Title: | Conventional and Fuzzy Data Envelopment Analysis |
---|---|
Description: | Set of functions for Data Envelopment Analysis. It runs both classic and fuzzy DEA models. See: Banker, R.; Charnes, A.; Cooper, W.W. (1984). <doi:10.1287/mnsc.30.9.1078>, Charnes, A.; Cooper, W.W.; Rhodes, E. (1978). <doi:10.1016/0377-2217(78)90138-8> and Charnes, A.; Cooper, W.W.; Rhodes, E. (1981). <doi:10.1287/mnsc.27.6.668>. |
Authors: | Vicente Coll-Serrano, Vicente Bolos, Rafael Benitez Suarez <[email protected]> |
Maintainer: | Vicente Bolos <[email protected]> |
License: | GPL |
Version: | 1.4.1 |
Built: | 2024-11-04 06:41:53 UTC |
Source: | CRAN |
Data of 28 airlines with 2 outputs and 4 inputs.
data("Airlines")
data("Airlines")
Data frame with 28 rows and 7 columns. Definition of outputs (Y) and inputs (X):
Passenger-kilometers flown
Freight tonne-kilometers flown
Labor (number of employees)
Fuel (millions of gallons)
Other inputs (millions of U.S. dollar equivalent) consisting of operating and maintenance expenses excluding labor and fuel expenses
Capital (sum of the maximum takeoff weights of all aircraft flown multiplied by the number of days flown)
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Coelli, T.; Griffel-Tatje, E.; Perelman, S. (2002). "Capacity Utilization and Profitability: A Decomposition of Short-Run Profit Efficiency", International Journal of Production Economics 79, 261–278.
# Example. Replication of results in Aparicio et al. (2007). data("Airlines") data_example <- make_deadata(Airlines, inputs = 4:7, outputs = 2:3) result <- model_sbmeff(data_example) efficiencies(result) result2 <- model_sbmeff(data_example, kaizen = TRUE) efficiencies(result2)
# Example. Replication of results in Aparicio et al. (2007). data("Airlines") data_example <- make_deadata(Airlines, inputs = 4:7, outputs = 2:3) result <- model_sbmeff(data_example) efficiencies(result) result2 <- model_sbmeff(data_example, kaizen = TRUE) efficiencies(result2)
To bootstrap efficiency scores, deaR uses the algorithm proposed by Simar and Wilson (1998). For now, the function bootstrap_basic can only be used with basic DEA models.
bootstrap_basic(datadea, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, B = 2000, h = NULL, alpha = 0.05)
bootstrap_basic(datadea, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, B = 2000, h = NULL, alpha = 0.05)
datadea |
A |
orientation |
A string, equal to "io" (input oriented) or "oo" (output oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
B |
Number of bootstrap iterations. |
h |
Bandwidth of smoothing window. By default |
alpha |
Between 0 and 1 (for confidence intervals). |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Behr, A. (2015). Production and Efficiency Analysis with R. Springer.
Bogetoft, P.; Otto, L. (2010). Benchmarking with DEA, SFA, and R. Springer.
Daraio, C.; Simar, L. (2007). Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications. New York: Springer.
Färe, R.; Grosskopf, S.; Kokkenlenberg, E. (1989). "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach". International Economic Review, 30(3), 655-666.
Löthgren, M.; Tambour, M. (1999). "Bootstrapping the Data Envelopment Analysis Malmquist Productivity Index". Applied Economics, 31, 417-425.
Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
Simar, L.; Wilson, P.W. (1998). "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models". Management Science, 44(1), 49-61.
Simar, L.; Wilson, P.W. (1999). "Estimating and Bootstrapping Malmquist Indices". European Journal of Operational Research, 115, 459-471.
Simar, L.; Wilson, P.W. (2008). Statistical Inference in Nonparametric Frontier Models: Recent Developments and Perspective. In H.O. Fried; C.A. Knox Lovell and S.S. Schmidt (eds.) The Measurement of Productive Efficiency and Productivity Growth. New York: Oxford University Press. doi:10.1093/acprof:oso/9780195183528.001.0001
# To replicate the results in Simar y Wilson (1998, p. 58) you have to # set B=2000 (in the example B = 100 to save time) data("Electric_plants") data_example <- make_deadata(Electric_plants, ni = 3, no = 1) result <- bootstrap_basic(datadea = data_example, orientation = "io", rts = "vrs", B = 100) result$score_bc result$CI
# To replicate the results in Simar y Wilson (1998, p. 58) you have to # set B=2000 (in the example B = 100 to save time) data("Electric_plants") data_example <- make_deadata(Electric_plants, ni = 3, no = 1) result <- bootstrap_basic(datadea = data_example, orientation = "io", rts = "vrs", B = 100) result$score_bc result$CI
Data of five DMUs with two inputs and one output. Prices for inputs are available. Price for output is not from Coelli et al. (1998).
data("Coelli_1998")
data("Coelli_1998")
Data frame with 6 rows and 5 columns. Definition of inputs (X) and outputs (Y):
Input 1
Input 2
Output
Price input 1
Price input 2
Price output
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Coelli, T.; Prasada Rao, D.S.; Battese, G.E. An introduction to efficiency and productivity analysis. Boston: Kluwer Academic Publishers.
