
Package: dice (via r-universe)
August 21, 2024

Type Package

Title Calculate probabilities of various dice-rolling events

Version 1.2

Date 2014-10-13

Author Dylan Arena

Maintainer Dylan Arena <dylanarena1@gmail.com>

Description This package provides utilities to calculate the
probabilities of various dice-rolling events, such as the
probability of rolling a four-sided die six times and getting a
4, a 3, and either a 1 or 2 among the six rolls (in any order);
the probability of rolling two six-sided dice three times and
getting a 10 on the first roll, followed by a 4 on the second
roll, followed by anything but a 7 on the third roll; or the
probabilities of each possible sum of rolling five six-sided
dice, dropping the lowest two rolls, and summing the remaining
dice.

License GPL (>= 2)

Depends R (>= 2.0.0), gtools

NeedsCompilation no

Repository CRAN

Date/Publication 2014-10-14 08:25:25

Contents

dice-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
getEventProb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
getSumProbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Index 7

1



2 dice-package

dice-package Calculate probabilities of various dice-rolling events

Description

This package provides utilities to calculate the probabilities of various dice-rolling events, such as
the probability of rolling a four-sided die six times and getting a 4, a 3, and either a 1 or 2 among
the six rolls (in any order); the probability of rolling two six-sided dice three times and getting a 10
on the first roll, followed by a 4 on the second roll, followed by anything but a 7 on the third roll; or
the probabilities of each possible sum of rolling five six-sided dice, dropping the lowest two rolls,
and summing the remaining dice.

Details

Package: dice
Type: Package
Version: 1.2
Date: 2014-10-13
License: GPL (>= 2)

Although initially conceived as a utility for role-playing game calculations, functions in the dice
package can be used to answer questions in any dice-rolling context (e.g., calculating probabilities
for the game of craps, solving problems for an introductory probability course, etc.)

The dice package requires the gtools package.

For a complete list of functions, use library(help="dice").

Author(s)

Dylan Arena <dylanarena1@gmail.com>

References

The implementation for the getSumProbs function originated with the ideas presented in the fol-
lowing forum thread:

http://www.enworld.org/showthread.php?t=56352&page=1&pp=40

Examples

getEventProb(nrolls = 6,
ndicePerRoll = 1,
nsidesPerDie = 4,
eventList = list(4, 3, c(1,2)),
orderMatters = FALSE)

getEventProb(nrolls = 3,

http://www.enworld.org/showthread.php?t=56352&page=1&pp=40


getEventProb 3

ndicePerRoll = 2,
nsidesPerDie = 6,
eventList = list(10, 4, c(2:6, 8:12)),
orderMatters = TRUE)

getSumProbs(ndicePerRoll = 5,
nsidesPerDie = 6,
nkept = 3,
dropLowest = TRUE)

getEventProb Calculate the probability of a specified set of dice-rolling events

Description

For a specified dice-rolling process, getEventProb calculates the probability of an event (i.e., a
non-empty set of outcomes) that is specified by passing a list object in to eventList.

Usage

getEventProb(nrolls, ndicePerRoll, nsidesPerDie, eventList, orderMatters = FALSE)

Arguments

nrolls A single positive integer representing the number of dice rolls to make

ndicePerRoll A single positive integer representing the number of dice to use in each dice roll

nsidesPerDie A single positive integer representing the number of sides on each die (getEventProb’s
dice-rolling process involves only one type of die per call)

eventList A list object, each element of which is a vector that constrains a single dice
roll in the dice-rolling process (see Details below)

orderMatters A logical flag indicating whether the order of the elements of eventList should
constrain the event space; if TRUE, eventList must specify constraints for
every dice roll–i.e., it must contain exactly nrolls elements (some of which
may be "empty" constraints listing all possible outcomes of a dice roll, i.e., a
vector from ndicePerRoll to (ndicePerRoll * nsidesPerDie))

Details

The crux of this function is eventList, which sets the conditions that acceptable dice-rolls must
meet. E.g., to get the probability of rolling at least one 6 when rolling four six-sided dice, eventList
would be list(6) and orderMatters would be FALSE; to get the probability of rolling a 6, fol-
lowed by a 5, followed by either a 1, 2, or 3 when rolling three six-sided dice, eventList would be
list(6,5,1:3) and orderMatters would be TRUE.

