Package 'deepregression'

Title: Fitting Deep Distributional Regression
Description: Allows for the specification of semi-structured deep distributional regression models which are fitted in a neural network as proposed by Ruegamer et al. (2023) <doi:10.18637/jss.v105.i02>. Predictors can be modeled using structured (penalized) linear effects, structured non-linear effects or using an unstructured deep network model.
Authors: David Ruegamer [aut, cre], Christopher Marquardt [ctb], Laetitia Frost [ctb], Florian Pfisterer [ctb], Philipp Baumann [ctb], Chris Kolb [ctb], Lucas Kook [ctb]
Maintainer: David Ruegamer <[email protected]>
License: GPL-3
Version: 2.2.0
Built: 2025-01-02 06:58:41 UTC
Source: CRAN

Help Index


Function to check python environment and install necessary packages

Description

If you encounter problems with installing the required python modules please make sure, that a correct python version is configured using py_discover_config and change the python version if required. Internally uses keras::install_keras.

Usage

check_and_install(force = FALSE, engine)

Arguments

force

if TRUE, forces the installations

engine

character; check if tf(= tensorflow) or torch is available

Value

Function that checks if a Python environment is available and contains TensorFlow. If not the recommended version is installed.


Function to check if inputs are supported by corresponding fit function

Description

Function to check if inputs are supported by corresponding fit function

Usage

check_input_args_fit(args, fit_fun)

Arguments

args

list; list of arguments used in fit process

fit_fun

used fit function (e.g. fit.keras.engine.training.Model)

Value

stop message if inputs are not supported


Function to choose a kernel initializer for a torch layer

Description

Function to choose a kernel initializer for a torch layer

Usage

choose_kernel_initializer_torch(kernel_initializer, value = NULL)

Arguments

kernel_initializer

string; initializer

value

numeric; value used for a constant initializer

Value

kernel initializer


Method for extracting ensemble coefficient estimates

Description

Method for extracting ensemble coefficient estimates

Usage

## S3 method for class 'drEnsemble'
coef(object, which_param = 1, type = NULL, ...)

Arguments

object

object of class "drEnsemble"

which_param

integer, indicating for which distribution parameter coefficients should be returned (default is first parameter)

type

either NULL (all types of coefficients are returned), "linear" for linear coefficients or "smooth" for coefficients of smooth terms

...

further arguments supplied to coef.deepregression

Value

list of coefficient estimates of all ensemble members


Character-to-parameter collection function needed for mixture of same distribution (torch)

Description

Character-to-parameter collection function needed for mixture of same distribution (torch)

Usage

collect_distribution_parameters(family)

Arguments

family

character defining the distribution

Value

a list of extractions for each supported distribution


Function to combine two penalties

Description

Function to combine two penalties

Usage

combine_penalties(penalties, dims)

Arguments

penalties

a list of penalties

dims

dimensions of the parameters to penalize

Value

a TensorFlow penalty combining the two penalties


Function to create (custom) family

Description

Function to create (custom) family

Usage

create_family(tfd_dist, trafo_list, output_dim = 1L)

Arguments

tfd_dist

a tensorflow probability distribution

trafo_list

list of transformations h for each parameter (e.g, exp for a variance parameter)

output_dim

integer defining the size of the response

Value

a function that can be used by tfp$layers$DistributionLambda to create a new distribuional layer


Function to create (custom) family

Description

Function to create (custom) family

Usage

create_family_torch(torch_dist, trafo_list, output_dim = 1L)

Arguments

torch_dist

a torch probability distribution

trafo_list

list of transformations h for each parameter (e.g, exp for a variance parameter)

output_dim

integer defining the size of the response

Value

a function that can be used to train a distribution learning model in torch


Function to create mgcv-type penalty

Description

Function to create mgcv-type penalty

Usage

create_penalty(evaluated_gam_term, df, controls, Z = NULL)

Arguments

evaluated_gam_term

a list resulting from a smoothConstruct call

df

integer; specified degrees-of-freedom for the gam term

controls

list; further arguments defining the smooth

Z

matrix; matrix for constraint(s)

Value

a list with penalty parameter and penalty matrix


Generic cv function

Description

Generic cv function

Usage

cv(x, ...)

Arguments

x

model to do cv on

...

further arguments passed to the class-specific function


Fitting Semi-Structured Deep Distributional Regression

Description

Fitting Semi-Structured Deep Distributional Regression

Usage

deepregression(
  y,
  list_of_formulas,
  list_of_deep_models = NULL,
  family = "normal",
  data,
  seed = as.integer(1991 - 5 - 4),
  return_prepoc = FALSE,
  subnetwork_builder = NULL,
  model_builder = NULL,
  fitting_function = NULL,
  additional_processors = list(),
  penalty_options = penalty_control(),
  orthog_options = orthog_control(),
  weight_options = weight_control(),
  formula_options = form_control(),
  output_dim = 1L,
  verbose = FALSE,
  engine = "tf",
  ...
)

Arguments

y

response variable

list_of_formulas

a named list of right hand side formulas, one for each parameter of the distribution specified in family; set to ~ 1 if the parameter should be treated as constant. Use the s()-notation from mgcv for specification of non-linear structured effects and d(...) for deep learning predictors (predictors in brackets are separated by commas), where d can be replaced by an name name of the names in list_of_deep_models, e.g., ~ 1 + s(x) + my_deep_mod(a,b,c), where my_deep_mod is the name of the neural net specified in list_of_deep_models and a,b,c are features modeled via this network.

list_of_deep_models

a named list of functions specifying a keras model. See the examples for more details.

family

a character specifying the distribution. For information on possible distribution and parameters, see make_tfd_dist. Can also be a custom distribution.

data

data.frame or named list with input features

seed

a seed for TensorFlow or Torch (only works with R version >= 2.2.0)

return_prepoc

logical; if TRUE only the pre-processed data and layers are returned (default FALSE).

subnetwork_builder

function to build each subnetwork (network for each distribution parameter; per default NULL). subnetwork builder will be chosen depending on the engine. Can also be a list of the same size as list_of_formulas.

model_builder

function to build the model based on additive predictors (per default NULL). model builder will be chosen depending on the engine. In order to work with the methods defined for the class deepregression, the model should behave like a keras model

fitting_function

function to fit the instantiated model when calling fit. Per default the keras NULL function. fit will be chosen depending on the engine.

additional_processors

a named list with additional processors to convert the formula(s). Can have an attribute "controls" to pass additional controls

penalty_options

options for smoothing and penalty terms defined by penalty_control

orthog_options

options for the orthgonalization defined by orthog_control

weight_options

options for layer weights defined by weight_control

formula_options

options for formula parsing (mainly used to make calculation more efficiently)

output_dim

dimension of the output, per default 1L

verbose

logical; whether to print progress of model initialization to console

engine

character; the engine which is used to setup the NN (tf or torch)

...

further arguments passed to the model_builder function

References

Ruegamer, D. et al. (2023): deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression. doi:10.18637/jss.v105.i02.