# Example. Replication of results in Coelli et al. (1998, p.166). # Cost efficiency model. data("Coelli_1994") # Selection of prices: data_prices is the trasnpose where the prices for inputs are. data_prices <- t(Coelli_1998[, 5:6]) data_example <- make_deadata(Coelli_1998, dmus = 1, ni = 2, no = 1) result <- model_profit(data_example, price_input = data_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal=TRUE efficiencies(result)
# Example. Replication of results in Coelli et al. (1998, p.166). # Cost efficiency model. data("Coelli_1994") # Selection of prices: data_prices is the trasnpose where the prices for inputs are. data_prices <- t(Coelli_1998[, 5:6]) data_example <- make_deadata(Coelli_1998, dmus = 1, ni = 2, no = 1) result <- model_profit(data_example, price_input = data_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal=TRUE efficiencies(result)
Data of six authorized dealers with two inputs and two outputs.
data("Coll_Blasco_2006")
data("Coll_Blasco_2006")
Data frame with 6 rows and 5 columns. Definition of inputs (X) and outputs (Y):
Number of employees
Impairment of assets
Number of vehicles sold
Number of orders received at the garage
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Coll-Serrano, V.; Blasco-Blasco, O. (2006). Evaluacion de la Eficiencia mediante el Análisis Envolvente de Datos. Introduccion a los Modelos Básicos.
# Example. How to read data with deaR data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, dmus = 1, ni = 2, no = 2)
# Example. How to read data with deaR data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, dmus = 1, ni = 2, no = 2)
Computes arbitrary, benevolent and aggressive formulations of cross-efficiency under any returns-to-scale. Doyle and Green (1994) present three alternatives ways of formulating the secondary goal (wich will minimize or maximize the other DMUs' cross-efficiencies in some way). Methods II and III are implemented in deaR with any returns-to-scale. The maverick index is also calculated.
cross_efficiency(datadea, dmu_eval = NULL, dmu_ref = NULL, epsilon = 0, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, selfapp = TRUE, correction = FALSE, M2 = TRUE, M3 = TRUE)
cross_efficiency(datadea, dmu_eval = NULL, dmu_ref = NULL, epsilon = 0, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, selfapp = TRUE, correction = FALSE, M2 = TRUE, M3 = TRUE)
datadea |
An object of class |
dmu_eval |
A numeric vector. Only the multipliers of DMUs in |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference
set. If |
epsilon |
Numeric, multipliers must be >= |
orientation |
A string, equal to "io" (input-oriented) or "oo" (output-oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
selfapp |
Logical. If it is |
correction |
Logical. If it is |
M2 |
Logical. If it is |
M3 |
Logical. If it is |
(1) We can obtain negative cross-efficiency in the input-oriented DEA model under no constant returns-to-scale. However, the same does not happen in the case of the output-oriented VRS DEA model. For this reason, the proposal of Lim and Zhu (2015) is implemented in deaR to calculate the input-oriented cross-efficiency model under no constant returns-to-scale.
(2) The multiplier model can have alternate optimal solutions (see note 1 in model_multiplier). So, depending on the optimal weights selected we can obtain different cross-efficiency scores.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Sexton, T.R., Silkman, R.H.; Hogan, A.J. (1986). Data envelopment analysis: critique and extensions. In: Silkman RH (ed) Measuring efficiency: an assessment of data envelopment analysis, vol 32. Jossey-Bass, San Francisco, pp 73–104. doi:10.1002/ev.1441
Doyle, J.; Green, R. (1994). “Efficiency and cross efficiency in DEA: derivations, meanings and the uses”, Journal of Operational Research Society, 45(5), 567–578. doi:10.2307/2584392
Cook, W.D.; Zhu, J. (2015). DEA Cross Efficiency. In: Zhu, J. (ed) Data Envelopment Analysis. A Handbook of Models and Methods. International Series in Operations Research & Management Science, vol 221. Springer, Boston, MA, 23-43. doi:10.1007/978-1-4899-7553-9_2
Lim, S.; Zhu, J. (2015). "DEA Cross-Efficiency Under Variable Returns to Scale". Journal of Operational Research Society, 66(3), p. 476-487. doi:10.1057/jors.2014.13
model_multiplier
, cross_efficiency_fuzzy
# Example 1. # Arbitrary formulation. Input-oriented model under constant returns-to-scale. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "io", rts = "crs", selfapp = TRUE) result$Arbitrary$cross_eff result$Arbitrary$e # Example 2. # Benevolent formulation (method II). Input-oriented. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "io", selfapp = TRUE) result$M2_ben$cross_eff result$M2_ben$e # Example 3. # Benevolent formulation (method III). Input-oriented. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "io", selfapp = TRUE) result$M3_ben$cross_eff result$M3_ben$e # Example 4. # Arbitrary formulation. Output-oriented. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "oo", selfapp = TRUE) result$Arbitrary$cross_eff result$Arbitrary$e # Example 5. # Arbitrary formulation. Input-oriented model under vrs returns-to-scale. data("Lim_Zhu_2015") data_example <- make_deadata(Lim_Zhu_2015, ni = 1, no = 5) cross <- cross_efficiency(data_example, epsilon = 0, orientation = "io", rts = "vrs", selfapp = TRUE, M2 = FALSE, M3 = FALSE) cross$Arbitrary$e
# Example 1. # Arbitrary formulation. Input-oriented model under constant returns-to-scale. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "io", rts = "crs", selfapp = TRUE) result$Arbitrary$cross_eff result$Arbitrary$e # Example 2. # Benevolent formulation (method II). Input-oriented. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "io", selfapp = TRUE) result$M2_ben$cross_eff result$M2_ben$e # Example 3. # Benevolent formulation (method III). Input-oriented. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "io", selfapp = TRUE) result$M3_ben$cross_eff result$M3_ben$e # Example 4. # Arbitrary formulation. Output-oriented. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "oo", selfapp = TRUE) result$Arbitrary$cross_eff result$Arbitrary$e # Example 5. # Arbitrary formulation. Input-oriented model under vrs returns-to-scale. data("Lim_Zhu_2015") data_example <- make_deadata(Lim_Zhu_2015, ni = 1, no = 5) cross <- cross_efficiency(data_example, epsilon = 0, orientation = "io", rts = "vrs", selfapp = TRUE, M2 = FALSE, M3 = FALSE) cross$Arbitrary$e
Computes the cross-efficiency fuzzy tables from DEA fuzzy data or a
Guo-Tanaka DEA model solution.
