
Package: denseFLMM (via r-universe)

August 28, 2024

Type Package

Title Functional Linear Mixed Models for Densely Sampled Data

Version 0.1.2

Author Sonja Greven, Jona Cederbaum

Maintainer Jona Cederbaum <Jona.Cederbaum@gmail.com>

Description Estimation of functional linear mixed models for densely
sampled data based on functional principal component analysis.

License GPL-2

LazyData TRUE

Depends R (>= 3.3), mgcv (>= 1.8-12)

Imports methods, parallel, MASS, Matrix, mvtnorm

Collate 'denseFLMM.R'

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-04-19 03:25:24 UTC

Contents

denseFLMM . 2

Index 8

1

2 denseFLMM

denseFLMM Functional Linear Mixed Models for Densely Sampled Data

Description

Estimation of functional linear mixed models (FLMMs) for functional data sampled on equal grids
based on functional principal component analysis. The implemented models are special cases of
the general FLMM

Yi(td) = µ(td, xi) + z⊤i U(td) + ϵi(td), i = 1, . . . , n, d = 1, . . . , D,

with Yi(td) the value of the response of curve i at observation point td, µ(td, xi) is a mean func-
tion, which may depend on covariates xi and needs to be estimated beforehand. zi is a covariate
vector, which is multiplied with the vector of functional random effects U(td). Usually, the func-
tional random effects will additionally include a smooth error term which is a functional random
intercept with a special structure that captures deviations from the mean which are correlated along
the support of the functions. In this case, the last block of zi corresponds to an indicator vector of
indicators for each curve and the last block in U(t) consists of curve-specific functional random
effects. ϵi(td) is independent and identically distributed white noise measurement error with ho-
moscedastic, constant variance.

The vector-valued functional random effects can be subdivided into H independent blocks of func-
tional random effects

U(td) = (U1(td)
⊤, . . . , UH(td)

⊤)⊤,

with Ug(td) and Uh(td) independent for g ̸= h. Each block Uh(td) further contains LUh inde-
pendent copies Ugl(td), l = 1, . . . , LUh , of a vector-valued stochastic process with ρUh vector
components Ugls(td), s = 1, . . . , ρUh . The total number of functional random effects then amounts
to q =

∑H
h=1 L

UhρUh .

The code implements a very general functional linear mixed model for n curves observed at D
grid points. Grid points are assumed to be equidistant and so far no missings are assumed. The
curves are assumed to be centered. The functional random effects for each grouping factor are
assumed to be correlated (e.g., random intercept and slope curves). The code can handle group-
specific functional random effects including group-specific smooth errors. Covariates are assumed
to be standardized.

Usage

denseFLMM(Y, gridpoints = 1:ncol(Y), Zlist = NA, G = NA, Lvec = NA,
groups = matrix(1, nrow(Y), 1), Zvars, L = NA, NPC = NA,
smooth = FALSE, bf = 10, smoothalg = "gamm")

Arguments

Y nxD matrix of n curves observed on D grid points. Y is assumed to be centered
by its mean function.

denseFLMM 3

gridpoints vector of grid points along curves, corresponding to columns of Y. Defaults to
matrix(1, nrow(Y), 1).

Zlist list of length H of ρUg design matrices Z·sUg , g = 1, . . . ,H , s = 1, . . . , ρUg .
Needed instead of Zvars and groups if group-specific functional random effects
are present. Defaults to NA, then Zvars and groups needed.

G number of grouping factors not used for estimation of error variance. Needed if
Zlist is used instead of Zvars and groups. Defaults to NA.

Lvec vector of length H containing the number of levels for each grouping factor.
Needed if Zlist is used instead of Zvars and groups. Defaults to NA.

groups n × G matrix with G grouping factors for the rows of Y, where G denotes the
number of random grouping factors not used for the estimation of the error vari-
ance. Defaults to groups = matrix(1, nrow(Y), 1). Set to NA when Zlist is
used to specify group-specific functional random effects.

Zvars list of length G with n × ρUg matrices of random variables for grouping factor
g, where G denotes the number of random grouping factors not used for the
estimation of the error variance. Random curves for each grouping factor are
assumed to be correlated (e.g., random intercept and slope). Set to NA when
Zlist is used to specify group-specific functional random effects.

L pre-specified level of variance explained (between 0 and 1), determines number
of functional principal components.