Examples

library(deepregression)

n <- 1000
data = data.frame(matrix(rnorm(4*n), c(n,4)))
colnames(data) <- c("x1","x2","x3","xa")
formula <- ~ 1 + deep_model(x1,x2) + s(xa) + x1 + 
  node(x3, n_trees = 2, n_layers = 2, tree_depth = 1)

deep_model <- function(x) x %>%
layer_dense(units = 32, activation = "relu", use_bias = FALSE) %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 8, activation = "relu") %>%
layer_dense(units = 1, activation = "linear")

y <- rnorm(n) + data$xa^2 + data$x1

mod <- deepregression(
  list_of_formulas = list(loc = formula, scale = ~ 1),
  data = data, y = y,
  list_of_deep_models = list(deep_model = deep_model)
)

if(!is.null(mod)){

# train for more than 10 epochs to get a better model
mod %>% fit(epochs = 10, early_stopping = TRUE)
mod %>% fitted() %>% head()
cvres <- mod %>% cv()
mod %>% get_partial_effect(name = "s(xa)")
mod %>% coef()
mod %>% plot()

}

mod <- deepregression(
  list_of_formulas = list(loc = ~ 1 + s(xa) + x1, scale = ~ 1,
                          dummy = ~ -1 + deep_model(x1,x2,x3) %OZ% 1),
  data = data, y = y,
  list_of_deep_models = list(deep_model = deep_model),
  mapping = list(1,2,1:2)
)

Function to define output distribution based on dist_fun

Description

Function to define output distribution based on dist_fun

Usage

distfun_to_dist(dist_fun, preds)

Arguments

dist_fun

a distribution function as defined by make_tfd_dist

preds

tensors with predictions

Value

a symbolic tfp distribution


Generic deep ensemble function

Description

Generic deep ensemble function

Usage

ensemble(x, ...)

Arguments

x

model to ensemble

...

further arguments passed to the class-specific function


Ensembling deepregression models

Description

Ensembling deepregression models

Usage

## S3 method for class 'deepregression'
ensemble(
  x,
  n_ensemble = 5,
  reinitialize = TRUE,
  mylapply = lapply,
  verbose = FALSE,
  patience = 20,
  plot = TRUE,
  print_members = TRUE,
  stop_if_nan = TRUE,
  save_weights = TRUE,
  callbacks = list(),
  save_fun = NULL,
  seed = seq_len(n_ensemble),
  ...
)

Arguments

x

object of class "deepregression" to ensemble

n_ensemble

numeric; number of ensemble members to fit

reinitialize

logical; if TRUE (default), model weights are initialized randomly prior to fitting each member. Fixed weights are not affected

mylapply

lapply function to be used; defaults to lapply

verbose

whether to print training in each fold

patience

number of patience for early stopping

plot

whether to plot the resulting losses in each fold

print_members

logical; print results for each member

stop_if_nan

logical; whether to stop CV if NaN values occur

save_weights

whether to save final weights of each ensemble member; defaults to TRUE

callbacks

a list of callbacks used for fitting

save_fun

function applied to the model in each fold to be stored in the final result

seed

seed for reproducibility

...

further arguments passed to object$fit_fun

Value

object of class "drEnsemble", containing the original "deepregression" model together with a list of ensembling results (training history and, if save_weights is TRUE, the trained weights of each ensemble member)


Extract the smooth term from a deepregression term specification

Description

Extract the smooth term from a deepregression term specification

Usage

extract_pure_gam_part(term, remove_other_options = TRUE)

Arguments

term

term specified in a formula

remove_other_options

logical; whether to remove other options withing the smooth term

Value

pure gam part of term


Convenience function to extract penalty matrix and value

Description

Convenience function to extract penalty matrix and value

Usage

extract_S(x)

Arguments

x

evaluated smooth term object


Formula helpers

Description

Formula helpers

Extractval with multiple options

Usage

extractval(term, name, default_for_missing = FALSE, default = NULL)

extractvals(term, names)

extractlen(term, data)

form2text(form)

Arguments

term

formula term

name

character; the value to extract

default_for_missing

logical; if TRUE, returns default if argument is missing

default

value returned when missing

names

character vector of names

data

a data.frame or list

form

formula that is converted to a character string

Value

the value used for name

Examples

extractval("s(a, la = 2)", "la")

Extract variable from term

Description

Extract variable from term

Usage

extractvar(term, allow_ia = FALSE)

Arguments

term

term specified in formula

allow_ia

logical; whether to allow interaction of terms using the : notation

Value

variable as string


Character-tfd mapping function

Description

Character-tfd mapping function

Usage

family_to_tfd(family)

Arguments

family

character defining the distribution

Value

a tfp distribution


Character-to-transformation mapping function

Description

Character-to-transformation mapping function

Usage

family_to_trafo(family, add_const = 1e-08)

Arguments

family

character defining the distribution

add_const

see make_tfd_dist

Value

a list of transformation for each distribution parameter


Character-to-transformation mapping function

Description

Character-to-transformation mapping function

Usage

family_to_trafo_torch(family, add_const = 1e-08)

Arguments

family

character defining the distribution

add_const

see make_torch_dist

Value

a list of transformation for each distribution parameter


Character-torch mapping function

Description

Character-torch mapping function

Usage

family_to_trochd(family)

Arguments

family

character defining the distribution

Value

a torch distribution


Method for extracting the fitted values of an ensemble

Description

Method for extracting the fitted values of an ensemble

Usage

## S3 method for class 'drEnsemble'
fitted(object, apply_fun = tfd_mean, ...)

Arguments

object

a deepregression model

apply_fun

function applied to fitted distribution, per default tfd_mean

...

arguments passed to the predict function

Value

list of fitted values for each ensemble member


Options for formula parsing

Description

Options for formula parsing

Usage

form_control(precalculate_gamparts = TRUE, check_form = TRUE)

Arguments

precalculate_gamparts

logical; if TRUE (default), additive parts are pre-calculated and can later be used more efficiently. Set to FALSE only if no smooth effects are in the formula(s) and a formula is very large so that extracting all terms takes long or might fail

check_form

logical; if TRUE (default), the formula is checked in process_terms

Value

Returns a list with options


Function to transform a distritbution layer output into a loss function

Description

Function to transform a distritbution layer output into a loss function

Usage

from_dist_to_loss(
  family,
  ind_fun = function(x) tfd_independent(x),
  weights = NULL
)

Arguments

family

see ?deepregression

ind_fun

function applied to the model output before calculating the log-likelihood. Per default independence is assumed by applying tfd_independent.

weights

sample weights

Value

loss function


Function to transform a distribution layer output into a loss function

Description

Function to transform a distribution layer output into a loss function

Usage

from_dist_to_loss_torch(family, weights = NULL)

Arguments

family

see ?deepregression

weights

sample weights

Value

loss function


Function to define output distribution based on dist_fun

Description

Function to define output distribution based on dist_fun

Usage

from_distfun_to_dist_torch(dist_fun, preds)

Arguments

dist_fun

a distribution function as defined by make_torch_dist

preds

tensors with predictions

Value

a symbolic torch distribution


Define Predictor of a Deep Distributional Regression Model

Description

Define Predictor of a Deep Distributional Regression Model

Usage

from_preds_to_dist(
  list_pred_param,
  family = NULL,
  output_dim = 1L,
  mapping = NULL,
  from_family_to_distfun = make_tfd_dist,
  from_distfun_to_dist = distfun_to_dist,
  add_layer_shared_pred = function(x, units) layer_dense(x, units = units, use_bias =
    FALSE),
  trafo_list = NULL
)

Arguments

list_pred_param

list of input-output(-lists) generated from subnetwork_init

family

see ?deepregression; if NULL, concatenated list_pred_param entries are returned (after applying mapping if provided)

output_dim

dimension of the output

mapping

a list of integers. The i-th list item defines which element elements of list_pred_param are used for the i-th parameter. For example, mapping = list(1,2,1:2) means that list_pred_param[[1]] is used for the first distribution parameter, list_pred_param[[2]] for the second distribution parameter and list_pred_param[[3]] for both distribution parameters (and then added once to list_pred_param[[1]] and once to list_pred_param[[2]])

from_family_to_distfun

function to create a dist_fun (see ?distfun_to_dist) from the given character family

from_distfun_to_dist

function creating a tfp distribution based on the prediction tensors and dist_fun. See ?distfun_to_dist

add_layer_shared_pred

layer to extend shared layers defined in mapping

trafo_list

a list of transformation function to convert the scale of the additive predictors to the respective distribution parameter

Value

a list with input tensors and output tensors that can be passed to, e.g., keras_model