The (crisp) relative efficiencies for the case h
= 1 are obtained from
the CCR model (model_multiplier
).
cross_efficiency_fuzzy(datadea, orientation = c("io", "oo"), h = 1, selfapp = TRUE)
cross_efficiency_fuzzy(datadea, orientation = c("io", "oo"), h = 1, selfapp = TRUE)
datadea |
An object of class |
orientation |
A string, equal to "io" (input-oriented) or "oo" (output-oriented). |
h |
A numeric vector with the h-levels (in [0,1]). |
selfapp |
Logical. If it is |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Doyle, J.; Green, R. (1994). “Efficiency and Cross Efficiency in DEA: Derivations, Meanings and the Uses”, Journal of Operational Research Society, 45(5), 567–578. doi:10.2307/2584392
Guo, P.; Tanaka, H. (2001). "Fuzzy DEA: A Perceptual Evaluation Method", Fuzzy Sets and Systems, 119, 149–160. doi:10.1016/S0165-0114(99)00106-2
León, T.; Liern, V.; Ruiz, J.L.; Sirvent, I. (2003). "A Fuzzy Mathematical Programming Approach to the assessment of efficiency with DEA Models", Fuzzy Sets Systems, 139(2), 407–419. doi:10.1016/S0165-0114(02)00608-5
Sexton, T.R., Silkman, R.H.; Hogan, A.J. (1986). Data envelopment analysis: critique and extensions. In: Silkman RH (ed) Measuring efficiency: an assessment of data envelopment analysis, vol 32. Jossey-Bass, San Francisco, pp 73–104. doi:10.1002/ev.1441
data("Guo_Tanaka_2001") datadea <- make_deadata_fuzzy(datadea = Guo_Tanaka_2001, inputs.mL = 2:3, inputs.dL = 4:5, outputs.mL = 6:7, outputs.dL = 8:9) result <- cross_efficiency_fuzzy(datadea = datadea, h = seq(0, 1, 0.2))
data("Guo_Tanaka_2001") datadea <- make_deadata_fuzzy(datadea = Guo_Tanaka_2001, inputs.mL = 2:3, inputs.dL = 4:5, outputs.mL = 6:7, outputs.dL = 8:9) result <- cross_efficiency_fuzzy(datadea = datadea, h = seq(0, 1, 0.2))
Data from 20 University accounting departments in the UK.
data("Departments")
data("Departments")
Data frame with 20 rows and 11 columns. Definition of inputs (X) and outputs (Y):
Average Full Time Academic Staff 82/3-84/5)
1984-5 Salaries Academics and Related (in pounds))
1984-5 Other Expenses (in pounds)
Average Number Undergraduates 82/3-84/5
Research Postgraduates
Taught Postgraduates
Research council income (in pounds)
Other research income (in pounds)
Other income (in pounds)
Number of publications
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Tomkins, C.; Green, R. (1988). "An Experiment in the Use of Data Envelopment Analysis for Evaluating the Efficiency of UK University Departments of Accounting", Financial Accountability and Management, 4(2), 147-164. doi:10.1111/j.1468-0408.1988.tb00296.x
# Example. # Replication of results DEA1 in Tomkins and Green (1988) data("Departments") # Calculate Total income Departments$Total_income <- Departments[, 5] + Departments[, 6] + Departments[, 7] data_example <- make_deadata(Departments, inputs = 9, outputs = c(2, 3, 4, 12)) result <- model_basic(data_example, orientation = "io", rts = "crs") efficiencies(result) # Table 3 (p.156) references(result) # Table 3 (p.157)
# Example. # Replication of results DEA1 in Tomkins and Green (1988) data("Departments") # Calculate Total income Departments$Total_income <- Departments[, 5] + Departments[, 6] + Departments[, 7] data_example <- make_deadata(Departments, inputs = 9, outputs = c(2, 3, 4, 12)) result <- model_basic(data_example, orientation = "io", rts = "crs") efficiencies(result) # Table 3 (p.156) references(result) # Table 3 (p.157)
Data adapted from Tomkins and Green (1988). 13 DMUs using 3 inputs to produce 2 outputs.
data("Doyle_Green_1994")
data("Doyle_Green_1994")
Data frame with 13 rows and 6 columns. Definition of inputs (X) and outputs (Y):
Number of undergraduates
Number of postgraduates (taught and research)
Research and other income
Number of publications
Salaries of academic and related staff
Other expenses
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Doyle, J.; Green, R. (1994). “Efficiency and cross efficiency in DEA: derivations, meanings and the uses”, Journal of Operational Research Society, 45(5), 567–578. doi:10.2307/2584392
make_deadata
, model_multiplier
,
cross_efficiency
# Example. data("Doyle_Green_1994") data_example <- make_deadata(datadea = Doyle_Green_1994, dmus = 1, inputs = 6:7, outputs = 2:5) result <- cross_efficiency(data_example, orientation = "io", selfapp = TRUE) result$Arbitrary$cross_eff result$Arbitrary$e # Aggressive using method II result$M2_agg$cross_eff # Aggressive using method III result$M3_agg$cross_eff
# Example. data("Doyle_Green_1994") data_example <- make_deadata(datadea = Doyle_Green_1994, dmus = 1, inputs = 6:7, outputs = 2:5) result <- cross_efficiency(data_example, orientation = "io", selfapp = TRUE) result$Arbitrary$cross_eff result$Arbitrary$e # Aggressive using method II result$M2_agg$cross_eff # Aggressive using method III result$M3_agg$cross_eff
Data of the industrial economy of China in 2005-2009 (data in wide format).
