Package 'dirmult'

Title: Estimation in Dirichlet-Multinomial Distribution
Description: Estimate parameters in Dirichlet-Multinomial and compute log-likelihoods.
Authors: Torben Tvedebrink <[email protected]>
Maintainer: Torben Tvedebrink <[email protected]>
License: GPL (>= 2)
Version: 0.1.3-5
Built: 2025-01-17 07:49:50 UTC
Source: CRAN

Help Index


Profile log-likelihood of Dirichlet-multinomial model

Description

Computes the profile log-likelihood of (π,θ;x)\ell(\pi,\theta;x) for an interval determined by a given difference in log-likelihood value from the maximum log-likelihood value.

Usage

adapGridProf(data, delta, stepsize=50)

Arguments

data

A matrix or table with counts. Rows represent subpopulations and columns the different categories of the data. Zero rows or columns are automaticly removed.

delta

The difference between max of log-likelihood and the profile log-likelihood. May be used to construct approximate confidence intervals, e.g. with delta = qchisq(0.95,df=1)*2.

stepsize

The stepsize used when stepping left/right of the MLE. The stepsize used by the algorithm is given by the MLE of theta divided by stepsize. Default value is 50.

Value

Gives a data frame with theta values and associated profile log-likelihood values.

See Also

estProfLogLik

Examples

data(us)
fit <- dirmult(us[[1]],epsilon=10^(-12),trace=FALSE)
adapGridProf(us[[1]],delta=0.5)
## Not run: adapGridProf(us[[1]],delta=qchisq(0.95,df=1)*2)

Parameter estimation in Dirichlet-multinomial distribution

Description

Consider allele frequencies from different subpopulations. The allele counts, XX, (or equivalently allele frequencies) are expected to vary between subpopulation. This variability are sometimes refered to as identity-by-decent, but may be modelled as overdispersion due to intra-class correlation θ\theta. The allele counts within each subpopulation is assumed to follow a multinomial distribution conditioned on the allele probabilities, π1,,πk1\pi_1,\dots,\pi_{k-1}. When π\pi follows a Dirichlet distribution the marginal distribution of XX is Dirichlet-multinomial with parameters π\pi and θ\theta with density:

P(X=x)=(nx)j=1kr=1xj{πj(1θ)+(r1)θ}r=1n{1θ+(r1)θ}.% P(X=x) = {n \choose x} \frac{\prod_{j=1}^k\prod_{r=1}^{x_j}\{\pi_j(1-\theta) + (r-1)\theta\}}% {\prod_{r=1}^{n}\{1-\theta + (r-1)\theta\}}.

Using an alternative parameterization the density may be written as:

P(X=x)=(nx)Γ(γ+)Γ(n+γ+)j=1kΓ(xj+γj)Γ(γj),% P(X=x) = {n \choose x} \frac{\Gamma(\gamma_+)}{\Gamma(n+\gamma_+)} \prod_{j=1}^k \frac{\Gamma\left(x_j + \gamma_j\right)}% {\Gamma\left(\gamma_j\right)},

where γ+=(1θ)/θ\gamma_+=(1-\theta)/\theta and γj=πjθ\gamma_j=\pi_j\theta.

This formulation second parameterization is used in the iterations since it converges much faster than the original parameterization. The function dirmult estimates the parameters γ\gamma in the Dirichlet-multinomial distribution and transform these into π1,,πk1\pi_1,\dots,\pi_{k-1} and θ\theta.

Usage

dirmult(data, init, initscalar, epsilon=10^(-4), trace=TRUE, mode)

Arguments

data

A matrix or table with counts. Rows represent subpopulations and columns the different categories of the data. Zero rows or columns are automaticly removed.

init

Initial values for the γ\gamma-vector. Default is empty implying the column-proportions are used as initial values.

initscalar

Initial value for (1θ)/θ(1-\theta)/\theta. Default value is (1-MoM)/MoM where MoM a the method of moment estimate.

epsilon

Convergence tolerance. On termination the difference between to succeeding log-likelihoods must be smaller than epsilon.

trace

Logical. If TRUE the parameter estimates and log-likelihood value is printed to the screen after each iteration, otherwise no out-put is produces while iterating.

mode

Takes values "obs" (default) or "exp" determining whether the observed or expected FIM should be used in the Fisher Scoring. All other arguments produces an error message, but the observed FIM is used in the iterations.