NPC vector of length H with number of functional principal components to keep for
each functional random effect. Overrides L if not NA. Defaults to NA.

smooth TRUE to add smoothing of the covariance matrices, otherwise covariance matri-
ces are estimated using least-squares. Defaults to FALSE.

bf number of marginal basis functions used for all smooths. Defaults to bf = 10.

smoothalg smoothing algorithm used for covariance smoothing. Available options are "gamm",
"gamGCV", "gamREML", "bamGCV", "bamREML", and "bamfREML". "gamm" uses
REML estimation based on function gamm in R-package mgcv. "gamGCV" and
"gamREML" use GCV and REML estimation based on function gam in R-package
mgcv, respectively. "bamGCV", "bamREML", and "bamfREML" use GCV, REML,
and a fast REML estimation based on function bam in R-package mgcv, respec-
tively. Defaults to "gamm".

Details

The model fit for centered curves Yi(.) is

Y = ZU + ϵ,

with Y = [Yi(td)]i=1,...,n,d=1,...,D, Z consisting of H blocks ZUh for H grouping factors, Z =

[ZU1 | . . . |ZUH], and each ZUh = [ZUh
1 | . . . |ZUh

ρUh
]. U is row-wise divided into blocks U1, . . . , UH ,

corresponding to Z.
In case no group-specific functional random effects are specified, column j in Z

Ug
s , s = 1, . . . , ρUg ,

is assumed to be equal to the sth variable (column) in Zvars[[g]] times an indicator for the jth
level of grouping factor g, g = 1, . . . , G.
Note that G here denotes the number of random grouping factors not used for the estimation of the

4 denseFLMM

error variance, i.e., all except the smooth error term(s). The total number of grouping factors is
denoted by H .

The estimated eigenvectors and eigenvalues are rescaled to ensure that the approximated eigen-
functions are orthonormal with respect tot the L2-inner product.

The estimation of the error variance takes place in two steps. In case of smoothing (smooth =
TRUE), the error variance is first estimated as the average difference of the raw and the smoothed
diagonal values. In case no smoothing is applied, the estimated error variance is zero. Subsequent
to the eigen decomposition and selection of the eigenfunctions to keep for each grouping factor,
the estimated error variance is recalculated in order to capture the left out variability due to the
truncation of the infinite Karhunen-Loeve expansions.

Value

The function returns a list containing the input arguments Y, gridpoints, groups, Zvars, L,
smooth, bf, and smoothalg. It additionally contains:

• Zlist either the input argument Zlist or if set to NA, the computed list of list of design
matrices ZUg

·s , g = 1, . . . ,H , s = 1, . . . , ρUg .
• G either the input argument G or if set to NA, the computed number of random grouping factors
G not used for the estimation of the error variance.

• Lvec either the input argument Lvec or if set to NA, the computed vector of length H containing
the number of levels for each grouping factor (including the smooth error(s)).

• NPC either the input argument NPC or if set to NA, the number of functional principal compo-
nents kept for each functional random effect (including the smooth error(s)).

• rhovec vector of length H of number of random effects for each grouping factor (including
the smooth error(s)).

• phi list of length H of DxNUg matrices containing the NUg functional principal components
kept per grouping factor (including the smooth error(s)).

• sigma2 estimated measurement error variance σ2.
• nu list of length H of NUgx1 vectors of estimated eigenvalues νUg

k .
• xi list of length H of LUgxNUg matrices containing the predicted random basis weights.

Within matrices, basis weights are ordered corresponding to the ordered levels of the grouping
factors, e.g., a grouping factor with levels 4, 2, 3, 1 (LUg = 4) will result in rows in xi[[g]]
corresponding to levels 1, 2, 3, 4.

• totvar total average variance of the curves.
• exvar level of variance explained by the selected functional principal components (+ error

variance).

Author(s)

Sonja Greven, Jona Cederbaum

See Also

For the estimation of functional linear mixed models for irregularly or sparsely sampled data based
on functional principal component analysis, see function sparseFLMM in package sparseFLMM.

denseFLMM 5

Examples

fit model with group-specific functional random intercepts for two groups
and a non group-specific smooth error, i.e., G = 2, H = 1.