data("Economy")
data("Economy")
Data frame with 31 rows and 16 columns. Definition of inputs (X) and outputs (Y):
Total assets (in 100 million RMB)
Annual average employed persons (in 10000 persons)
Gross industrial output value (in 100 million RMB)
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Wang, Y.; Lan, Y. (2011). "Measuring Malmquist Productiviy Index: A New Approach Based on Double Frontiers Data Envelopment Analysis". Mathematical and Computer Modelling, 54, 2760-2771. doi:10.1016/j.mcm.2011.06.064
make_malmquist
, malmquist_index
# Example . Data in wide format. # Replication of results in Wang and Lan (2011, p. 2768) data("Economy") data_example <- make_malmquist(Economy, nper = 5, arrangement = "horizontal", ni = 2, no = 1) result <- malmquist_index(data_example)
# Example . Data in wide format. # Replication of results in Wang and Lan (2011, p. 2768) data("Economy") data_example <- make_malmquist(Economy, nper = 5, arrangement = "horizontal", ni = 2, no = 1) result <- malmquist_index(data_example)
Data of the industrial economy of China in 2005-2009 (data in long format).
data("EconomyLong")
data("EconomyLong")
Data frame with 155 rows and 5 columns. Definition of inputs (X) and outputs (Y):
Total assets (in 100 million RMB)
Annual average employed persons (in 10000 persons)
Gross industrial output value (in 100 million RMB)
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Wang, Y.; Lan, Y. (2011). "Measuring Malmquist Productiviy Index: A New Approach Based on Double Frontiers Data Envelopment Analysis". Mathematical and Computer Modelling, 54, 2760-2771. doi:10.1016/j.mcm.2011.06.064
make_malmquist
, malmquist_index
# Example. Data in long format. # Replication of results in Wang and Lan (2011, p. 2768) data("EconomyLong") data_example <- make_malmquist(EconomyLong, percol = 2, arrangement = "vertical", ni = 2, no = 1) result <- malmquist_index(data_example)
# Example. Data in long format. # Replication of results in Wang and Lan (2011, p. 2768) data("EconomyLong") data_example <- make_malmquist(EconomyLong, percol = 2, arrangement = "vertical", ni = 2, no = 1) result <- malmquist_index(data_example)
Returns the efficient DMUs evaluated in a dea
class object.
eff_dmus(deasol, tol = 1e-04)
eff_dmus(deasol, tol = 1e-04)
deasol |
An object of class |
tol |
Numeric. Absolute tolerance for numeric comparisons in efficiency scores. By default, it is 1e-4. |
A numeric vector containing which DMUs has been evaluated as efficient. This vector is empty if there is not any efficient DMU.
If maxslack
is FALSE
, the slacks computed in the first stage
are supposed to be the max slacks.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
dataFortune <- make_deadata(Fortune500, ni = 3, no = 2) ccrFortune <- model_basic(dataFortune) eff_dmus(ccrFortune)
dataFortune <- make_deadata(Fortune500, ni = 3, no = 2) ccrFortune <- model_basic(dataFortune) eff_dmus(ccrFortune)
Extract the scores (optimal objective values) of the evaluated DMUs from a conventional, fuzzy or stochastic DEA solution. Note that these scores may not always be interpreted as efficiencies.
efficiencies(x, ...)
efficiencies(x, ...)
x |
An object of class |
... |
ignored. |
Extract the scores (optimal objective values) of the evaluated DMUs from a conventional DEA solution. Note that these scores may not always be interpreted as efficiencies.
## S3 method for class 'dea' efficiencies(x, ...)
## S3 method for class 'dea' efficiencies(x, ...)
x |
Object of class |
... |
Other options (for compatibility reasons). |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Tomkins, C.; Green, R. (1988). “An Experiment in the Use of Data Envelopment Analysis for Evaluating the Efficiency of UK University Departments of Accounting”. Financial Accountability and Management 4(2): 147.
# Replication results model DEA1 in Tomkins and Green (1988) data("Departments") # Calculate Total income Departments$Total_income <- Departments[, 5] + Departments[, 6] + Departments[, 7] data_DEA1 <- make_deadata(Departments, inputs = 9, outputs = c(2, 3, 4, 12)) result <- model_basic(data_DEA1, orientation = "io", rts = "crs") efficiencies(result) # Table 3 (p.156)
# Replication results model DEA1 in Tomkins and Green (1988) data("Departments") # Calculate Total income Departments$Total_income <- Departments[, 5] + Departments[, 6] + Departments[, 7] data_DEA1 <- make_deadata(Departments, inputs = 9, outputs = c(2, 3, 4, 12)) result <- model_basic(data_DEA1, orientation = "io", rts = "crs") efficiencies(result) # Table 3 (p.156)
Extract the scores (optimal objective values) of the evaluated DMUs from a fuzzy DEA solution. Note that these scores may not always be interpreted as efficiencies.
## S3 method for class 'dea_fuzzy' efficiencies(x, ...)
## S3 method for class 'dea_fuzzy' efficiencies(x, ...)
x |
Object of class |
... |
Other options (for compatibility). |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Boscá, J.E.; Liern, V.; Sala, R.; Martínez, A. (2011). "Ranking Decision Making Units by Means of Soft Computing DEA Models". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 19(1), p.115-134.
# Replication of results in Boscá, Liern, Sala and Martínez (2011, p.125) data("Leon2003") data_example <- make_deadata_fuzzy(datadea = Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_kaoliu(data_example, kaoliu_modelname = "basic", alpha = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") efficiencies(result)
# Replication of results in Boscá, Liern, Sala and Martínez (2011, p.125) data("Leon2003") data_example <- make_deadata_fuzzy(datadea = Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_kaoliu(data_example, kaoliu_modelname = "basic", alpha = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") efficiencies(result)
Data of 19 coal-fired steam-electric generating plants operating in Illinois in 1978. Each plant uses 3 inputs to produce 1 output.
data("Electric_plants")
data("Electric_plants")
Data frame with 18 rows and 5 columns. Definition of inputs (X) and outputs (Y):
Labor average annual employment
Fuel Btu
Capital MW (fixed input)
Output Kwh
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Färe, R.; Grosskopf, S.; Kokkenlenberg, E. (1989). "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach". International Economic Review, 30(3), 655-666.
