data_linear(
  n_cohorts = c(10, 10, 10, 10), # number of subjects in each cohort
  doses = c(.25, .5, .75, 1.5), # dose administered to each cohort
  b1 = 0, # intercept
  b2 = 2, # slope
  sigma = .5, # standard deviation,
  longitudinal = "itp",
  times = c(0, 12, 24, 52),
  t_max = 52, # maximum time
  a = .5,
  c1 = .1
)

## Not run: 
ggplot(data_long, aes(time, response, group = dose, color = factor(dose))) +
   geom_point()

## End(Not run)

output_long <- dreamer_mcmc(
   data = data_long,
   n_adapt = 1e3,
   n_burn = 1e2,
   n_iter = 1e3,
   n_chains = 2,
   silent = TRUE, # make rjags be quiet,
   mod_linear = model_linear(
      mu_b1 = 0,
      sigma_b1 = 1,
      mu_b2 = 0,
      sigma_b2 = 1,
      shape = 1,
      rate = .001,
      w_prior = 1 / 2, # prior probability of the model
      longitudinal = model_longitudinal_itp(
         mu_a = 0,
         sigma_a = 1,
         a_c1 = 0,
         b_c1 = 1,
         t_max = 52
      )
   ),
   mod_quad = model_quad(
      mu_b1 = 0,
      sigma_b1 = 1,
      mu_b2 = 0,
      sigma_b2 = 1,
      mu_b3 = 0,
      sigma_b3 = 1,
      shape = 1,
      rate = .001,
      w_prior = 1 / 2,
      longitudinal = model_longitudinal_linear(
         mu_a = 0,
         sigma_a = 1,
         t_max = 52
      )
   )
)

## Not run: 
# plot longitudinal dose-response profile
plot(output_long, data = data_long)
plot(output_long$mod_quad, data = data_long) # single model

# plot dose response at final timepoint
plot(output_long, data = data_long, times = 52)
plot(output_long$mod_quad, data = data_long, times = 52) # single model

## End(Not run)

Model Creation: Longitudinal Models

Description

Assign hyperparameters and other values for longitudinal modeling. The output of this function is intended to be used as the input to the longitudinal argument of the dose response model functions, e.g., model_linear.

Usage

model_longitudinal_linear(mu_a, sigma_a, t_max)

model_longitudinal_itp(mu_a, sigma_a, a_c1 = 0, b_c1 = 1, t_max)

model_longitudinal_idp(
  mu_a,
  sigma_a,
  a_c1 = 0,
  b_c1 = 1,
  a_c2 = -1,
  b_c2 = 0,
  t_max
)

Arguments

mu_a, sigma_a, a_c1, b_c1, a_c2, b_c2

hyperparameters of the specified longitudinal model. See below for parameterization.

t_max

a scalar, typically indicating the latest observed time for subjects. This will influence the interpretation of the parameters of each model.

Value

A named list of the arguments in the function call. The list has S3 classes assigned which are used internally within dreamer_mcmc().

Longitudinal Linear

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+(t/tmax)f(d)g(d, t) = a + (t / t_max) * f(d)

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

Longitudinal ITP

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+f(d)((1exp(c1t))/(1exp(c1tmax)))g(d, t) = a + f(d) * ((1 - exp(- c1 * t))/(1 - exp(- c1 * t_max)))

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

c1Uniform(ac1,bc1)c1 \sim Uniform(a_c1, b_c1)

Longitudinal IDP

Increasing-Decreasing-Plateau (IDP).