Define Predictor of a Deep Distributional Regression Model

Description

Define Predictor of a Deep Distributional Regression Model

Usage

from_preds_to_dist_torch(
  list_pred_param,
  family = NULL,
  output_dim = 1L,
  mapping = NULL,
  from_family_to_distfun = make_torch_dist,
  from_distfun_to_dist = from_distfun_to_dist_torch,
  add_layer_shared_pred = function(input_shape, units) layer_dense_torch(input_shape =
    input_shape, units = units, use_bias = FALSE),
  trafo_list = NULL
)

Arguments

list_pred_param

list of output(-lists) generated from subnetwork_init

family

see ?deepregression; if NULL, concatenated list_pred_param entries are returned (after applying mapping if provided)

output_dim

dimension of the output

mapping

a list of integers. The i-th list item defines which element elements of list_pred_param are used for the i-th parameter. For example, mapping = list(1,2,1:2) means that list_pred_param[[1]] is used for the first distribution parameter, list_pred_param[[2]] for the second distribution parameter and list_pred_param[[3]] for both distribution parameters (and then added once to list_pred_param[[1]] and once to list_pred_param[[2]])

from_family_to_distfun

function to create a dist_fun (see ?distfun_to_dist) from the given character family

from_distfun_to_dist

function creating a torch distribution based on the prediction tensors and dist_fun. See ?distfun_to_dist

add_layer_shared_pred

layer to extend shared layers defined in mapping

trafo_list

a list of transformation function to convert the scale of the additive predictors to the respective distribution parameter

Value

a list with input tensors and output tensors that can be passed to, e.g., torch_model


used by gam_processor

Description

used by gam_processor

Usage

gam_plot_data(pp, weights, grid_length = 40, pe_fun = pe_gen)

Arguments

pp

processed term

weights

layer weights

grid_length

length for grid for evaluating basis

pe_fun

function used to generate partial effects


Function to return the fitted distribution

Description

Function to return the fitted distribution

Usage

get_distribution(x, data = NULL, force_float = FALSE)

Arguments

x

the fitted deepregression object

data

an optional data set

force_float

forces conversion into float tensors


Obtain the conditional ensemble distribution

Description

Obtain the conditional ensemble distribution

Usage

get_ensemble_distribution(object, data = NULL, topK = NULL, ...)

Arguments

object

object of class "drEnsemble"

data

data for which to return the fitted distribution

topK

not implemented yet

...

further arguments currently ignored

Value

tfd_distribution of the ensemble, i.e., a mixture of the ensemble member's predicted distributions conditional on data


Extract gam part from wrapped term

Description

Extract gam part from wrapped term

Usage

get_gam_part(term, wrapper = "vc")

Arguments

term

character; gam model term

wrapper

character; function name that is wrapped around the gam part


Extract property of gamdata

Description

Extract property of gamdata

Usage

get_gamdata(
  term,
  param_nr,
  gamdata,
  what = c("data_trafo", "predict_trafo", "input_dim", "partial_effect", "sp_and_S",
    "df")
)

Arguments

term

term in formula

param_nr

integer; number of the distribution parameter

gamdata

list as returned by precalc_gam

what

string specifying what to return

Value

property of the gamdata object as defined by what


Extract number in matching table of reduced gam term

Description

Extract number in matching table of reduced gam term

Usage

get_gamdata_reduced_nr(term, param_nr, gamdata)

Arguments

term

term in formula

param_nr

integer; number of the distribution parameter

gamdata

list as returned by precalc_gam

Value

integer with number of gam term in matching table


Helper function to calculate amount of layers Needed when shared layers are used, because of layers have same names

Description

Helper function to calculate amount of layers Needed when shared layers are used, because of layers have same names

Usage

get_help_forward_torch(list_pred_param)

Arguments

list_pred_param

list; subnetworks

Value

layers


Function to return layer given model and name

Description

Function to return layer given model and name

Usage

get_layer_by_opname(mod, name, partial_match = FALSE)

Arguments

mod

deepregression model

name

character

partial_match

logical; whether to also check for a partial match


Function to return layer number given model and name

Description

Function to return layer number given model and name

Usage

get_layernr_by_opname(mod, name, partial_match = FALSE)

Arguments

mod

deepregression model

name

character

partial_match

logical; whether to also check for a partial match


Function to return layer numbers with trainable weights

Description

Function to return layer numbers with trainable weights

Usage

get_layernr_trainable(mod, logic = FALSE)

Arguments

mod

deepregression model

logic

logical; TRUE: return logical vector; FALSE (default) index


Helper function to create an function that generates R6 instances of class dataset

Description

Helper function to create an function that generates R6 instances of class dataset

Usage

get_luz_dataset(df_list, target = NULL, length = NULL, object)

Arguments

df_list

list; data for the distribution learning model (data for every distributional parameter)

target

vector; target value

length

amount of inputs

object

deepregression object

Value

R6 instances of class dataset


Extract term names from the parsed formula content

Description

Extract term names from the parsed formula content

Usage

get_names_pfc(pfc)

Arguments

pfc

parsed formula content

Value

vector of term names


Extract variables from wrapped node term

Description

Extract variables from wrapped node term

Usage

get_node_term(term)

Arguments

term

character; node model term

Value

reduced variable node model term


Extract attributes/hyper-parameters of the node term

Description

Extract attributes/hyper-parameters of the node term

Usage

get_nodedata(term, what)

Arguments

term

term in formula

what

string specifying what to return

Value

property of the node specification as defined by what


Return partial effect of one smooth term

Description

Return partial effect of one smooth term

Usage

get_partial_effect(
  object,
  names = NULL,
  return_matrix = FALSE,
  which_param = 1,
  newdata = NULL,
  ...
)

Arguments

object

deepregression object

names

string; for partial match with smooth term

return_matrix

logical; whether to return the design matrix or

which_param

integer; which distribution parameter the partial effect (FALSE, default)

newdata

data.frame; new data (optional)

...

arguments passed to get_weight_by_name


Extract processor name from term

Description

Extract processor name from term

Usage

get_processor_name(term)

Arguments

term

term in formula

Value

processor name as string


Extract terms defined by specials in formula

Description

Extract terms defined by specials in formula

Usage

get_special(term, specials, simplify = FALSE)

Arguments

term

term in formula

specials

string(s); special name(s)

simplify

logical; shortcut for returning only the name of the special in term

Value

specials in formula


Function to subset parsed formulas

Description

Function to subset parsed formulas

Usage

get_type_pfc(pfc, type = NULL)

Arguments

pfc

list of parsed formulas

type

either NULL (all types of coefficients are returned), "linear" for linear coefficients or "smooth" for coefficients of


Function to retrieve the weights of a structured layer

Description

Function to retrieve the weights of a structured layer

Usage

get_weight_by_name(mod, name, param_nr = 1, postfixes = "")

Arguments

mod

fitted deepregression object

name

name of partial effect

param_nr

distribution parameter number

postfixes

character (vector) appended to layer name

Value

weight matrix


Function to return weight given model and name

Description

Function to return weight given model and name

Usage

get_weight_by_opname(mod, name, partial_match = FALSE)

Arguments

mod

deepregression model

name

character

partial_match

logical; whether to also check for a partial match


Function to define smoothness and call mgcv's smooth constructor

Description

Function to define smoothness and call mgcv's smooth constructor

Usage

handle_gam_term(object, data, controls)

Arguments

object

character defining the model term

data

data.frame or list

controls

controls for penalization

Value

constructed smooth term


Function to import required packages

Description

Function to import required packages

Usage

import_packages(engine)

Arguments

engine

tensorflow or torch


Function to import required packages for tensorflow @import tensorflow tfprobability keras

Description

Function to import required packages for tensorflow

@import tensorflow tfprobability keras

Usage

import_tf_dependings()

Function to import required packages for torch @import torch torchvision luz

Description

Function to import required packages for torch

@import torch torchvision luz

Usage

import_torch_dependings()