Simar, L.; Wilson, P.W. (1998). "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models". Management Science, 44(1), 49-61.
# Example. Replication of results in Simar and Wilson (1998, p.59) data("Electric_plants") data_example <- make_deadata(Electric_plants, dmus = 1, ni = 3, no = 1) result <- model_basic(data_example, orientation = "io", rts = "vrs") efficiencies(result)
# Example. Replication of results in Simar and Wilson (1998, p.59) data("Electric_plants") data_example <- make_deadata(Electric_plants, dmus = 1, ni = 3, no = 1) result <- model_basic(data_example, orientation = "io", rts = "vrs") efficiencies(result)
Find a set of extreme efficient DMUs from a deadata
object.
extreme_efficient(datadea, dmu_ref = NULL, rts = c("crs", "vrs", "nirs", "ndrs"), tol = 1e-6)
extreme_efficient(datadea, dmu_ref = NULL, rts = c("crs", "vrs", "nirs", "ndrs"), tol = 1e-6)
datadea |
A |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set,
i.e. the cluster of DMUs from which we want to find a extreme efficient DMUs subset.
If |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing) or "ndrs" (non-decreasing). |
tol |
Numeric, a tolerance margin for checking efficiency. It is 1e-6 by default. |
A numeric vector representing a extreme efficient subset of DMUs.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Charnes, A.; Cooper, W.W.; Thrall, R.M. (1991) "A structure for classifying and characterizing efficiency and inefficiency in data envelopment analysis", Journal of Productivity Analisys, 2, 197–237.
data("PFT1981") datadea <- make_deadata(PFT1981, ni = 5, no = 3) # We find a extreme efficient subset from a cluster formed by the first 20 DMUs result <- extreme_efficient(datadea = datadea, dmu_ref = 1:20)
data("PFT1981") datadea <- make_deadata(PFT1981, ni = 5, no = 3) # We find a extreme efficient subset from a cluster formed by the first 20 DMUs result <- extreme_efficient(datadea = datadea, dmu_ref = 1:20)
This dataset consists of 15 firms from the Fortune 500 list 1995 (https://fortune.com/ranking/fortune500/) with 3 inputs and 2 outputs.
data("Fortune500")
data("Fortune500")
Data frame with 15 rows and 6 columns. Definition of inputs (X) and outputs (Y):
Assets (millions of dollars)
Equity (millions of dollars)
Number of employees
Revenue (millions of dollars)
Profit (millions of dollars)
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Zhu, J. (2014). Quantitative Models for Performance Evaluation and Benchmarking. Data Envelopment Analysis with Spreadsheets. 3rd Edition Springer, New York. doi:10.1007/978-3-319-06647-9
make_deadata
, model_multiplier
data("Fortune500") data_Fortune <- make_deadata(datadea = Fortune500, dmus = 1, inputs = 2:4, outputs = 5:6) result <- model_multiplier(data_Fortune, epsilon = 1e-6, orientation = "io", rts = "crs") # results for General Motors and Ford Motor are not shown # by deaR because the solution is infeasible efficiencies(result) multipliers(result)
data("Fortune500") data_Fortune <- make_deadata(datadea = Fortune500, dmus = 1, inputs = 2:4, outputs = 5:6) result <- model_multiplier(data_Fortune, epsilon = 1e-6, orientation = "io", rts = "crs") # results for General Motors and Ford Motor are not shown # by deaR because the solution is infeasible efficiencies(result) multipliers(result)
Data of 11 DMUs with two inputs and one output.
data("Fried1993")
data("Fried1993")
Data frame with 11 rows and 4 columns. Definition of inputs (X) and outputs (Y):
Input 1
Input 2
Output 1
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Ali, A.I.; Seiford, L.M. (1993). The Mathematical Programming Approach to Efficiency Analysis. In Fried, H.O.; Knox Lovell, C.A.; Schmidt, S.S.(eds.), The Measurement of Productive Efficiency. Techniques and Applications. New York: Oxford University Press.
# Example. Replication of results in Ali and (1993, p.143). data("Fried1993") data_example <- make_deadata(Fried1993, ni = 2, no = 1) result <- model_basic(data_example, orientation = "oo", rts = "vrs") efficiencies(result) targets(result)
# Example. Replication of results in Ali and (1993, p.143). data("Fried1993") data_example <- make_deadata(Fried1993, ni = 2, no = 1) result <- model_basic(data_example, orientation = "oo", rts = "vrs") efficiencies(result) targets(result)
Synthetic dataset of 5 DMUs with 3 inputs and 3 outputs containing fuzzy and crisp data.
data("FuzzyExample")
data("FuzzyExample")
Data frame with 5 rows and 15 columns.