Let f(d)f(d) be a dose response model. The expected value of the response, y, is:

E(y)=g(d,t)E(y) = g(d, t)

g(d,t)=a+f(d)(((1exp(c1t))/(1exp(c1d1)))I(t<d1)+(1gam((1exp(c2(td1)))/(1exp(c2(d2d1)))))I(d1<=t<=d2)+(1gam)I(t>d2))g(d, t) = a + f(d) * (((1 - exp(- c1 * t))/(1 - exp(- c1 * d1))) * I(t < d1) + (1 - gam * ((1 - exp(- c2 * (t - d1))) / (1 - exp(- c2 * (d2 - d1))))) * I(d1 <= t <= d2) + (1 - gam) * I(t > d2))

aN(mua,sigmaa)a \sim N(mu_a, sigma_a)

c1Uniform(ac1,bc1)c1 \sim Uniform(a_c1, b_c1)

c2Uniform(ac2,bc2)c2 \sim Uniform(a_c2, b_c2)

d1Uniform(0,tmax)d1 \sim Uniform(0, t_max)

d2Uniform(d1,tmax)d2 \sim Uniform(d1, t_max)

gamUniform(0,1)gam \sim Uniform(0, 1)


Compare Posterior Fits

Description

Compare Posterior Fits

Usage

plot_comparison(..., doses, times, probs, data, n_smooth, width)

## Default S3 method:
plot_comparison(
  ...,
  doses = attr(list(...)[[1]], "doses"),
  times = NULL,
  probs = c(0.025, 0.975),
  data = NULL,
  n_smooth = 50,
  width = bar_width(doses)
)

## S3 method for class 'dreamer_bma'
plot_comparison(
  ...,
  doses = x$doses,
  times = NULL,
  probs = c(0.025, 0.975),
  data = NULL,
  n_smooth = 50,
  width = bar_width(doses)
)

Arguments

...

dreamer_mcmc objects to be used for plotting.

doses

a vector of doses at which to plot the dose response curve.

times

the times at which to do the comparison.

probs

quantiles of the posterior to be calculated.

data

a dataframe with column names of "dose" and "response" for individual patient data. Optional columns "n" and "sample_var" can be specified if aggregate data is supplied, but it is recommended that patient-level data be supplied where possible for continuous models, as the posterior weights differ if aggregated data is used. For aggregated continuous data, "response" should be the average of "n" subjects with a sample variance of "sample_var". For aggregated binary data, "response" should be the number of successes, "n" should be the total number of subjects (the "sample_var" column is irrelevant in binary cases and is ignored).

n_smooth

the number of points to calculate the smooth dose response interpolation. Must be sufficiently high to accurately depict the dose response curve.

width

the width of the error bars.

Details

If a Bayesian model averaging object is supplied first, all individual fits and the Bayesian model averaging fit will be plotted, with the model averaging fit in black (other model colors specified in the legend). Otherwise, named arguments must be supplied for each model, and only the models provided will be plotted.

Value

a ggplot object.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e3,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

plot_comparison(output)

# compare individual models
plot_comparison(linear = output$mod_linear, quad = output$mod_quad)

Traceplots

Description

Produces traceplots for each parameter for each model.

Usage

plot_trace(x)

Arguments

x

output from a call to dreamer_mcmc().

Value

No return value, called to create plots.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e4,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

# all parameters from all models
plot_trace(output)

# from a single model
plot_trace(output$mod_linear)

Posterior Distribution of Minimum X% Effective Dose

Description

Posterior Distribution of Minimum X% Effective Dose

Usage

post_medx(
  x,
  ed,
  probs,
  time,
  lower,
  upper,
  greater,
  small_bound,
  return_samples,
  ...
)

## S3 method for class 'dreamer_bma'
post_medx(
  x,
  ed,
  probs = c(0.025, 0.975),
  time = NULL,
  lower = min(x$doses),
  upper = max(x$doses),
  greater = TRUE,
  small_bound = 0,
  return_samples = FALSE,
  ...
)

## S3 method for class 'dreamer_mcmc'
post_medx(
  x,
  ed,
  probs = c(0.025, 0.975),
  time = NULL,
  lower = min(attr(x, "doses")),
  upper = max(attr(x, "doses")),
  greater = TRUE,
  small_bound = 0,
  return_samples = FALSE,
  index = 1:(nrow(x[[1]]) * length(x)),
  ...
)

Arguments

x

output from dreamer_mcmc().

ed

a number between 0 and 100 indicating the ed% dose that is being sought.

probs

a vector of quantiles to calculate on the posterior.

time

the slice of time for which to calculate the posterior EDX dose. Applies to longitudinal models only.

lower

the lower bound of the doses for calculating EDX.

upper

the upper bound of the doses for calculating EDX.

greater

if TRUE, higher values indicate better efficacy. If FALSE, lower responses indicate better efficacy.

small_bound

the minimum (greater = TRUE) or maximum (greater = FALSE) bound of the response.

return_samples

logical indicating if the posterior samples should be returned.