Compile a Deep Distributional Regression Model

Description

Compile a Deep Distributional Regression Model

Usage

keras_dr(
  list_pred_param,
  weights = NULL,
  optimizer = tf$keras$optimizers$Adam(),
  model_fun = keras_model,
  monitor_metrics = list(),
  from_preds_to_output = from_preds_to_dist,
  loss = from_dist_to_loss(family = list(...)$family, weights = weights),
  additional_penalty = NULL,
  ...
)

Arguments

list_pred_param

list of input-output(-lists) generated from subnetwork_init

weights

vector of positive values; optional (default = 1 for all observations)

optimizer

optimizer used. Per default Adam

model_fun

which function to use for model building (default keras_model)

monitor_metrics

Further metrics to monitor

from_preds_to_output

function taking the list_pred_param outputs and transforms it into a single network output

loss

the model's loss function; per default evaluated based on the arguments family and weights using from_dist_to_loss

additional_penalty

a penalty that is added to the negative log-likelihood; must be a function of model$trainable_weights with suitable subsetting

...

arguments passed to from_preds_to_output

Value

a list with input tensors and output tensors that can be passed to, e.g., keras_model

Examples

set.seed(24)
n <- 500
x <- runif(n) %>% as.matrix()
z <- runif(n) %>% as.matrix()

y <- x - z
data <- data.frame(x = x, z = z, y = y)

# change loss to mse and adapt
# \code{from_preds_to_output} to work
# only on the first output column
mod <- deepregression(
 y = y,
 data = data,
 list_of_formulas = list(loc = ~ 1 + x + z, scale = ~ 1),
 list_of_deep_models = NULL,
 family = "normal",
 from_preds_to_output = function(x, ...) x[[1]],
 loss = "mse"
)

Convenience layer function

Description

Convenience layer function

Usage

layer_add_identity(inputs)

layer_concatenate_identity(inputs)

Arguments

inputs

list of tensors

Details

convenience layers to work with list of inputs where inputs can also have length one

Value

tensor


Function to create custom nn_linear module to overwrite reset_parameters

Description

Function to create custom nn_linear module to overwrite reset_parameters

Usage

layer_dense_module(kernel_initializer)

Arguments

kernel_initializer

string; initializer used to reset_parameters

Value

nn module


Function to define a torch layer similar to a tf dense layer

Description

Function to define a torch layer similar to a tf dense layer

Usage

layer_dense_torch(
  input_shape,
  units = 1L,
  name,
  trainable = TRUE,
  kernel_initializer = "glorot_uniform",
  use_bias = FALSE,
  kernel_regularizer = NULL,
  ...
)

Arguments

input_shape

integer; number of input units

units

integer; number of output units

name

string; string defining the layer's name

trainable

logical; whether layer is trainable

kernel_initializer

initializer; for coefficients

use_bias

logical; wether bias is used (default no)

kernel_regularizer

regularizer; for coefficients

...

arguments used in choose_kernel_initializer_torch

Value

torch layer


Function that creates layer for each processor

Description

Function that creates layer for each processor

Usage

layer_generator(
  term,
  output_dim,
  param_nr,
  controls,
  name = makelayername(term, param_nr),
  layer_class = tf$keras$layers$Dense,
  without_layer = tf$identity,
  further_layer_args = NULL,
  layer_args_names = NULL,
  units = as.integer(output_dim),
  engine = "tf",
  ...
)

int_processor(term, data, output_dim, param_nr, controls, engine = "tf")

lin_processor(term, data, output_dim, param_nr, controls, engine = "tf")

ri_processor(term, data, output_dim, param_nr, controls, engine)

gam_processor(term, data, output_dim, param_nr, controls, engine = "tf")

autogam_processor(term, data, output_dim, param_nr, controls, engine = "tf")

node_processor(
  term,
  data,
  output_dim,
  param_nr,
  controls = NULL,
  engine = "tf"
)

Arguments

term

character; term in the formula

output_dim

integer; number of units in the layer

param_nr

integer; identifier for models with more than one additive predictor

controls

list; control arguments which allow to pass further information

name

character; name of layer. if NULL, makelayername will be used to create layer name

layer_class

a tf or keras layer function

without_layer

function to be used as layer if controls$with_layer is FALSE

further_layer_args

named list; further arguments passed to the layer

layer_args_names

character vector; if NULL, default layer args will be used. Needs to be set for layers that do not provide the arguments of a default Dense layer.

units

integer; number of units for layer

engine

character; the engine which is used to setup the NN (tf or torch)

...

other keras layer parameters

data

data frame; the data used in processors

Value

a basic processor list structure


NODE/ODTs Layer

Description

NODE/ODTs Layer

Usage

layer_node(
  name,
  units,
  n_layers = 1L,
  n_trees = 1L,
  tree_depth = 1L,
  threshold_init_beta = 1
)

Arguments

name

name of the layer

units

number of output dimensions, for regression and binary classification: 1, for mc-classification simply the number of classes

n_layers

number of layers consisting of ODTs in NODE

n_trees

number of trees per layer

tree_depth

depth of tree per layer

threshold_init_beta

parameter(s) for Beta-distribution used for initializing feature thresholds

Value

layer/model object

Examples

n <- 1000
data_regr <- data.frame(matrix(rnorm(4 * n), c(n, 4)))
colnames(data_regr) <- c("x0", "x1", "x2", "x3")
y_regr <- rnorm(n) + data_regr$x0^2 + data_regr$x1 + 
  data_regr$x2*data_regr$x3 + data_regr$x2 + data_regr$x3
  
library(deepregression)

formula_node <- ~ node(x1, x2, x3, x0, n_trees = 2, n_layers = 2, tree_depth = 2)

mod_node_regr <- deepregression(
list_of_formulas = list(loc = formula_node, scale = ~ 1),
data = data_regr,
y = y_regr
)

if(!is.null(mod_node_regr)){
mod_node_regr %>% fit(epochs = 15, batch_size = 64, verbose = TRUE, 
  validation_split = 0.1, early_stopping = TRUE)
mod_node_regr %>% predict()
}

Sparse Batch Normalization layer

Description

Sparse Batch Normalization layer

Usage

layer_sparse_batch_normalization(lam = NULL, ...)

Arguments

lam

regularization strength

...

arguments passed to TensorFlow layer

Value

layer object


Sparse 2D Convolutional layer

Description

Sparse 2D Convolutional layer

Usage

layer_sparse_conv_2d(filters, kernel_size, lam = NULL, depth = 2, ...)

Arguments

filters

number of filters

kernel_size

size of convolutional filter

lam

regularization strength

depth

depth of weight factorization

...

arguments passed to TensorFlow layer

Value

layer object


Function to define spline as TensorFlow layer

Description

Function to define spline as TensorFlow layer

Usage

layer_spline(
  units = 1L,
  P,
  name,
  trainable = TRUE,
  kernel_initializer = "glorot_uniform"
)

Arguments

units

integer; number of output units

P

matrix; penalty matrix

name

string; string defining the layer's name

trainable

logical; whether layer is trainable

kernel_initializer

initializer; for basis coefficients

Value

TensorFlow layer


Function to define spline as Torch layer

Description

Function to define spline as Torch layer

Usage

layer_spline_torch(
  P,
  units = 1L,
  name,
  trainable = TRUE,
  kernel_initializer = "glorot_uniform",
  ...
)

Arguments

P

matrix; penalty matrix

units

integer; number of output units

name

string; string defining the layer's name

trainable

logical; whether layer is trainable

kernel_initializer

initializer; for basis coefficients

...

value used for constant kernel initializer

Value

Torch spline layer


Function to return the log_score

Description

Function to return the log_score

Usage

log_score(
  x,
  data = NULL,
  this_y = NULL,
  ind_fun = NULL,
  convert_fun = as.matrix,
  summary_fun = function(x) x
)

