Package: decompML (via r-universe)

February 18, 2025

Type Package

Title Decomposition Based Machine Learning Model

Version 0.1.1

Maintainer Kapil Choudhary <kapiliasri@gmail.com>

Description The hybrid model is a highly effective forecasting approach that integrates decomposition techniques with machine learning to enhance time series prediction accuracy. Each decomposition technique breaks down a time series into multiple intrinsic mode functions (IMFs), which are then individually modeled and forecasted using machine learning algorithms. The final forecast is obtained by aggregating the predictions of all IMFs, producing an ensemble output for the time series. The performance of the developed models is evaluated using international monthly maize price data, assessed through metrics such as root mean squared error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE). For method details see Choudhary, K. et al. (2023).

<https://ssca.org.in/media/14_SA44052022_R3_SA_21032023_Girish_Jha_FINAL_ Finally.pdf>.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Imports forecast, nnfor, Rlibeemd, VMDecomp

Depends R (>= 3.5)

NeedsCompilation no

Author Girish Kumar Jha [aut, ctb], Kapil Choudhary [aut, cre], Rajender Parsad [ctb], Ronit Jaiswal [ctb], Rajeev Ranjan Kumar [ctb], P Venkatesh [ctb], Dwijesh Chandra Mishra [ctb]

Repository CRAN

Date/Publication 2025-02-18 09:40:02 UTC

Config/pak/sysreqs cmake libgsl0-dev texlive libssl-dev

2 ceemdanARIMA

Contents

	ceemdanARIMA	 2
	ceemdanELM	 4
	ceemdanTDNN	 5
	Data_Maize	 7
	eemdARIMA	 8
	eemdELM	 9
	eemdTDNN	 11
	emdARIMA	 12
	emdELM	 14
	emdTDNN	 15
	vmdARIMA	 17
	vmdELM	 18
	vmdTDNN	 20
Index		22

ceemdanARIMA

CEEMDAN Based Auto Regressive Integrated Moving Average Model

Description

The ceemdanARIMA function gives forecasted value of CEEMDAN based Auto Regressive Integrated Moving Average Model with different forecasting evaluation criteria.

Usage

```
ceemdanARIMA(data, stepahead = 10,
num.IMFs = emd_num_imfs(length(data)),
s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st = 0.2)
```

Arguments

data	Input univariate time series (ts) data.
stepahead	The forecast horizon.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the ceemdan procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.

ceemdanARIMA 3

Details

This function firstly, decompose the nonlinear and nonstationary time series into several independent intrinsic mode functions (IMFs) and one residual component (Huang et al., 1998). Secondly, Auto Regressive Integrated Moving Average is used to forecast these IMFs and residual component individually. Finally, the prediction results of all IMFs including residual are aggregated to form the final forecasted value for given input time series.

Value

Total IMF Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF.

FinalceemdanARIMA_forecast

Final forecasted value of the ceemdan based ARIMA model. It is obtained by

combining the forecasted value of all individual IMF.

MAE_ceemdanARIMA

Mean Absolute Error (MAE) for ceemdan based ARIMA model.

MAPE_ceemdanARIMA

Mean Absolute Percentage Error (MAPE) for ceemdan based ARIMA model.

rmse_ceemdanARIMA

Root Mean Square Error (RMSE) for ceemdan based ARIMA model.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble CEEMDAN: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998) The CEEMDAN and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 454, 903–995.

Jha, G.K. and Sinha, K. (2014) Auto Regressive Integrated Moving Averages for time series prediction: An application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24, 563–571.

See Also

eemdARIMA, emdARIMA

Examples

data("Data_Maize")
ceemdanARIMA(Data_Maize)

4 ceemdanELM

ceemdanELM	Complementary Ensemble Empirical Mode Decomposition with Adap-
	tive Noise Based ELM Model

Description

The ceemdanELM function computes forecasted value with different forecasting evaluation criteria for Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise based Extreme Learning Machine model.

Usage

```
ceemdanELM(data, stepahead=10,
num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L, ensem.size=250L, noise.st=0.2)
```

Arguments

O	
data	Input univariate time series (ts) data.
stepahead	The forecast horizon.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.