...

additional arguments for specific methods.

index

a vector indicating which MCMC samples to use in the calculation. If NULL (default), all MCMC samples are used.

Details

The minimum X% effective dose is the dose that has X% of the largest effect for doses between lower and upper. When greater is TRUE, larger positive responses are considered more effective and vice versa. The X% response is calculated as small_bound + ed / 100 * (max_effect - small_bound) where "max_effect" is the maximum response for doses between lower and upper. The X% effective dose is the smallest dose which has X% response within the dose range. It is possible that for some MCMC samples, an X% effective dose may not exist, so probabilities are not guaranteed to sum to one.

Value

Posterior quantities and samples (if applicable), generally in the form of a list. The pr_edx_exists column gives the posterior probability that an EDX% effect exists.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e3,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

post_medx(output, ed = c(50, 90))

# from a single model
post_medx(output$mod_linear, ed = c(50, 90))

Calculate Posterior of a Dose's Percentage Effect

Description

Given a dose, the "percentage effect" is defined as (effect of the given dose - small_bound) / (maximum effect in dose range - small_bound). This function returns the posterior statistics and/or samples of this effect.

Usage

post_perc_effect(
  x,
  dose,
  probs,
  time,
  lower,
  upper,
  greater,
  small_bound,
  index,
  return_samples
)

## S3 method for class 'dreamer_bma'
post_perc_effect(
  x,
  dose,
  probs = c(0.025, 0.975),
  time = NULL,
  lower = min(x$doses),
  upper = max(x$doses),
  greater = TRUE,
  small_bound = 0,
  index = NA,
  return_samples = FALSE
)

## S3 method for class 'dreamer_mcmc'
post_perc_effect(
  x,
  dose,
  probs = c(0.025, 0.975),
  time = NULL,
  lower = min(attr(x, "doses")),
  upper = max(attr(x, "doses")),
  greater = TRUE,
  small_bound = 0,
  index = 1:(nrow(x[[1]]) * length(x)),
  return_samples = FALSE
)

Arguments

x

output from a call to dreamer_mcmc(), or the MCMC samples from a single model of output from a dreamer_mcmc() call.

dose

the dose at which to calculate the posterior percentage effect.

probs

a vector of quantiles to calculate on the posterior.

time

the slice of time for which to calculate the posterior percentage effect. Applies to longitudinal models only.

lower

the lower bound of the dose range under consideration.

upper

the upper bound of the dose range under consideration.

greater

logical indicating if the response is desired to be increasing (TRUE) or decreasing (FALSE).

small_bound

the lower (if greater = TRUE) or upper (if greater = FALSE) bound that the effect is expected to take.

index

an index on which MCMC samples should be used. Generally the user should not specify anything for this argument as dreamer will handle this automatically.

return_samples

logical indicating if the posterior samples should be returned.

Value

A named list with the following components:

  • stats: a tibble listing the dose, time (where relevant), probability a percentage effect exists, the average percentage effect, and the specified quantiles of the percentage effect.

  • samps: a tibble with the posterior samples for each dose/time combination.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e3,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

post_perc_effect(output, dose = c(3, 5))

# from a single model
post_perc_effect(output$mod_linear, dose = c(3, 5))

Posterior Quantities from Bayesian Model Averaging

Description

Calculate posterior mean (and quantiles for specific doses for each MCMC iteration of the model.