Arguments

x

the fitted deepregression object

data

an optional data set

this_y

new y for optional data

ind_fun

function indicating the dependency; per default (iid assumption) tfd_independent is used.

convert_fun

function that converts Tensor; per default as.matrix

summary_fun

function summarizing the output; per default the identity


Function to loop through parsed formulas and apply data trafo

Description

Function to loop through parsed formulas and apply data trafo

Usage

loop_through_pfc_and_call_trafo(pfc, newdata = NULL, engine = "tf")

Arguments

pfc

list of processor transformed formulas

newdata

list in the same format as the original data

engine

character; the engine which is used to setup the NN (tf or torch)

Value

list of matrices or arrays


Generate folds for CV out of one hot encoded matrix

Description

Generate folds for CV out of one hot encoded matrix

Usage

make_folds(mat, val_train = 0, val_test = 1)

Arguments

mat

matrix with columns corresponding to folds and entries corresponding to a one hot encoding

val_train

the value corresponding to train, per default 0

val_test

the value corresponding to test, per default 1

Details

val_train and val_test can both be a set of value


creates a generator for training

Description

creates a generator for training

Usage

make_generator(
  input_x,
  input_y = NULL,
  batch_size,
  sizes,
  shuffle = TRUE,
  seed = 42L
)

Arguments

input_x

list of matrices

input_y

list of matrix

batch_size

integer

sizes

sizes of the image including colour channel

shuffle

logical for shuffling data

seed

seed for shuffling in generators

Value

generator for all x and y


Make a DataGenerator from a data.frame or matrix

Description

Creates a Python Class that internally iterates over the data.

Usage

make_generator_from_matrix(
  x,
  y = NULL,
  generator = image_data_generator(),
  batch_size = 32L,
  shuffle = TRUE,
  seed = 1L
)

Arguments

x

matrix;

y

vector;

generator

generator as e.g. obtained from 'keras::image_data_generator'. Used for consistent train-test splits.

batch_size

integer

shuffle

logical; Should data be shuffled?

seed

integer; seed for shuffling data.


Families for deepregression

Description

Families for deepregression

Families for deepregression

Usage

make_tfd_dist(family, add_const = 1e-08, output_dim = 1L, trafo_list = NULL)

make_torch_dist(family, add_const = 1e-08, output_dim = 1L, trafo_list = NULL)

Arguments

family

character vector

add_const

small positive constant to stabilize calculations

output_dim

number of output dimensions of the response (larger 1 for multivariate case) (not implemented yet)

trafo_list

list of transformations for each distribution parameter. Per default the transformation listed in details is applied.

Details

To specify a custom distribution, define the a function as follows function(x) do.call(your_tfd_dist, lapply(1:ncol(x)[[1]], function(i) your_trafo_list_on_inputs[[i]]( x[,i,drop=FALSE]))) and pass it to deepregression via the dist_fun argument. Currently the following distributions are supported with parameters (and corresponding inverse link function in brackets):

  • "normal" : normal distribution with location (identity), scale (exp)

  • "bernoulli" : bernoulli distribution with logits (identity)

  • "bernoulli_prob" : bernoulli distribution with probabilities (sigmoid)

  • "beta" : beta with concentration 1 = alpha (exp) and concentration 0 = beta (exp)

  • "betar" : beta with mean (sigmoid) and scale (sigmoid)

  • "cauchy" : location (identity), scale (exp)

  • "chi2" : cauchy with df (exp)

  • "chi" : cauchy with df (exp)

  • "exponential" : exponential with lambda (exp)

  • "gamma" : gamma with concentration (exp) and rate (exp)

  • "gammar" : gamma with location (exp) and scale (exp), following gamlss.dist::GA, which implies that the expectation is the location, and the variance of the distribution is the location^2 scale^2

  • "gumbel" : gumbel with location (identity), scale (exp)

  • "half_cauchy" : half cauchy with location (identity), scale (exp)

  • "half_normal" : half normal with scale (exp)

  • "horseshoe" : horseshoe with scale (exp)

  • "inverse_gamma" : inverse gamma with concentation (exp) and rate (exp)

  • "inverse_gamma_ls" : inverse gamma with location (exp) and variance (1/exp)

  • "inverse_gaussian" : inverse Gaussian with location (exp) and concentation (exp)

  • "laplace" : Laplace with location (identity) and scale (exp)

  • "log_normal" : Log-normal with location (identity) and scale (exp) of underlying normal distribution

  • "logistic" : logistic with location (identity) and scale (exp)

  • "negbinom" : neg. binomial with count (exp) and prob (sigmoid)

  • "negbinom_ls" : neg. binomail with mean (exp) and clutter factor (exp)

  • "pareto" : Pareto with concentration (exp) and scale (1/exp)

  • "pareto_ls" : Pareto location scale version with mean (exp) and scale (exp), which corresponds to a Pareto distribution with parameters scale = mean and concentration = 1/sigma, where sigma is the scale in the pareto_ls version

  • "poisson" : poisson with rate (exp)

  • "poisson_lograte" : poisson with lograte (identity))

  • "student_t" : Student's t with df (exp)

  • "student_t_ls" : Student's t with df (exp), location (identity) and scale (exp)

  • "uniform" : uniform with upper and lower (both identity)

  • "zinb" : Zero-inflated negative binomial with mean (exp), variance (exp) and prob (sigmoid)

  • "zip": Zero-inflated poisson distribution with mean (exp) and prob (sigmoid)

To specify a custom distribution, define the a function as follows function(x) do.call(your_tfd_dist, lapply(1:ncol(x)[[1]], function(i) your_trafo_list_on_inputs[[i]]( x[,i,drop=FALSE]))) and pass it to deepregression via the dist_fun argument. Currently the following distributions are supported with parameters (and corresponding inverse link function in brackets):

  • "normal" : normal distribution with location (identity), scale (exp)

  • "bernoulli" : bernoulli distribution with logits (identity)

  • "exponential" : exponential with lambda (exp)

  • "gamma" : gamma with concentration (exp) and rate (exp)

  • "poisson" : poisson with rate (exp)


Convenience layer function

Description

Convenience layer function

Usage

makeInputs(pp, param_nr)

Arguments

pp

processed predictors

param_nr

integer for the parameter

Value

input tensors with appropriate names


Function that takes term and create layer name

Description

Function that takes term and create layer name

Usage

makelayername(term, param_nr, truncate = 60)

Arguments

term

term in formula

param_nr

integer; defining number of the distribution's parameter

truncate

integer; value from which on names are truncated

Value

name (string) for layer


Function to initialize a nn_module Forward functions works with a list. The entries of the list are the input of the subnetworks

Description

Function to initialize a nn_module Forward functions works with a list. The entries of the list are the input of the subnetworks

Usage

model_torch(submodules_list)

Arguments

submodules_list

list; subnetworks

Value

nn_module


Function to define an optimizer combining multiple optimizers

Description

Function to define an optimizer combining multiple optimizers

Usage

multioptimizer(optimizers_and_layers)

Arguments

optimizers_and_layers

a list if tuples of optimizer and respective layers

Value

an optimizer


Function to exclude NA values

Description

Function to exclude NA values

Usage

na_omit_list(datalist)

Arguments

datalist

list of data as returned by prepare_data and prepare_newdata

Value

list with NA values excluded and locations of original NA positions as attributes


Returns the parameter names for a given family

Description

Returns the parameter names for a given family

Usage

names_families(family)

Arguments

family

character specifying the family as defined by deepregression

Value

vector of parameter names


custom nn_linear module to overwrite reset_parameters # nn_init_constant works only if value is scalar; so warmstarts for gam does'not work

Description

custom nn_linear module to overwrite reset_parameters # nn_init_constant works only if value is scalar; so warmstarts for gam does'not work

Usage

nn_init_no_grad_constant_deepreg(tensor, value)