Details

Some useless IMFs are generated in EMD and EEMD, which degrades performance of these algorithms. Therefore, reducing the number of these useless IMFs is advantageous for improving the computation efficiency of these techniques, Torres et al.(2011) proposed CEEMDAN. Fewer IMFs may be generated on the premise of successfully separating different components of a series by using this algorithm, which can reduce the computational cost.

Value

TotalIMF Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set is used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF

ceemdanTDNN 5

FinalceemdanELM_forecast

Final forecasted value of the ceemdanELM model.It is obtained by combining the forecasted value of all individual IMF.

MAE_ceemdanELM Mean Absolute Error (MAE) for ceemdanELM model.

MAPE_ceemdanELM

Mean Absolute Percentage Error (MAPE) for ceemdanELM model.

rmse_ceemdanELM

Root Mean Square Error (RMSE) for ceemdanELM model.

References

Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70, 489–501.

Torres, M.E., Colominas, M.A., Schlotthauer, G. and Flandrin, P. (2011) A complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4144–4147). IEEE.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdELM, eemdELM

Examples

data("Data_Maize")
ceemdanELM(Data_Maize)

ceemdanTDNN

CEEMDAN Based Time Delay Neural Network Model

Description

The ceemdanTDNN function computes forecasted value for Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise Based Time Delay Neural Network Model with different forecasting evaluation criteria.

Usage

```
ceemdanTDNN(data, stepahead=10,
num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L, ensem.size=250L, noise.st=0.2)
```

6 ceemdanTDNN

Arguments

data Input univariate time series (ts) data.

stepahead The forecast horizon.

num. IMFs Number of Intrinsic Mode Function (IMF) for input series.

s.num Integer. Use the S number stopping criterion for the EMD procedure with the

given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.

num. sift Number of siftings to find out IMFs.

ensem.size Number of copies of the input signal to use as the ensemble.

noise.st Standard deviation of the Gaussian random numbers used as additional noise.

This value is relative to the standard deviation of the input series.

Details

Torres et al.(2011) proposed Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). This algorithm generates a Fewer IMFs on the premise of successfully separating different components of a series, which can reduce the computational cost.

Value

Total IMF Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF

FinalCEEMDANTDNN_forecast

Final forecasted value of the CEEMDAN based TDNN model. It is obtained by

combining the forecasted value of all individual IMF.

MAE_CEEMDANTDNN

Mean Absolute Error (MAE) for CEEMDAN based TDNN model.

MAPE_CEEMDANTDNN

Mean Absolute Percentage Error (MAPE) for CEEMDAN based TDNN model.

rmse_CEEMDANTDNN

Root Mean Square Error (RMSE) for CEEMDAN based TDNN model.

References

Torres, M.E., Colominas, M.A., Schlotthauer, G. and Flandrin, P. (2011) A complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4144–4147). IEEE.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdTDNN, eemdTDNN

Data_Maize 7

Examples

```
data("Data_Maize")
ceemdanTDNN(Data_Maize)
```

Data_Maize

Monthly International Maize Price

Description

Monthly international Maize price from January 2001 to December 2021.

Usage

```
data("Data_Maize")
```

Format

A time series data with 252 observations.

price a time series

Details

Dataset contains 252 observations of monthly international Maize price. It is obtained from World Bank "Pink sheet".

Source

https://www.worldbank.org/en/research/commodity-markets

References

https://www.worldbank.org/en/research/commodity-markets

Examples

```
data(Data_Maize)
```

8 eemdARIMA

eemdARIMA	Ensemble Empirical Mode Decomposition Based Auto Regressive In-
	tegrated Moving Average Model

Description

The eemdARIMA function gives forecasted value of Ensemble Empirical Mode Decomposition based Auto Regressive Integrated Moving Average Model with different forecasting evaluation criteria.

Usage

```
eemdARIMA(data, stepahead = 10,
num.IMFs = emd_num_imfs(length(data)),
s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st = 0.2)
```

Arguments

guments	
data	Input univariate time series (ts) data.
stepahead	The forecast horizon.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the eemd procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.

Details

This function firstly, decompose the nonlinear and nonstationary time series into several independent intrinsic mode functions (IMFs) and one residual component (Huang et al., 1998). Secondly, Auto Regressive Integrated Moving Average is used to forecast these IMFs and residual component individually. Finally, the prediction results of all IMFs including residual are aggregated to form the final forecasted value for given input time series.