DMU names
First Input (crisp numbers)
Second Input (left centers)
Second Input (right centers)
Second Input (left radii)
Second Input (right radii)
Third Input (centers)
Third Input (radii)
First Output (crisp numbers)
Second Output (left centers)
Second Output (right centers)
Second Output (radii)
Third Output (centers)
Third Output (left radii)
Third Output (right radii)
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
# Example. Reading the data. data("FuzzyExample") datafuzzy <- make_deadata_fuzzy(FuzzyExample, inputs.mL = c(2, 3, 7), inputs.mR = c(NA, 4, NA), inputs.dL = c(NA, 5, 8), inputs.dR = c(NA, 6, NA), outputs.mL = c(9, 10 , 13), outputs.mR = c(NA, 11, NA), outputs.dL = c(NA, 12, 14), outputs.dR = c(NA, NA, 15))
# Example. Reading the data. data("FuzzyExample") datafuzzy <- make_deadata_fuzzy(FuzzyExample, inputs.mL = c(2, 3, 7), inputs.mR = c(NA, 4, NA), inputs.dL = c(NA, 5, 8), inputs.dR = c(NA, 6, NA), outputs.mL = c(9, 10 , 13), outputs.mR = c(NA, 11, NA), outputs.dL = c(NA, 12, 14), outputs.dR = c(NA, NA, 15))
Data of 13 DMUs using 3 inputs to produce 2 outputs.
data("Golany_Roll_1989")
data("Golany_Roll_1989")
Data frame with 13 rows and 6 columns. Definition of inputs (X) and outputs (Y):
Input 1
Input 2
Input 3
Output 1
Output 2
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Golany, B.; Roll, Y. (1989). "An Application Procedure for DEA". Omega, International Journal of Management Science, 17(3), 237-250. doi:10.1016/0305-0483(89)90029-7
make_deadata
, model_multiplier
, cross_efficiency
# Example. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, dmus = 1, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "io", selfapp = TRUE) result$Arbitrary$cross_eff result$Arbitrary$e
# Example. data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989, dmus = 1, inputs = 2:4, outputs = 5:6) result <- cross_efficiency(data_example, orientation = "io", selfapp = TRUE) result$Arbitrary$cross_eff result$Arbitrary$e
Data of 8 DMUs producing 1 output (Y) by using 1 input (X) for two periods of time.
data("Grifell_Lovell_1999")
data("Grifell_Lovell_1999")
Data frame with 16 rows and 4 columns. Definition of inputs (X) and outputs (Y):
Input
Output
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Grifell-Tatjé, E.; Lovel, C.A.K. (1999). "A Generalized Malmquist productivity index". Top, 7(1), 81-101.
make_malmquist
, malmquist_index
# Example. Replication of results in Grifell-Tatjé and Lovell (1999, p. 100). data("Grifell_Lovell_1999") data_example <- make_malmquist(Grifell_Lovell_1999, percol = 1, dmus = 2, inputs = 3, outputs = 4, arrangement = "vertical") result_fgnz <- malmquist_index(data_example, orientation = "oo", rts = "vrs", type1 = "cont", type2 = "fgnz") result_fgnz$mi
# Example. Replication of results in Grifell-Tatjé and Lovell (1999, p. 100). data("Grifell_Lovell_1999") data_example <- make_malmquist(Grifell_Lovell_1999, percol = 1, dmus = 2, inputs = 3, outputs = 4, arrangement = "vertical") result_fgnz <- malmquist_index(data_example, orientation = "oo", rts = "vrs", type1 = "cont", type2 = "fgnz") result_fgnz$mi
Data of 5 DMUs with two symmetric triangular fuzzy inputs, Xj = (xj, alphaj), and two symmetric triangular fuzzy outputs, Yj = (yj, betaj).
data("Guo_Tanaka_2001")
data("Guo_Tanaka_2001")
Data frame with 5 rows and 9 columns. Definition of fuzzy inputs (X) and fuzzy outputs (Y):
Input 1
Input 2
spread vector Input 1
spread vector Input 2
Output 1
Output 2
spread vector Output 1
spread vector Output 2
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Guo, P.; Tanaka, H. (2001). "Fuzzy DEA: A Perceptual Evaluation Method", Fuzzy Sets and Systems, 119, 149–160. doi:10.1016/S0165-0114(99)00106-2
make_deadata_fuzzy
, modelfuzzy_guotanaka
,
cross_efficiency_fuzzy
data("Guo_Tanaka_2001") data_example <- make_deadata_fuzzy(Guo_Tanaka_2001, dmus = 1, inputs.mL = 2:3, inputs.dL = 4:5, outputs.mL = 6:7, outputs.dL = 8:9) result <- modelfuzzy_guotanaka(data_example, h = seq(0, 1, by = 0.1), orientation = "io") efficiencies(result)
data("Guo_Tanaka_2001") data_example <- make_deadata_fuzzy(Guo_Tanaka_2001, dmus = 1, inputs.mL = 2:3, inputs.dL = 4:5, outputs.mL = 6:7, outputs.dL = 8:9) result <- modelfuzzy_guotanaka(data_example, h = seq(0, 1, by = 0.1), orientation = "io") efficiencies(result)
This dataset consists of 23 four- and five-plum ITHs in Taipei in 2006. Authors consider 4 inputs and 3 outputs.
data("Hotels")
data("Hotels")
Data frame with 23 rows and 8 columns. Definition of inputs (X) and outputs (Y):
Total number of employees)
Total number of guest rooms)
Total area of F&B departments (in 36 square-feet)
Total operating cost (in NT$)
Room revenues (in NT$)
F&B revenues (in NT$)
Other revenues (in NT$)
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Wu, J.; Tsai, H. and Zhou, Z. (2011). "Improving efficiency in International tourist hotels in Taipei using a non-radial DEA mode", Internationl Journal of Contemporary Hospitality Management, 23(1), 66-83. doi:10.1108/09596111111101670
# Example. Replication of results in Wu,Tsai and Zhou (2011) data("Hotels") data_hotels <- make_deadata(Hotels, dmus = 1, inputs = 2:5, outputs = 6:8) result <- model_nonradial(data_hotels, orientation = "oo", rts = "vrs") efficiencies(result)
# Example. Replication of results in Wu,Tsai and Zhou (2011) data("Hotels") data_hotels <- make_deadata(Hotels, dmus = 1, inputs = 2:5, outputs = 6:8) result <- model_nonradial(data_hotels, orientation = "oo", rts = "vrs") efficiencies(result)
Data of 30 DMUs with two desirable inputs, two desirable outputs and one udesirable output.