Arguments

tensor

scalar or vector

value

value used for constant initialization

Value

tensor


Options for orthogonalization

Description

Options for orthogonalization

Usage

orthog_control(
  split_fun = split_model,
  orthog_type = c("tf", "manual"),
  orthogonalize = options()$orthogonalize,
  identify_intercept = options()$identify_intercept,
  deep_top = NULL,
  orthog_fun = NULL,
  deactivate_oz_at_test = TRUE
)

Arguments

split_fun

a function separating the deep neural network in two parts so that the orthogonalization can be applied to the first part before applying the second network part; per default, the function split_model is used which assumes a dense layer as penultimate layer and separates the network into a first part without this last layer and a second part only consisting of a single dense layer that is fed into the output layer

orthog_type

one of two options; If "manual", the QR decomposition is calculated before model fitting, otherwise ("tf") a QR is calculated in each batch iteration via TF. The first only works well for larger batch sizes or ideally batch_size == NROW(y).

orthogonalize

logical; if set to TRUE, automatic orthogonalization is activated

identify_intercept

whether to orthogonalize the deep network w.r.t. the intercept to make the intercept identifiable

deep_top

function; optional function to put on top of the deep network instead of splitting the function using split_fun

orthog_fun

function; for custom orthogonaliuation. if NULL, orthog_type is used to define the function that computes the orthogonalization

deactivate_oz_at_test

logical; whether to deactive the orthogonalization cell at test time when using orthog_tf for orthog_fun (the default).

Value

Returns a list with options


Function to compute adjusted penalty when orthogonalizing

Description

Function to compute adjusted penalty when orthogonalizing

Usage

orthog_P(P, Z)

Arguments

P

matrix; original penalty matrix

Z

matrix; constraint matrix

Value

adjusted penalty matrix


Orthogonalize a Semi-Structured Model Post-hoc

Description

Orthogonalize a Semi-Structured Model Post-hoc

Usage

orthog_post_fitting(mod, name_penult, param_nr = 1)

Arguments

mod

deepregression model

name_penult

character name of the penultimate layer of the deep part part

param_nr

integer; number of the parameter to be returned

Value

a deepregression object with weights frozen and deep part specified by name_penult orthogonalized


Orthogonalize structured term by another matrix

Description

Orthogonalize structured term by another matrix

Usage

orthog_structured_smooths_Z(S, L)

Arguments

S

matrix; matrix to orthogonalize

L

matrix; matrix which defines the projection and its orthogonal complement, in which S is projected

Value

constraint matrix


Options for penalty setup in the pre-processing

Description

Options for penalty setup in the pre-processing

Usage

penalty_control(
  defaultSmoothing = NULL,
  df = 10,
  null_space_penalty = FALSE,
  absorb_cons = FALSE,
  anisotropic = TRUE,
  zero_constraint_for_smooths = TRUE,
  no_linear_trend_for_smooths = FALSE,
  hat1 = FALSE,
  sp_scale = function(x) ifelse(is.list(x) | is.data.frame(x), 1/NROW(x[[1]]), 1/NROW(x))
)

Arguments

defaultSmoothing

function applied to all s-terms, per default (NULL) the minimum df of all possible terms is used. Must be a function the smooth term from mgcv's smoothCon and an argument df.

df

degrees of freedom for all non-linear structural terms (default = 7); either one common value or a list of the same length as number of parameters; if different df values need to be assigned to different smooth terms, use df as an argument for s(), te() or ti()

null_space_penalty

logical value; if TRUE, the null space will also be penalized for smooth effects. Per default, this is equal to the value give in variational.

absorb_cons

logical; adds identifiability constraint to the basis. See ?mgcv::smoothCon for more details.

anisotropic

whether or not use anisotropic smoothing (default is TRUE)

zero_constraint_for_smooths

logical; the same as absorb_cons, but done explicitly. If true a constraint is put on each smooth to have zero mean. Can be a vector of length(list_of_formulas) for each distribution parameter.

no_linear_trend_for_smooths

logical; see zero_constraint_for_smooths, but this removes the linear trend from splines

hat1

logical; if TRUE, the smoothing parameter is defined by the trace of the hat matrix sum(diag(H)), else sum(diag(2*H-HH))

sp_scale

function of response; for scaling the penalty (1/n per default)

Value

Returns a list with options


Plot CV results from deepregression

Description

Plot CV results from deepregression

Usage

plot_cv(x, what = c("loss", "weight"), engine = "tf", ...)

Arguments

x

drCV object returned by cv.deepregression

what

character indicating what to plot (currently supported 'loss' or 'weights')

engine

character indicating which engine was used to setup the NN

...

further arguments passed to matplot


Generic functions for deepregression models

Description

Generic functions for deepregression models

Predict based on a deepregression object

Function to extract fitted distribution

Fit a deepregression model (pendant to fit for keras)

Extract layer weights / coefficients from model

Print function for deepregression model

Cross-validation for deepgression objects

mean of model fit

Standard deviation of fit distribution

Calculate the distribution quantiles

Usage

## S3 method for class 'deepregression'
plot(
  x,
  which = NULL,
  which_param = 1,
  only_data = FALSE,
  grid_length = 40,
  main_multiple = NULL,
  type = "b",
  get_weight_fun = get_weight_by_name,
  ...
)

## S3 method for class 'deepregression'
predict(
  object,
  newdata = NULL,
  batch_size = NULL,
  apply_fun = tfd_mean,
  convert_fun = as.matrix,
  ...
)

## S3 method for class 'deepregression'
fitted(object, apply_fun = tfd_mean, ...)

## S3 method for class 'deepregression'
fit(
  object,
  batch_size = 32,
  epochs = 10,
  early_stopping = FALSE,
  early_stopping_metric = "val_loss",
  verbose = TRUE,
  view_metrics = FALSE,
  patience = 20,
  save_weights = FALSE,
  validation_data = NULL,
  validation_split = ifelse(is.null(validation_data), 0.1, 0),
  callbacks = list(),
  na_handler = na_omit_list,
  ...
)

## S3 method for class 'deepregression'
coef(object, which_param = 1, type = NULL, ...)

## S3 method for class 'deepregression'
print(x, ...)

## S3 method for class 'deepregression'
cv(
  x,
  verbose = FALSE,
  patience = 20,
  plot = TRUE,
  print_folds = TRUE,
  cv_folds = 5,
  stop_if_nan = TRUE,
  mylapply = lapply,
  save_weights = FALSE,
  callbacks = list(),
  save_fun = NULL,
  ...
)

## S3 method for class 'deepregression'
mean(x, data = NULL, ...)

## S3 method for class 'deepregression'
stddev(x, data = NULL, ...)

## S3 method for class 'deepregression'
quant(x, data = NULL, probs, ...)

Arguments

x

a deepregression object

which

character vector or number(s) identifying the effect to plot; default plots all effects

which_param

integer, indicating for which distribution parameter coefficients should be returned (default is first parameter)

only_data

logical, if TRUE, only the data for plotting is returned

grid_length

the length of an equidistant grid at which a two-dimensional function is evaluated for plotting.

main_multiple

vector of strings; plot main titles if multiple plots are selected

type

either NULL (all types of coefficients are returned), "linear" for linear coefficients or "smooth" for coefficients of smooth terms

get_weight_fun

function to extract weight from model given x, a name and param_nr

...

arguments passed to the predict function

object

a deepregression model

newdata

optional new data, either data.frame or list

batch_size

integer, the batch size used for mini-batch training

apply_fun

function applied to fitted distribution, per default tfd_mean

convert_fun

how should the resulting tensor be converted, per default as.matrix

epochs

integer, the number of epochs to fit the model

early_stopping

logical, whether early stopping should be user.

early_stopping_metric

character, based on which metric should early stopping be trigged (default: "val_loss")

verbose

whether to print training in each fold

view_metrics

logical, whether to trigger the Viewer in RStudio / Browser.

patience

number of patience for early stopping

save_weights

logical, whether to save weights in each epoch.

validation_data

optional specified validation data

validation_split

float in [0,1] defining the amount of data used for validation

callbacks

a list of callbacks used for fitting

na_handler

function to deal with NAs

plot

whether to plot the resulting losses in each fold

print_folds

whether to print the current fold

cv_folds

an integer; can also be a list of lists with train and test data sets per fold

stop_if_nan

logical; whether to stop CV if NaN values occur

mylapply

lapply function to be used; defaults to lapply

save_fun

function applied to the model in each fold to be stored in the final result

data

either NULL or a new data set

probs

the quantile value(s)

Value

Returns an object drCV, a list, one list element for each fold containing the model fit and the weighthistory.