Usage

posterior(
  x,
  doses,
  times,
  probs,
  reference_dose,
  predictive,
  return_samples,
  iter,
  return_stats
)

## S3 method for class 'dreamer_mcmc'
posterior(
  x,
  doses = attr(x, "doses"),
  times = attr(x, "times"),
  probs = c(0.025, 0.975),
  reference_dose = NULL,
  predictive = 0,
  return_samples = FALSE,
  iter = NULL,
  return_stats = TRUE
)

## S3 method for class 'dreamer_mcmc_independent'
posterior(
  x,
  doses = attr(x, "doses"),
  times = attr(x, "times"),
  probs = c(0.025, 0.975),
  reference_dose = NULL,
  predictive = 0,
  return_samples = FALSE,
  iter = NULL,
  return_stats = TRUE
)

## S3 method for class 'dreamer_bma'
posterior(
  x,
  doses = x$doses,
  times = x$times,
  probs = c(0.025, 0.975),
  reference_dose = NULL,
  predictive = 0,
  return_samples = FALSE,
  iter = NULL,
  return_stats = TRUE
)

Arguments

x

output from a call to dreamer_mcmc.

doses

doses at which to estimate posterior quantities.

times

a vector of times at which to calculate the posterior response (for longitudinal models only).

probs

quantiles of the posterior to be calculated.

reference_dose

the dose at which to adjust the posterior plot. Specifying a dose returns the plot of pr(trt_dose - trt_{reference_dose} | data).

predictive

An integer. If greater than 0, the return values will be from the predictive distribution of the mean of predictive observations. If 0 (default), the posterior on the dose response mean is returned.

return_samples

logical indicating if the weighted raw MCMC samples from the Bayesian model averaging used to calculate the mean and quantiles should be returned.

iter

an index on which iterations of the MCMC should be used in the calculations. By default, all MCMC iterations are used.

return_stats

logical indicating whether or not the posterior statistics should be calculated.

Value

A named list with the following elements:

  • stats: a tibble the dose, posterior mean, and posterior quantiles.

  • samps: the weighted posterior samples. Only returned if return_samples = TRUE.

Methods (by class)

  • posterior(dreamer_mcmc): posterior summary for linear model.

  • posterior(dreamer_mcmc_independent): posterior summary for independent model.

  • posterior(dreamer_bma): posterior summary for Bayesian model averaging fit.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e4,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

posterior(output)

# return posterior samples of the mean
post <- posterior(output, return_samples = TRUE)
head(post$samps)

# from a single model
posterior(output$mod_quad)

# posterior of difference of doses
posterior(output, reference_dose = 0)

Calculate Probability of Meeting Effect of Interest (EOI)

Description

Calculate Pr(effect_dose - effect_reference_dose > EOI | data) or Pr(effect_dose > EOI | data).

Usage

pr_eoi(x, eoi, dose, reference_dose = NULL, time = NULL)

Arguments

x

output from a call to dreamer_mcmc().

eoi

a vector of the effects of interest (EOI) in the probability function.

dose

a vector of the doses for which to calculate the posterior probabilities.

reference_dose

a vector of doses for relative effects of interest.

time

the time at which to calculate the posterior quantity. Defaults to the latest timepoint. Applies to longitudinal models only.

Value

A tibble listing the doses, times, and Pr(effect_dose - effect_reference_dose > eoi) if reference_dose is specified; otherwise, Pr(effect_dose > eoi).

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e4,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

pr_eoi(output, dose = 3, eoi = 10)

# difference of two doses
pr_eoi(output, dose = 3, eoi = 10, reference_dose = 0)

# single model
pr_eoi(output$mod_linear, dose = 3, eoi = 10)

Pr(minimum efficacious dose)

Description

Calculates the posterior probability that each specified doses are the minimum effective dose in the set; i.e. the smallest dose that has a clinically significant difference (CSD).

Usage

pr_med(
  x,
  doses = attr(x, "doses"),
  csd = NULL,
  reference_dose = NULL,
  greater = TRUE,
  time = NULL
)

Arguments

x

output from a call to dreamer_mcmc().

doses

the doses for which pr(MED) is to be calculated.

csd

the treatment effect that is clinically relevant.

reference_dose

a single dose that is used as the reference when defining the MED relative to a dose (rather than in absolute terms). When reference_dose is specified, this function calculates the posterior probability that each dose is the smallest dose such that (effect_dose - effect_reference_dose > CSD).

greater

if TRUE, higher responses indicate better efficacy. If FALSE, lower responses indicate better efficacy.'

time

the time (scalar) at which the Pr(MED) should be calculated. Applies only to longitudinal models.