data("Hua_Bian_2007")
data("Hua_Bian_2007")
Data frame with 30 rows and 6 columns. Definition of inputs (X) and outputs (Y):
Desirable Input 1
Desirable Input 2
Desirable Output 1
Desirable Output 2
Undesirable Output 1
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Hua Z.; Bian Y. (2007). DEA with Undesirable Factors. In: Zhu J., Cook W.D. (eds) Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston, MA. doi:10.1007/978-0-387-71607-7_6
# Example. Replication of results in Hua and Bian (2007). data("Hua_Bian_2007") # The third output is an undesirable output data_example <- make_deadata(Hua_Bian_2007, ni = 2, no = 3, ud_outputs = 3) # Translation parameter (vtrans_o) is set to 1500 result <- model_basic(data_example, orientation = "oo", rts = "vrs", vtrans_o = 1500) eff <- efficiencies(result) 1 / eff # results M5 in Table 6-5 (p.119)
# Example. Replication of results in Hua and Bian (2007). data("Hua_Bian_2007") # The third output is an undesirable output data_example <- make_deadata(Hua_Bian_2007, ni = 2, no = 3, ud_outputs = 3) # Translation parameter (vtrans_o) is set to 1500 result <- model_basic(data_example, orientation = "oo", rts = "vrs", vtrans_o = 1500) eff <- efficiencies(result) 1 / eff # results M5 in Table 6-5 (p.119)
Checks whether an R object is of dea class or not.
is.dea(x)
is.dea(x)
x |
Any R object. |
Returns TRUE
if its argument is a dea object (that is, has "dea"
amongst its classes) and FALSE
otherwise.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Checks whether an R object is of dea_fuzzy class or not.
is.dea_fuzzy(x)
is.dea_fuzzy(x)
x |
Any R object. |
Returns TRUE
if its argument is a dea_fuzzy object (that is, has "dea_fuzzy"
amongst its classes) and FALSE
otherwise.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Checks whether an R object is of deadata class or not.
is.deadata(x)
is.deadata(x)
x |
Any R object. |
Returns TRUE
if its argument is a deadata object (that is, has "deadata"
amongst its classes) and FALSE
otherwise.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Checks whether an R object is of deadata_fuzzy class or not.
is.deadata_fuzzy(x)
is.deadata_fuzzy(x)
x |
Any R object. |
Returns TRUE
if its argument is a deadata_fuzzy object (that is, has "deadata_fuzzy"
amongst its classes) and FALSE
otherwise.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Checks whether a subset of DMUs is friends or not, according to Tone (2010).
is.friends(datadea, dmu_eval = NULL, dmu_ref = NULL, rts = c("crs", "vrs", "nirs", "ndrs"), tol = 1e-6)
is.friends(datadea, dmu_eval = NULL, dmu_ref = NULL, rts = c("crs", "vrs", "nirs", "ndrs"), tol = 1e-6)
datadea |
The data, including |
dmu_eval |
A numeric vector containing the subset of DMUs to be checked.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing) or "ndrs" (non-decreasing). |
tol |
Numeric, a tolerance margin for checking efficiency. It is 1e-6 by default. |
Returns TRUE
if dmu_eval
is friends of dmu_ref
,
and FALSE
otherwise.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Tone, K. (2010). "Variations on the theme of slacks-based measure of efficiency in DEA", European Journal of Operational Research, 200, 901-907. doi:10.1016/j.ejor.2009.01.027
data("PFT1981") datadea <- make_deadata(PFT1981, ni = 5, no = 3) subset1 <- c(15, 16, 17, 19) # Subset of DMUs to be checked result1 <- is.friends(datadea = datadea, dmu_eval = subset1, dmu_ref = 1:20) # We only consider a cluster formed by the first 20 DMUs subset2 <- c(15, 16, 17, 20) # Another subset of DMUs to be checked result2 <- is.friends(datadea = datadea, dmu_eval = subset2, dmu_ref = 1:20) # We only consider a cluster formed by the first 20 DMUs
data("PFT1981") datadea <- make_deadata(PFT1981, ni = 5, no = 3) subset1 <- c(15, 16, 17, 19) # Subset of DMUs to be checked result1 <- is.friends(datadea = datadea, dmu_eval = subset1, dmu_ref = 1:20) # We only consider a cluster formed by the first 20 DMUs subset2 <- c(15, 16, 17, 20) # Another subset of DMUs to be checked result2 <- is.friends(datadea = datadea, dmu_eval = subset2, dmu_ref = 1:20) # We only consider a cluster formed by the first 20 DMUs
Data of 24 university libraries in Taiwan with one input and five outputs.
data("Kao_Liu_2003")
data("Kao_Liu_2003")
Data frame with 24 rows and 11 columns. Definition of fuzzy inputs (X) and fuzzy outputs (Y):
It is a weighted sum of the standardized scores of faculty, graduate students, undergraduate students, and extension students in the range of 0 and 1.
Books, serials, microforms, audiovisual works, and database.
Classified staff, unclassified staff, and student assistants.
Capital expenditure, operating expenditure, and special expenditure.
Area and seats
Operating hours, attendance, circulation, communication channels, range of services, amount of services, etc.
lower spread vector Expenditures
upper spread vector Expenditures
lower spread vector Services
upper spread vector Services
There are three observations that are missing: expenditures of Library 24 and services of Library 22 and Library 23. Kao and Liu (2000b) represent the expenditures of Library 24 by the triangular fuzzy number Y = (0.11; 0.41; 1.0). The services of Library 22 and Library 23 are expressed by a same triangular fuzzy number Y = (0.41; 0.69; 1.0).