Value

A single number representing the probability of an event that meets the constraints of the specified
dice-rolling process



4 getSumProbs

Author(s)

Dylan Arena

Examples

## Probability of rolling at least one 6 when rolling four six-sided dice

getEventProb(nrolls = 4,
ndicePerRoll = 1,
nsidesPerDie = 6,
eventList = list(6))

## Probability of rolling a 6, followed by a 5, followed by either a 1, 2,
## or 3 when rolling three six-sided dice

getEventProb(nrolls = 3,
ndicePerRoll = 1,
nsidesPerDie = 6,
eventList = list(6, 5, 1:3),
orderMatters = TRUE)

## Probability of rolling no 10's when rolling two ten-sided dice

getEventProb(nrolls = 2,
ndicePerRoll = 1,
nsidesPerDie = 10,
eventList = list(1:9,1:9))

getSumProbs Calculate the probabilities of all possible outcome sums of a dice roll

Description

For a specified number of dice with a specified number of sides per die (and dropping a specified
number of dice–those with either the lowest or highest values), getSumProbs calculates the prob-
abilities of all possible outcome sums (i.e., all possible sums of those dice whose results are not
dropped); the function also accommodates modifiers (either to each die roll or to the sum), such as
rolling five four-sided dice and adding 1 to the outcome of each roll, or rolling one twenty-sided die
and adding 12 to the outcome. (Such modified rolls frequently occur in the context of role-playing
games, e.g., Dungeons & Dragons, Mutants & Masterminds, or BESM.)

Usage

getSumProbs(ndicePerRoll,
nsidesPerDie,



getSumProbs 5

nkept = ndicePerRoll,
dropLowest = TRUE,
sumModifier = 0,
perDieModifier = 0,
perDieMinOfOne = TRUE)

Arguments

ndicePerRoll A single positive integer representing the number of dice to roll

nsidesPerDie A single positive integer representing the number of sides on each die (getSumProbs’s
dice-rolling process involves only one type of die per call)

nkept A single positive integer representing the number of dice whose values to in-
clude when calculating the sum (the dice to be kept will always be those with
the highest values)

dropLowest A single logical indicating whether to drop the lowest outcome values (FALSE
drops the highest values instead)

sumModifier A single integer representing an amount to add to or subtract from the outcome
sum

perDieModifier A single integer representing an amount to add to or subtract from each die roll

perDieMinOfOne A logical flag indicating whether each die roll should be considered to have a
minimum value of 1 (as is often true in role-playing-game contexts)

Value

probabilities A matrix with a row for each possible outcome sum and three columns: one that
lists each sum, one for the probability of that sum, and one for the number of
ways to roll that sum

average A single number representing the expected value of the specified dice-rolling
process

Author(s)

Dylan Arena

References

This function’s implementation originated with the ideas presented in the following forum thread:

http://www.enworld.org/showthread.php?t=56352&page=1&pp=40

Examples

## Rolling four six-sided dice and keeping the three highest die rolls

getSumProbs(ndicePerRoll = 4,
nsidesPerDie = 6,
nkept = 3)

http://www.enworld.org/showthread.php?t=56352&page=1&pp=40


6 getSumProbs

## Rolling five four-sided dice and adding 1 to each die roll

getSumProbs(ndicePerRoll = 5,
nsidesPerDie = 4,
perDieModifier = 1)

## Rolling one twenty-sided die and adding 12 to the result

getSumProbs(ndicePerRoll = 1,
nsidesPerDie = 20,
sumModifier = 12)



Index

∗ distribution
getEventProb, 3
getSumProbs, 4

∗ package
dice-package, 2

dice (dice-package), 2
dice-package, 2

getEventProb, 3
getSumProbs, 2, 4

7


	dice-package
	getEventProb
	getSumProbs
	Index