################
load libraries
################
require(mvtnorm)
require(Matrix)
set.seed(123)

#########################
specify data generation
#########################
nus <- list(c(0.5, 0.3), c(1, 0.4), c(2)) # eigenvalues
sigmasq <- 2.5e-05 # error variance
NPCs <- c(rep(2, 2), 1) # number of eigenfunctions
Lvec <- c(rep(2, 2), 480) # number of levels
H <- 3 # number of functional random effects (in total)
G <- 2 # number of functional random effects not used for the estimation of the error variance
gridpoints <- seq(from = 0, to = 1, length = 100) # grid points
class_nr <- 2 # number of groups

define eigenfunctions
#######################
funB1<-function(k,t){

if(k == 1)
out <- sqrt(2) * sin(2 * pi * t)

if(k == 2)
out <- sqrt(2) * cos(2 * pi * t)

out
}

funB2<-function(k,t){
if(k == 1)

out <- sqrt(7) * (20 * t^3 - 30 * t^2 + 12 * t - 1)
if(k == 2)

out <- sqrt(3) * (2 * t - 1)
out

}

funE<-function(k,t){
if(k == 1)

out <- 1 + t - t
if(k == 2)

out <- sqrt(5) * (6 * t^2 - 6 * t + 1)
out

}

###############
generate data
###############

6 denseFLMM

D <- length(gridpoints) # number of grid points
n <- Lvec[3] # number of curves in total

class <- rep(1:class_nr, each = n / class_nr)
group1 <- rep(rep(1:Lvec[1], each = n / (Lvec[1] * class_nr)), class_nr)
group2 <- 1:n

data <- data.frame(class = class, group1 = group1, group2 = group2)

get eigenfunction evaluations
###############################
phis <- list(sapply(1:NPCs[1], FUN = funB1, t = gridpoints),

sapply(1:NPCs[2], FUN = funB2, t = gridpoints),
sapply(1:NPCs[3], FUN = funE, t = gridpoints))

draw basis weights
####################
xis <- vector("list", H)
for(i in 1:H){
if(NPCs[i] > 0){
xis[[i]] <- rmvnorm(Lvec[i], mean = rep(0, NPCs[i]), sigma = diag(NPCs[i]) * nus[[i]])
}

}

construct functional random effects
#####################################
B1 <- xis[[1]] %*% t(phis[[1]])
B2 <- xis[[2]] %*% t(phis[[2]])
E <- xis[[3]] %*% t(phis[[3]])

B1_mat <- B2_mat <- E_mat <- matrix(0, nrow = n, ncol = D)
B1_mat[group1 == 1 & class == 1,] <- t(replicate(n = n / (Lvec[1] * class_nr),
B1[1,], simplify = "matrix"))
B1_mat[group1 == 2 & class == 1,] <- t(replicate(n = n / (Lvec[1] * class_nr),
B1[2,], simplify = "matrix"))
B2_mat[group1 == 1 & class == 2,] <- t(replicate(n = n / (Lvec[1] * class_nr),
B2[1,], simplify = "matrix"))
B2_mat[group1 == 2 & class == 2,] <- t(replicate(n = n / (Lvec[1] * class_nr),
B2[2,], simplify = "matrix"))
E_mat <- E

draw white noise measurement error
####################################
eps <- matrix(rnorm(n * D, mean = 0, sd = sqrt(sigmasq)), nrow = n, ncol = D)

construct curves
##################
Y <- B1_mat + B2_mat + E_mat + eps

#################
construct Zlist
#################
Zlist <- list()

denseFLMM 7

Zlist[[1]] <- Zlist[[2]] <- Zlist[[3]] <- list()

d1 <- data.frame(a = as.factor(data$group1[data$class == 1]))
Zlist[[1]][[1]] <- rbind(sparse.model.matrix(~ -1 + a, d1),

matrix(0, nrow = (1 / class_nr * n), ncol = (Lvec[1])))

d2 <- data.frame(a = as.factor(data$group1[data$class == 2]))
Zlist[[2]][[1]] <- rbind(matrix(0, nrow = (1 / class_nr * n),

ncol = (Lvec[2])), sparse.model.matrix(~ -1 + a, d2))

d3 <- data.frame(a = as.factor(data$group2))
Zlist[[3]][[1]] <- sparse.model.matrix(~ -1 + a, d3)

################
run estimation
################
results <- denseFLMM(Y = Y, gridpoints = gridpoints, Zlist = Zlist, G = G, Lvec = Lvec,

groups = NA, Zvars = NA, L = 0.99999, NPC = NA,
smooth = FALSE)

###############################
plot estimated eigenfunctions
###############################
with(results, matplot(gridpoints, phi[[1]], type = "l"))
with(results, matplot(gridpoints, phi[[2]], type = "l"))
with(results, matplot(gridpoints, phi[[3]], type = "l"))

Index

∗ FPCA
denseFLMM, 2

∗ models,
denseFLMM, 2

bam, 3

denseFLMM, 2

gam, 3
gamm, 3

mgcv, 3

8

	denseFLMM
	Index