Value

Total IMFs. Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF.

eemdELM 9

FinaleemdARIMA_forecast

Final forecasted value of the eemd based ARIMA model. It is obtained by combining the forecasted value of all individual IMF.

MAE_eemdARIMA Mean Absolute Error (MAE) for eemd based ARIMA model.

MAPE_eemdARIMA Mean Absolute Percentage Error (MAPE) for eemd based ARIMA model.

rmse_eemdARIMA Root Mean Square Error (RMSE) for eemd based ARIMA model.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble Ensemble Empirical Mode Decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998) The Ensemble Empirical Mode Decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 454, 903–995.

Jha, G.K. and Sinha, K. (2014) Auto Regressive Integrated Moving Averages for time series prediction: An application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24, 563–571.

See Also

eemdARIMA, ceeemdanARIMA

Examples

```
data("Data_Maize")
eemdARIMA(Data_Maize)
```

eemdELM

Ensemble Empirical Mode Decomposition Based ELM Model

Description

The eemdELM function computes forecasted value with different forecasting evaluation criteria for Ensemble Empirical Mode Decomposition based Extreme Learning Machine model.

Usage

```
eemdELM(data, stepahead=10,
num.IMFs=emd_num_imfs(length(data)), s.num=4L,
num.sift=50L, ensem.size=250L, noise.st=0.2)
```

10 eemdELM

Arguments

data Input univariate time series (ts) data.

stepahead The forecast horizon.

num. IMFs Number of Intrinsic Mode Function (IMF) for input series.

s.num Integer. Use the S number stopping criterion for the EMD procedure with the

given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.

num.sift Number of siftings to find out IMFs.

ensem.size Number of copies of the input signal to use as the ensemble.

noise.st Standard deviation of the Gaussian random numbers used as additional noise.

This value is relative to the standard deviation of the input series.

Details

To overcome the problem of EMD (i.e. mode mixing), Ensemble Empirical Mode Decomposition (EEMD) method was developed by Wu and Huang (2009), which significantly reduces the chance of mode mixing and represents a substantial improvement over the original EMD.

Value

Total IMF Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set is used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF.

FinaleemdELM_forecast

Final forecasted value of the eemdELM model. It is obtained by combining the

forecasted value of all individual IMF.

MAE_eemdELM Mean Absolute Error (MAE) for eemdELM model.

MAPE_eemdELM Mean Absolute Percentage Error (MAPE) for eemdELM model.

rmse_eemdELM Root Mean Square Error (RMSE) for eemdELM model.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 454, 903–995.

Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006) Extreme learning machine: theory and applications. Neurocomputing, 70, 489–501.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

eemdTDNN 11

See Also

```
emdELM, ceemdanELM
```

Examples

```
data("Data_Maize")
eemdELM(Data_Maize)
```

eemdTDNN

Ensemble Empirical Mode Decomposition Based Time Delay Neural Network Model

Description

The eemdTDNN function computes forecasted value with different forecasting evaluation criteria for Ensemble Empirical Mode Decomposition based Time Delay Neural Network Model.

Usage

```
eemdTDNN(data, stepahead=10,
num.IMFs=emd_num_imfs(length(data)), s.num=4L,
num.sift=50L, ensem.size=250L, noise.st=0.2)
```

Arguments

data	Input univariate time series (ts) data.
stepahead	The forecast horizon.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.

Details

To overcome the problem of mode mixing in EMD decomposition technique, Ensemble Empirical Mode Decomposition (EEMD) method was developed by Wu and Huang (2009). EEMD significantly reduces the chance of mode mixing and represents a substantial improvement over the original EMD.

12 emdARIMA

Value

Total IMF Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF.

FinaleemdTDNN_forecast

Final forecasted value of the EEMD based TDNN model. It is obtained by

combining the forecasted value of all individual IMF.

MAE_eemdTDNN Mean Absolute Error (MAE) for EEMD based TDNN model.