Value

Returns a list containing:

loglik

The final log-likelihood value.

ite

Number of iterations used.

gamma

A vector of γ\gamma estimates.

pi

A vector of π\pi estimates.

theta

Estimated θ\theta-value.

See Also

dirmult.summary

Examples

data(us)
fit <- dirmult(us[[1]],epsilon=10^(-4),trace=FALSE)
dirmult.summary(us[[1]],fit)

Summary table of parameter estimates from dirmult

Description

Produces a summary table based on the estimated parameters from dirmult. The table contains MLE estimates and standard errors together with method of moment (MoM) estimates and standard errors based on MoM estimates from 'Weir and Hill (2002)'.

Usage

dirmult.summary(data, fit, expectedFIM=FALSE)

Arguments

data

A matrix or table with counts. Rows represent subpopulations and columns the different categories of the data. Zero rows or columns are automaticly removed.

fit

Output from dirmult used on the same data table as above.

expectedFIM

Logical. Determines whether the observed or expected Fisher Information Matrix should be used. For speed use observed (i.e. FALSE) - for accuracy (and theoretical support) use expected (i.e. TRUE).

Value

Summary table with estimates and standard errors for π\pi and θ\theta.

See Also

dirmult

Examples

data(us)
fit <- dirmult(us[[1]],epsilon=10^(-4),trace=FALSE)
dirmult.summary(us[[1]],fit)

Test whether theta is equal for several tables

Description

Estimates parameters π\pi for each table under the contraint that θ\theta is equal for all tables.

Usage

equalTheta(data, theta, epsilon=10^(-4), trace=TRUE, initPi, maxit=1000)

Arguments

data

A list of matrix or table with counts. Rows in the tables represent subpopulations and columns the different categories of the data. Zero columns are automaticly removed.

theta

Initial value of the commen theta paramter.

epsilon

Tolerance of the convergence, see dirmult.

trace

Logical. TRUE: print estimates while iterating.

initPi

Initial values for each pi vector (one of each table).

maxit

Maximum number of iterations.

Value

Returns a list similar to the output of dirmult.

See Also

dirmult

Examples

## Not run: data(us)
fit <- lapply(us[1:2],dirmult,epsilon=10^(-12),trace=FALSE)
thetas <- unlist(lapply(fit,function(x) x$theta))
logliks <- unlist(lapply(fit,function(x) x$loglik))
fit1 <- equalTheta(us[c(1:2)],theta=mean(thetas),epsilon=10^(-12))
lr <- -2*(fit1$loglik-sum(logliks))
1-pchisq(lr,df=1)
fit1$theta[[1]]

## End(Not run)

Profile log-likelihood of Dirichlet-multinomial model

Description

Computes the profile log-likelihood of (π,θ;x)\ell(\pi,\theta;x) for a given value of θ\theta, i.e. ^(θ)=maxπ(π,θ;x)\hat{\ell}(\theta)=\max_{\pi}\ell(\pi,\theta;x).

Usage

estProfLogLik(data, theta, epsilon=10^(-4), trace=TRUE, initPi, maxit=1000)

Arguments

data

A matrix or table with counts. Rows represent subpopulations and columns the different categories of the data. Zero rows or columns are automaticly removed.

theta

The theta-value of which the profile log-likelihood is to be computed.

epsilon

Tolerance used in the iterations. Succeeding log-likelihood values need to be within epsilon for convergence.

trace

Logical. Whether parameter estimates and log-likelihood values should be printed to the screen while iterating.

initPi

Initial pi vector.

maxit

Maximum number of iterations. Default is 1000 and will often not be envoked, but if theta is to extreme compared to the MLE of theta the log-likelihood may misbehave near theta.

Value

Gives a list of components (similar to output from dirmult where loglik and lambda (the Lagrange multiplier) are the most interesting.

See Also

dirmult

Examples

data(us)
fit <- dirmult(us[[1]],epsilon=10^(-12),trace=FALSE)
estProfLogLik(us[[1]],fit$theta*1.2,epsilon=10^(-12),trace=FALSE)

Profile log-likelihood of Dirichlet-multinomial model

Description

Computes the profile log-likelihood of (π,θ;x)\ell(\pi,\theta;x) for a given sequence of θ\theta by calling estProfLogLik.