Pre-calculate all gam parts from the list of formulas

Description

Pre-calculate all gam parts from the list of formulas

Usage

precalc_gam(lof, data, controls)

Arguments

lof

list of formulas

data

the data list

controls

controls from deepregression

Value

a list of length 2 with a matching table to link every unique gam term to formula entries and the respective data transformation functions


Handler for prediction with gam terms

Description

Handler for prediction with gam terms

Usage

predict_gam_handler(object, newdata)

Arguments

object

sterm

newdata

data.frame or list


Generator function for deepregression objects

Description

Generator function for deepregression objects

Usage

predict_gen(
  object,
  newdata = NULL,
  batch_size = NULL,
  apply_fun = tfd_mean,
  convert_fun = as.matrix,
  ret_dist = FALSE
)

Arguments

object

deepregression model;

newdata

data.frame or list; for (optional) new data

batch_size

integer; NULL will use the default (20)

apply_fun

see ?predict.deepregression

convert_fun

see ?predict.deepregression

ret_dist

logical; whether to return the whole distribution or only the (mean) prediction

Value

matrix or list of distributions


Function to prepare data based on parsed formulas

Description

Function to prepare data based on parsed formulas

Usage

prepare_data(pfc, na_handler = na_omit_list, gamdata = NULL, engine = "tf")

Arguments

pfc

list of processor transformed formulas

na_handler

function to deal with NAs

gamdata

processor for gam part

engine

the engine which is used to setup the NN (tf or torch)

Value

list of matrices or arrays


Function to additionally prepare data for fit process (torch)

Description

Function to additionally prepare data for fit process (torch)

Usage

prepare_data_torch(pfc, input_x, target = NULL, object)

Arguments

pfc

list of processor transformed formulas

input_x

output of prepare_data()

target

target values

object

a deepregression object

Value

list of matrices or arrays for predict or a dataloader for fit process


Function to prepare input list for fit process, due to different approaches

Description

Function to prepare input list for fit process, due to different approaches

Usage

prepare_input_list_model(
  input_x,
  input_y,
  object,
  epochs = 10,
  batch_size = 32,
  validation_split = 0,
  validation_data = NULL,
  callbacks = NULL,
  verbose,
  view_metrics,
  early_stopping
)

Arguments

input_x

output of prepare_data()

input_y

target

object

a deepregression object

epochs

integer, the number of epochs to fit the model

batch_size

integer, the batch size used for mini-batch training

validation_split

float in [0,1] defining the amount of data used for validation

validation_data

optional specified validation data

callbacks

a list of callbacks for fitting

verbose

logical, whether to print losses during training.

view_metrics

logical, whether to trigger the Viewer in RStudio / Browser.

early_stopping

logical, whether early stopping should be user.

Value

list of arguments used in fit function


Function to prepare new data based on parsed formulas

Description

Function to prepare new data based on parsed formulas

Usage

prepare_newdata(
  pfc,
  newdata,
  na_handler = na_omit_list,
  gamdata = NULL,
  engine = "tf"
)

Arguments

pfc

list of processor transformed formulas

newdata

list in the same format as the original data

na_handler

function to deal with NAs

gamdata

processor for gam part

engine

character; the engine which is used to setup the NN (tf or torch)

Value

list of matrices or arrays


Prepares distributions for mixture process

Description

Prepares distributions for mixture process

Usage

prepare_torch_distr_mixdistr(object, dists)

Arguments

object

object of class "drEnsemble"

dists

fitted distributions

Value

distribution parameters used for mixture of same distribution


Control function to define the processor for terms in the formula

Description

Control function to define the processor for terms in the formula

Usage

process_terms(
  form,
  data,
  controls,
  output_dim,
  param_nr,
  parsing_options,
  specials_to_oz = c(),
  automatic_oz_check = TRUE,
  identify_intercept = FALSE,
  engine = "tf",
  ...
)

Arguments

form

the formula to be processed

data

the data for the terms in the formula

controls

controls for gam terms

output_dim

the output dimension of the response

param_nr

integer; identifier for the distribution parameter

parsing_options

options

specials_to_oz

specials that should be automatically checked for

automatic_oz_check

logical; whether to automatically check for DNNs to be orthogonalized

identify_intercept

logical; whether to make the intercept automatically identifiable

engine

character; the engine which is used to setup the NN (tf or torch)

...

further processors

Value

returns a processor function


Generic quantile function

Description

Generic quantile function

Usage

quant(x, ...)

Arguments

x

object

...

further arguments passed to the class-specific function


random effect layer

Description

random effect layer

trainable penalty layer

Usage

re_layer(units, ...)

pen_layer(units, P, ...)

Arguments

units

integer; number of units

...

arguments passed to TensorFlow layer

P

penalty matrix

Value

layer object

layer object


Generic function to re-intialize model weights

Description

Generic function to re-intialize model weights

Usage

reinit_weights(object, seed)

Arguments

object

model to re-initialize

seed

seed for reproducibility


Method to re-initialize weights of a "deepregression" model

Description

Method to re-initialize weights of a "deepregression" model

Usage

## S3 method for class 'deepregression'
reinit_weights(object, seed)

Arguments

object

object of class "deepregression"

seed

seed for reproducibility

Value

invisible NULL


Function to define orthogonalization connections in the formula

Description

Function to define orthogonalization connections in the formula

Usage

separate_define_relation(
  form,
  specials,
  specials_to_oz,
  automatic_oz_check = TRUE,
  identify_intercept = FALSE,
  simplify = FALSE
)

Arguments

form

a formula for one distribution parameter

specials

specials in formula to handle separately

specials_to_oz

parts of the formula to orthogonalize

automatic_oz_check

logical; automatically check if terms must be orthogonalized

identify_intercept

logical; whether to make the intercept identifiable

simplify

logical; if FALSE, formulas are parsed more carefully.

Value

Returns a list of formula components with ids and assignments for orthogonalization


Hadamard-type layers torch

Description

Hadamard-type layers torch

Usage

simplyconnected_layer_torch(
  la = la,
  multfac_initializer = torch_ones,
  input_shape
)

tiblinlasso_layer_torch(
  la,
  input_shape = 1,
  units = 1,
  kernel_initializer = "he_normal"
)

tib_layer_torch(units, la, input_shape, multfac_initializer = torch_ones)

tibgroup_layer_torch(
  units,
  group_idx = NULL,
  la = 0,
  input_shape,
  kernel_initializer = "torch_ones",
  multfac_initializer = "he_normal"
)

Arguments

la

numeric; regularization value (> 0)

multfac_initializer

initializer for parameters

input_shape

integer; number of input dimension

units

integer; number of units

kernel_initializer

initializer

group_idx

list of group indices

Value

nn_module

torch layer object

nn_module

nn_module


Generic sd function

Description

Generic sd function

Usage

stddev(x, ...)