MAPE_eemdTDNN Mean Absolute Percentage Error (MAPE) for EEMD based TDNN model.

rmse_eemdTDNN Root Mean Square Error (RMSE) for EEMD based TDNN model.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdTDNN, ceendanTDNN

Examples

```
data("Data_Maize")
eemdTDNN(Data_Maize)
```

emdARIMA Empirical Mode Decomposition Based Auto Regressive Integrated

Moving Average Model

Description

The emdARIMA function gives forecasted value of Empirical Mode Decomposition based Auto Regressive Integrated Moving Average Model with different forecasting evaluation criteria.

Usage

```
emdARIMA(data, stepahead = 10,
num.IMFs = emd_num_imfs(length(data)),
s.num = 4L, num.sift = 50L)
```

emdARIMA 13

Arguments

data Input univariate time series (ts) data.

stepahead The forecast horizon.

num. IMFs Number of Intrinsic Mode Function (IMF) for input series.

s.num Integer. Use the S number stopping criterion for the EMD procedure with the

given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.

num. sift Number of siftings to find out IMFs.

Details

This function firstly, decompose the nonlinear and nonstationary time series into several independent intrinsic mode functions (IMFs) and one residual component (Huang et al., 1998). Secondly, Auto Regressive Integrated Moving Average is used to forecast these IMFs and residual component individually. Finally, the prediction results of all IMFs including residual are aggregated to form the final forecasted value for given input time series.

Value

Total IMF Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF.

FinalEMDARIMA_forecast

Final forecasted value of the EMD based ARIMA model. It is obtained by

combining the forecasted value of all individual IMF.

MAE_EMDARIMA Mean Absolute Error (MAE) for EMD based ARIMA model.

MAPE_EMDARIMA Mean Absolute Percentage Error (MAPE) for EMD based ARIMA model.

rmse_EMDARIMA Root Mean Square Error (RMSE) for EMD based ARIMA model.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 454, 903–995.

Jha, G.K. and Sinha, K. (2014) Auto Regressive Integrated Moving Averages for time series prediction: An application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24, 563–571.

14 emdELM

See Also

```
eemdARIMA, ceemdanARIMA
```

Examples

```
data("Data_Maize")
emdARIMA(Data_Maize)
```

emdELM

Empirical Mode Decomposition Based ELM Model

Description

The emdELM function computes forecasted value with different forecasting evaluation criteria for Empirical Mode Decomposition based Extreme Learning Machine model.

Usage

```
emdELM(xt, stepahead = 10, s.num = 4L, num.sift = 50L)
```

Arguments

xt Input univariate time series (ts) data.

stepahead The forecast horizon.

s.num Integer. Use the S number stopping criterion for the EMD procedure with the

given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.

num.sift Number of siftings to find out IMFs.

Details

This function decomposes the original time series into several independent intrinsic mode functions (IMFs) and one residual component (Huang et al., 1998). Then extreme learning machine, a class of feedforward neural network is used to forecast these IMFs and residual component individually (Huang et al., 2006). Finally, the prediction results of all IMFs including residual are aggregated to formulate an ensemble output for the original time series.

Value

Total IMF Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set is used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF.

emdTDNN 15

FinalemdELM_forecast

Final forecasted value of the emdELM model.It is obtained by combining the

forecasted value of all individual IMF.

MAE_emdELM Mean Absolute Error (MAE) for emdELM model.

MAPE_emdELM Mean Absolute Percentage Error (MAPE) for emdELM model.

rmse_emdELM Root Mean Square Error (RMSE) for emdELM model.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Dong, J., Dai, W., Tang, L. and Yu, L. (2019) Why do EMD based methods improve prediction. A multiscale complexity perspective. Journal of Forecasting, 38(7), 714–731.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, 454, 903–995.

Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70, 489–501.

See Also

emdELM, ceemdanelm

Examples

```
data("Data_Maize")
emdELM(Data_Maize)
```

emdTDNN

Empirical Mode Decomposition Based Time Delay Neural Network Model

Description

The emdTDNN function gives forecasted value of Empirical Mode Decomposition based Time Delay Neural Network Model with different forecasting evaluation criteria.

Usage

```
emdTDNN(data, stepahead=10,
num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L)
```

16 emdTDNN

Arguments

data Input univariate time series (ts) data.

stepahead The forecast horizon.

num. IMFs Number of Intrinsic Mode Function (IMF) for input series.

s.num Integer. Use the S number stopping criterion for the EMD procedure with the

given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.

num.sift Number of siftings to find out IMFs.