Usage

gridProf(data, theta, from, to, len)

Arguments

data

A matrix or table with counts. Rows represent subpopulations and columns the different categories of the data. Zero rows or columns are automaticly removed.

theta

A theta-value used as offset for the interval: [theta+from; theta+to].

from

Left endpoint in the interval: [theta+from; theta+to].

to

Right endpoint in the interval: [theta+from; theta+to].

len

Number of points in the [from; to] interval. Similar to the len argument in seq.

Value

Gives a data frame with theta values and associated profile log-likelihood values.

See Also

estProfLogLik

Examples

data(us)
fit <- dirmult(us[[1]],epsilon=10^(-12),trace=FALSE)
## Not run: grid <- gridProf(us[[1]],fit$theta,from=-0.001,to=0.001,len=10)
plot(loglik ~ theta, data=grid, type="l")
## End(Not run)

Simulation based test for null-hypothesis, H0:theta=0

Description

Simulates data sets under the null-hypothesis, H0:θ=0H_0:\theta=0. This corresponds to an ordinary multinomial model without any overdispersion. Based on the returned data frame simulated pp-values may be computed.

Usage

nullTest(data, m=1000, prec=6)

Arguments

data

A matrix or table with counts. Rows represent subpopulations and columns the different categories of the data. Zero rows or columns are automaticly removed.

m

Number of simulated data tables.

prec

The tolerance of the iterations. Corresponds to epsilon=1e-prec in dirmult.

Value

Returns a data frame with theta estimates and log-likelihood values.

See Also

dirmult

Examples

data(us)
## Not run: nullTest(us[[1]],m=50)

Simulate from Dirichlet distribution

Description

Simulates from a Dirichlet distribution

Usage

rdirichlet(n=1, alpha)

Arguments

n

The number of samples.

alpha

The shape parameters, need to be positive.

Value

Return an n x length(alpha) matrix where each row is drawn from a Dirichlet.

See Also

dirmult

Examples

rdirichlet(n=100, alpha=rep(1,10))

Simulate data from Dirichlet-multinomial distribution

Description

Simulates data using user defined θ\theta value and allele probabilities in the reference population, π\pi.

Usage

simPop(J=10, K=20, n, pi, theta)

Arguments

J

The number of subpopulations sampled.

K

Number of different alleles. If argument pi is given, the length of pi is used as K.

n

The number of alleles sampled in each subpopulation. If scalar repeated for all subpopulations, otherwise a vector of length J is needed with subpopulation specific total sampled alleles.

pi

Vector of allele probabilities. If missing a random vector of length K is generated.

theta

The theta-value used for simulations.

Value

Return an J x K matrix with allelic counts.

See Also

dirmult

Examples

simPop(n=100, theta=0.03)

Allele counts for six US subpopulations.

Description

9 STR loci were typed in sample populations of African Americans, U.S. Caucasians, Hispanics, Bahamians, Jamaicans, and Trinidadians.

Format

A list of tables with allele counts.

Source

http://www.fbi.gov/hq/lab/fsc/backissu/july1999/budowle.htm

References

Budowle, B., Moretti, T. R., Baumstark, A. L., Defenbaugh, D. A., and Keys, K. M. Population data on the thirteen CODIS core short tandem repeat loci in African Americans, U.S. Caucasians, Hispanics, Bahamians, Jamaicans, and Trinidadians, Journal of Forensic Sciences. 1999.


Method of moment estimator of theta

Description

Estimates θ\theta using a method of moment (MoM) estimate by 'Weir and Hill (2002).'

Usage

weirMoM(data, se=FALSE)

Arguments

data

A matrix or table with counts. Rows represent subpopulations and columns the different categories of the data. Zero rows or columns are automaticly removed.

se

Logical. Determines if a standard error of theta sould be computed or not. The variance is based on an expression by Li cited in 'Weir and Hill (2002)'.

Value

MoM-estimate (and standard error) of theta.

References

Weir, B. S. and W. G. Hill (2002). 'Esimating F-statistics'. Annu Rev Genet 36: 721-750

See Also

dirmult.summary

Examples

data(us)
weirMoM(us[[1]],se=TRUE)