Arguments

x

object

...

further arguments passed to the class-specific function


Function to get the stoppting iteration from CV

Description

Function to get the stoppting iteration from CV

Usage

stop_iter_cv_result(
  res,
  thisFUN = mean,
  loss = "validloss",
  whichFUN = which.min
)

Arguments

res

result of cv call

thisFUN

aggregating function applied over folds

loss

which loss to use for decision

whichFUN

which function to use for decision


Initializes a Subnetwork based on the Processed Additive Predictor

Description

Initializes a Subnetwork based on the Processed Additive Predictor

Usage

subnetwork_init(
  pp,
  deep_top = NULL,
  orthog_fun = orthog_tf,
  split_fun = split_model,
  shared_layers = NULL,
  param_nr = 1,
  selectfun_in = function(pp) pp[[param_nr]],
  selectfun_lay = function(pp) pp[[param_nr]],
  gaminputs,
  summary_layer = layer_add_identity
)

Arguments

pp

list of processed predictor lists from processor

deep_top

keras layer if the top part of the deep network after orthogonalization is different to the one extracted from the provided network

orthog_fun

function used for orthogonalization

split_fun

function to split the network to extract head

shared_layers

list defining shared weights within one predictor; each list item is a vector of characters of terms as given in the parameter formula

param_nr

integer number for the distribution parameter

selectfun_in, selectfun_lay

functions defining which subset of pp to take as inputs and layers for this subnetwork; per default the param_nr's entry

gaminputs

input tensors for gam terms

summary_layer

keras layer that combines inputs (typically adding or concatenating)

Value

returns a list of input and output for this additive predictor


Initializes a Subnetwork based on the Processed Additive Predictor

Description

Initializes a Subnetwork based on the Processed Additive Predictor

Usage

subnetwork_init_torch(
  pp,
  deep_top = NULL,
  orthog_fun = NULL,
  split_fun = split_model,
  shared_layers = NULL,
  param_nr = 1,
  selectfun_in = function(pp) pp[[param_nr]],
  selectfun_lay = function(pp) pp[[param_nr]],
  gaminputs,
  summary_layer = model_torch
)

Arguments

pp

list of processed predictor lists from processor

deep_top

In tf approach: keras layer if the top part of the deep network after orthogonalization; Not yet implemented for torch is different to the one extracted from the provided network

orthog_fun

function used for orthogonalization; Not yet implemented for torch

split_fun

function to split the network to extract head

shared_layers

list defining shared weights within one predictor; each list item is a vector of characters of terms as given in the parameter formula

param_nr

integer number for the distribution parameter

selectfun_in, selectfun_lay

functions defining which subset of pp to take as inputs and layers for this subnetwork; per default the param_nr's entry

gaminputs

input tensors for gam terms

summary_layer

torch layer that combines inputs (typically adding or concatenating)

Value

returns a list of input and output for this additive predictor


TensorFlow repeat function which is not available for TF 2.0

Description

TensorFlow repeat function which is not available for TF 2.0

Usage

tf_repeat(a, dim)

Arguments

a

tensor

dim

dimension for repeating


Row-wise tensor product using TensorFlow

Description

Row-wise tensor product using TensorFlow

Usage

tf_row_tensor(a, b, ...)

Arguments

a, b

tensor

...

arguments passed to TensorFlow layer

Value

a TensorFlow layer


Split tensor in multiple parts

Description

Split tensor in multiple parts

Usage

tf_split_multiple(A, len)

Arguments

A

tensor

len

integer; defines the split lengths

Value

list of tensors


Function to index tensors columns

Description

Function to index tensors columns

Usage

tf_stride_cols(A, start, end = NULL)

Arguments

A

tensor

start

first index

end

last index (equals start index if NULL)

Value

sliced tensor


Function to index tensors last dimension

Description

Function to index tensors last dimension

Usage

tf_stride_last_dim_tensor(A, start, end = NULL)

Arguments

A

tensor

start

first index

end

last index (equals start index if NULL)

Value

sliced tensor


For using mean squared error via TFP

Description

For using mean squared error via TFP

Usage

tfd_mse(mean)

Arguments

mean

parameter for the mean

Details

deepregression allows to train based on the MSE by using loss = "mse" as argument to deepregression. This tfd function just provides a dummy family

Value

a TFP distribution


Implementation of a zero-inflated negbinom distribution for TFP

Description

Implementation of a zero-inflated negbinom distribution for TFP

Usage

tfd_zinb(mu, r, probs)

Arguments

mu, r

parameter of the negbin_ls distribution

probs

vector of probabilites of length 2 (probability for poisson and probability for 0s)


Implementation of a zero-inflated poisson distribution for TFP

Description

Implementation of a zero-inflated poisson distribution for TFP

Usage

tfd_zip(lambda, probs)

Arguments

lambda

scalar value for rate of poisson distribution

probs

vector of probabilites of length 2 (probability for poisson and probability for 0s)


Hadamard-type layers

Description

Hadamard-type layers

Usage

tib_layer(units, la, ...)

simplyconnected_layer(la, ...)

inverse_group_lasso_pen(la)

regularizer_group_lasso(la, group_idx)

tibgroup_layer(units, group_idx, la, ...)

layer_hadamard(units = 1, la = 0, depth = 3, ...)

layer_group_hadamard(units, la, group_idx, depth, ...)

layer_hadamard_diff(
  units,
  la,
  initu = "glorot_uniform",
  initv = "glorot_uniform",
  ...
)

layer_hadamard(units = 1, la = 0, depth = 3, ...)

Arguments

units

integer; number of units

la

numeric; regularization value (> 0)

...

arguments passed to TensorFlow layer

group_idx

list of group indices

depth

integer; depth of weight factorization

initu, initv

initializers for parameters

Value

layer object


Compile a Deep Distributional Regression Model (Torch)

Description

Compile a Deep Distributional Regression Model (Torch)

Usage

torch_dr(
  list_pred_param,
  optimizer = torch::optim_adam,
  model_fun = NULL,
  monitor_metrics = list(),
  from_preds_to_output = from_preds_to_dist_torch,
  loss = from_dist_to_loss_torch(family = list(...)$family, weights = NULL),
  additional_penalty = NULL,
  ...
)

Arguments

list_pred_param

list of output(-lists) generated from subnetwork_init

optimizer

optimizer used. Per default Adam

model_fun

NULL not needed for torch

monitor_metrics

Further metrics to monitor

from_preds_to_output

function taking the list_pred_param outputs and transforms it into a single network output

loss

the model's loss function; per default evaluated based on the arguments family and weights using from_dist_to_loss

additional_penalty

a penalty that is added to the negative log-likelihood; must be a function of model$trainable_weights with suitable subsetting (not implemented for torch)

...

arguments passed to from_preds_to_output

weights

vector of positive values; optional (default = 1 for all observations)

Value

a luz_module_generator


Function to update miniconda and packages

Description

Function to update miniconda and packages

Usage

update_miniconda_deepregression(
  python = VERSIONPY,
  uninstall = TRUE,
  also_packages = TRUE
)

Arguments

python

string; version of python

uninstall

logical; whether to uninstall previous conda env

also_packages

logical; whether to install also all required packages


Options for weights of layers

Description

Options for weights of layers

Usage

weight_control(
  specific_weight_options = NULL,
  general_weight_options = list(activation = NULL, use_bias = FALSE, trainable = TRUE,
    kernel_initializer = "glorot_uniform", bias_initializer = "zeros", kernel_regularizer
    = NULL, bias_regularizer = NULL, activity_regularizer = NULL, kernel_constraint =
    NULL, bias_constraint = NULL),
  warmstart_weights = NULL,
  shared_layers = NULL
)

Arguments

specific_weight_options

specific options for certain weight terms; must be a list of length length(list_of_formulas) and each element in turn a named list (names are term names as in the formula) with specific options in a list

general_weight_options

default options for layers

warmstart_weights

While all keras layer options are availabe, the user can further specify a list for each distribution parameter with list elements corresponding to term names with values as vectors corresponding to start weights of the respective weights

shared_layers

list for each distribution parameter; each list item can be again a list of character vectors specifying terms which share layers

Value

Returns a list with options