Details

This function firstly, decompose the nonlinear and nonstationary time series into several independent intrinsic mode functions (IMFs) and one residual component (Huang et al., 1998). Secondly, time delay neural network is used to forecast these IMFs and residual component individually. Finally, the prediction results of all IMFs including residual are aggregated to form the final forecasted value for given input time series.

Value

Total IMF Total number of IMFs.

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF.

FinalEMDTDNN_forecast

Final forecasted value of the EMD based TDNN model. It is obtained by com-

bining the forecasted value of all individual IMF.

MAE_EMDTDNN Mean Absolute Error (MAE) for EMD based TDNN model.

MAPE_EMDTDNN Mean Absolute Percentage Error (MAPE) for EMD based TDNN model.

rmse_EMDTDNN Root Mean Square Error (RMSE) for EMD based TDNN model.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 454, 903–995.

Jha, G.K. and Sinha, K. (2014) Time delay neural networks for time series prediction: An application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24, 563–571.

vmdARIMA 17

See Also

```
eemdTDNN, ceemdanTDNN
```

Examples

```
data("Data_Maize")
emdTDNN(Data_Maize)
```

vmdARIMA

Variational Mode Decomposition Based Autoregressive Integrated Moving Average Model

Description

The vmdARIMA function computes forecasted value with different forecasting evaluation criteria for Variational Mode Decomposition (VMD) Based Autoregressive Integrated Moving Average (ARIMA).

Usage

```
vmdARIMA (data, stepahead=10, nIMF=4, alpha=2000, tau=0, D=FALSE)
```

Arguments

data Input univariate time series (ts) data.

stepahead The forecast horizon.

nIMF The number of IMFs.

alpha The balancing parameter.

tau Time-step of the dual ascent.

D a boolean.

Details

In this function, the variational mode decomposition (VMD) used for mining the trend features and detailed features contained in a time series. Moreover, the corresponding autoregressive integrated moving average (ARIMA) models were derived to reflect the different features of the IMFs. The final forecasted values obtained for a given time series.

18 vmdELM

Value

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF

FinalvmdARIMA_forecast

Final forecasted value of the VMD based ARIMA model. It is obtained by

combining the forecasted value of all individual IMF.

MAE_vmdARIMA Mean Absolute Error (MAE) for vmdARIMA model.

MAPE_vmdARIMA Mean Absolute Percentage Error (MAPE) for vmdARIMA model.

rmse_vmdARIMA Root Mean Square Error (RMSE) for vmdARIMA model.

References

Box, G. E., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley and Sons.

Dragomiretskiy, K.and Zosso, D. (2014). Variational mode decomposition. IEEE transactions on signal processing, 62(3), 531–544.

Wang, H., Huang, J., Zhou, H., Zhao, L. and Yuan, Y. (2019). An integrated variational mode decomposition and arima model to forecast air temperature. Sustainability, 11(15), 4018.

See Also

vmdTDNN,vmdELM

Examples

data("Data_Maize")
vmdARIMA(Data_Maize)

vmdELM Variational Mode Decomposition Based Extreme Learning Machine Model

Description

The vmdELM function computes forecasted value with different forecasting evaluation criteria for Variational Mode Decomposition (VMD) Based Extreme learning machine (ELM).

Usage

vmdELM (data, stepahead=10, nIMF=4, alpha=2000, tau=0, D=FALSE)

vmdELM 19

Arguments

data Input univariate time series (ts) data.

stepahead The forecast horizon.

nIMF The number of IMFs.

alpha The balancing parameter.

tau Time-step of the dual ascent.

D a boolean.

Details

This function decomposes a nonlinear, nonstationary time series into different IMFs using VMD (Qian et al., 2019). Extreme learning machine (ELM) is used to forecast decomposed IMFs individually. Finally, the prediction results of all three components are aggregated to formulate an ensemble output for the input time series.

Value

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF

FinalvmdELM_forecast

Final forecasted value of the VMD based ELM model. It is obtained by com-

bining the forecasted value of all individual IMF.

MAE_vmdELM Mean Absolute Error (MAE) for vmdELM model.