Value

A tibble listing each dose and the posterior probability that each dose is the minimum efficacious dose.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e3,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

pr_med(output, csd = 10)

# difference of two doses
pr_med(output, csd = 3, reference_dose = 0)

# single model
pr_med(output$mod_quad, csd = 10)

Probability of minimum X% effective dose

Description

Calculate the probability a dose being the smallest dose that has at least X% of the maximum efficacy.

Usage

pr_medx(
  x,
  doses = attr(x, "doses"),
  ed,
  greater = TRUE,
  small_bound = 0,
  time = NULL
)

Arguments

x

output from a call to dreamer_mcmc().

doses

the doses for which pr(minimum effective X% dose) is to be calculated.

ed

a number between 0 and 100 indicating the ed% dose that is being sought.

greater

if TRUE, higher responses indicate better efficacy. If FALSE, lower responses indicate better efficacy.'

small_bound

the lower (upper) bound of the response variable when greater = TRUE (FALSE). This is used to calculate the ed% effect as ed / 100 * (effect_100 - small_bound) + small_bound.

time

the time (scalar) at which the Pr(MEDX) should be calculated.

Details

Obtaining the probability of a particular does being the minimum efficacious dose achieving ed% efficacy is dependent on the doses specified.

For a given MCMC sample of parameters, the 100% efficacy value is defined as the highest efficacy of the doses specified. For each posterior draw of MCMC parameters, the minimum ed% efficacious dose is defined as the lowest dose what has at least ed% efficacy relative to the 100% efficacy value.

The ed% effect is calculated as ed / 100 * (effect_100 - small_bound) + small_bound where effect_100 is the largest mean response among doses for a given MCMC iteration.

Value

A data frame with the following columns:

  • dose: numeric dose levels.

  • prob: Prob(EDX | data) for each dose. Note: these probabilities do not necessarily sum to 1 because the EDX may not exist. In fact, Pr(EDX does not exist | data) = 1 - sum(prob).

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = .1,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e3,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

pr_medx(output, ed = 80)

# single model
pr_medx(output$mod_linear, ed = 80)

Summarize Bayesian Model Averaging MCMC Output

Description

Summarize parameter inference and convergence diagnostics.

Usage

## S3 method for class 'dreamer_bma'
summary(object, ...)

Arguments

object

a dreamer MCMC object.

...

additional arguments (which are ignored).

Value

Returns a named list with elements model_weights and summary containing the prior and posterior weights for each model and inference on parameters for each model as well as MCMC diagnostics.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e4,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

# all models (also show model weights)
summary(output)

# single model
summary(output$mod_linear)

Summarize Model Output

Description

Produces summaries for inference and diagnosing MCMC chains.

Usage

## S3 method for class 'dreamer_mcmc'
summary(object, ...)

Arguments

object

MCMC output from a dreamer model.

...

additional arguments which are ignored.

Value

A tibble with inference and diagnostics information for each parameter.

Examples

set.seed(888)
data <- dreamer_data_linear(
  n_cohorts = c(20, 20, 20),
  dose = c(0, 3, 10),
  b1 = 1,
  b2 = 3,
  sigma = 5
)

# Bayesian model averaging
output <- dreamer_mcmc(
 data = data,
 n_adapt = 1e3,
 n_burn = 1e3,
 n_iter = 1e4,
 n_chains = 2,
 silent = FALSE,
 mod_linear = model_linear(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 ),
 mod_quad = model_quad(
   mu_b1 = 0,
   sigma_b1 = 1,
   mu_b2 = 0,
   sigma_b2 = 1,
   mu_b3 = 0,
   sigma_b3 = 1,
   shape = 1,
   rate = .001,
   w_prior = 1 / 2
 )
)

# all models (also show model weights)
summary(output)

# single model
summary(output$mod_linear)