MAPE_vmdELM Mean Absolute Percentage Error (MAPE) for vmdELM model.

rmse_vmdELM Root Mean Square Error (RMSE) for vmdELM model.

References

Dragomiretskiy, K.and Zosso, D. (2014). Variational mode decomposition. IEEE transactions on signal processing, 62(3), 531–544.

Shao, Z., Chao, F., Yang, S. L., & Zhou, K. L. (2017). A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting. Renewable and Sustainable Energy Reviews, 75, 123–136.

Qian, Z., Pei, Y., Zareipour, H. and Chen, N. (2019). A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Applied energy, 235, 939–953.

See Also

vmdTDNN,vmdARIMA

Examples

```
data("Data_Maize")
vmdELM(Data_Maize)
```

20 vmdTDNN

vmdTDNN	Variational Mode Decomposition Based Time Delay Neural Network Model

Description

The vmdTDNN function computes forecasted value with different forecasting evaluation criteria for Variational Mode Decomposition (VMD) Based Time Delay Neural Network Model (TDNN).

Usage

```
vmdTDNN (data, stepahead=10, nIMF=4, alpha=2000, tau=0,D=FALSE)
```

Arguments

data Input univariate time series (ts) data.

stepahead The forecast horizon.

nIMF The number of IMFs.

alpha The balancing parameter.

tau Time-step of the dual ascent.

D a boolean.

Details

The Variational Mode Decomposition method is a novel adaptive, non-recursive signal decomposition technology, which was introduced by Dragomiretskiy and Zosso (2014). VMD method helps to solve current decomposition methods limitation such as lacking mathematical theory, recursive sifting process which not allows for backward error correction, hard-band limits, the requirement to predetermine filter bank boundaries, and sensitivity to noise. It decomposes a series into sets of IMFs. Time-delay neural networks are used to forecast decomposed components individually (Jha and Sinha, 2014). Finally, the prediction results of all components are aggregated to formulate an ensemble output for the input time series.

Value

AllIMF List of all IMFs with residual for input series.

data_test Testing set used to measure the out of sample performance.

AllIMF_forecast

Forecasted value of all individual IMF

FinalvmdTDNN_forecast

Final forecasted value of the VMD based TDNN model. It is obtained by com-

bining the forecasted value of all individual IMF.

MAE_vmdTDNN Mean Absolute Error (MAE) for vmdTDNN model.

MAPE_vmdTDNN Mean Absolute Percentage Error (MAPE) for vmdTDNN model.

rmse_vmdTDNN Root Mean Square Error (RMSE) for vmdTDNN model.

vmdTDNN 21

References

Choudhury, K., Jha, G. K., Das, P. and Chaturvedi, K. K. (2019). Forecasting potato price using ensemble artificial neural networks. Indian Journal of Extension Education, 55(1), 73–77.

Choudhary, K., Jha, G. K., Kumar, R. R. and Mishra, D. C. (2019). Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian Journal of Agricultural Sciences, 89(5), 882–886.

Dragomiretskiy, K.and Zosso, D. (2014). Variational mode decomposition. IEEE transactions on signal processing, 62(3), 531–544.

Jha, G. K. and Sinha, K. (2014). Time-delay neural networks for time series prediction: An application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24(3–4), 563–571.

See Also

vmdARIMA,vmdELM

Examples

data("Data_Maize")
vmdTDNN(Data_Maize)

Index

```
* VMD
    vmdARIMA, 17
    vmdELM, 18
    vmdTDNN, 20
*\ ceemdan
    ceemdanARIMA, 2
\ast ceendan
    ceemdanELM, 4
    ceemdanTDNN, 5
* eemd
    eemdARIMA, 8
    {\it eemdELM}, 9
    eemdTDNN, 11
* emd
    emdARIMA, 12
    emdELM, 14
    emdTDNN, 15
ceemdanARIMA, 2
ceemdanELM, 4
ceemdanTDNN, 5
Data_Maize, 7
eemdARIMA, 8
eemdELM, 9
eemdTDNN, 11
emdARIMA, 12
emdELM, 14
emdTDNN, 15
vmdARIMA, 17
vmdELM, 18
vmdTDNN, 20
```