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Kao, C., Liu, S.T. (2003). “A mathematical programming approach to fuzzy efficiency ranking”, International Journal of Production Economics, 85. doi:10.1016/S0925-5273(03)00026-4
make_deadata_fuzzy
, model_basic
# Example. Replication of results in Kao and Liu (2003, p.152) data_example <- make_deadata_fuzzy(Kao_Liu_2003, dmus = 1, inputs.mL = 2, outputs.mL = 3:7, outputs.dL = c(NA, NA, 8, NA, 10), outputs.dR = c(NA, NA, 9, NA, 11)) result <- modelfuzzy_kaoliu(data_example, kaoliu_modelname = "basic", orientation = "oo", rts = "vrs", alpha = 0) eff <- efficiencies(result) eff
# Example. Replication of results in Kao and Liu (2003, p.152) data_example <- make_deadata_fuzzy(Kao_Liu_2003, dmus = 1, inputs.mL = 2, outputs.mL = 3:7, outputs.dL = c(NA, NA, 8, NA, 10), outputs.dR = c(NA, NA, 9, NA, 11)) result <- modelfuzzy_kaoliu(data_example, kaoliu_modelname = "basic", orientation = "oo", rts = "vrs", alpha = 0) eff <- efficiencies(result) eff
Extract the lambdas of the DMUs from a dea or dea_fuzzy solution.
lambdas(deasol)
lambdas(deasol)
deasol |
Object of class |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_multiplier(data_example, orientation = "io", rts = "crs") lambdas(result)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_multiplier(data_example, orientation = "io", rts = "crs") lambdas(result)
Data of 8 DMUs with one symmetric triangular fuzzy inputs: Xj = (xj, alphaj), and one symmetric triangular fuzzy outputs: Yj = (yj, betaj).
data("Leon2003")
data("Leon2003")
Data frame with 8 rows and 5 columns. Definition of fuzzy inputs (X) and fuzzy outputs (Y):
Input 1
spread vector Input 1
Output 1
spread vector Output 1
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Leon, T.; Liern, V. Ruiz, J.; Sirvent, I. (2003). "A Possibilistic Programming Approach to the Assessment of Efficiency with DEA Models", Fuzzy Sets and Systems, 139, 407–419. doi:10.1016/S0165-0114(02)00608-5
make_deadata_fuzzy
, modelfuzzy_possibilistic
,
cross_efficiency_fuzzy
, modelfuzzy_guotanaka
# Example. Replication of results in Leon et. al (2003, p. 416) data("Leon2003") data_example <- make_deadata_fuzzy(Leon2003, dmus = 1, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_possibilistic(data_example, h = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") efficiencies(result)
# Example. Replication of results in Leon et. al (2003, p. 416) data("Leon2003") data_example <- make_deadata_fuzzy(Leon2003, dmus = 1, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_possibilistic(data_example, h = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") efficiencies(result)
Data for 23 public libraries of the Tokyo Metropolitan Area in 1986.
data("Libraries")
data("Libraries")
Data frame with 23 rows and 7 columns. Definition of inputs (X) and outputs (Y):
Floor area (unit=1000 m2)
Number of books (unit=1000)
Staff
Population (unit=1000)
Registered residents (unit=1000)
Borrowed books (unit=1000)
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Cooper, W.W.; Seiford, L.M. and Tone, K. (2007). Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Springer.
# Example 1. Non-controllable input (POPULATION). # Replication of results in Cooper, Seiford and Tone (2007, p.221) data(Libraries) # POPULATION (non-controllable input) is the 4th input. data_example <- make_deadata(Libraries, dmus = 1, inputs = 2:5, nc_inputs = 4, outputs = 6:7) result <- model_basic(data_example, orientation = "io", rts = "crs") efficiencies(result) targets(result) # Example 2. Non-discretionary input (POPULATION). data(Libraries) # POPULATION (non-controllable input) is the 4th input. data_example2 <- make_deadata(Libraries, dmus=1, inputs=2:5, nd_inputs=4, outputs=6:7) result2 <- model_basic(data_example2, orientation="io", rts="crs") efficiencies(result2) targets(result2)
# Example 1. Non-controllable input (POPULATION). # Replication of results in Cooper, Seiford and Tone (2007, p.221) data(Libraries) # POPULATION (non-controllable input) is the 4th input. data_example <- make_deadata(Libraries, dmus = 1, inputs = 2:5, nc_inputs = 4, outputs = 6:7) result <- model_basic(data_example, orientation = "io", rts = "crs") efficiencies(result) targets(result) # Example 2. Non-discretionary input (POPULATION). data(Libraries) # POPULATION (non-controllable input) is the 4th input. data_example2 <- make_deadata(Libraries, dmus=1, inputs=2:5, nd_inputs=4, outputs=6:7) result2 <- model_basic(data_example2, orientation="io", rts="crs") efficiencies(result2) targets(result2)
Data of 37 R&D project proposal relating to the Turkish iron and steel industry. Authors consider one input and five outputs.
data("Lim_Zhu_2015")
data("Lim_Zhu_2015")
Data frame with 37 rows and 7 columns. Definition of inputs (X) and outputs (Y):
Budget
Indirect economic contribution
Direct economic contribution
Technical contribution
Social contribution
Scientific contribution
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Lim, S.; Zhu, J. (2015). "DEA Cross-Efficiency Under Variable Returns to Scale". Journal of Operational Research Society, 66(3), p. 476-487. doi:10.1057/jors.2014.13
make_deadata
, model_multiplier
,
cross_efficiency
# Example. Arbitrary formulation. # Input-oriented model under variable returns-to-scale. data("Lim_Zhu_2015") data_example <- make_deadata(Lim_Zhu_2015, dmus = 1, ni = 1, no = 5) cross <- cross_efficiency(data_example, epsilon = 0, orientation = "io", rts = "vrs", selfapp = TRUE, M2 = FALSE, M3 = FALSE) cross$Arbitrary$e
# Example. Arbitrary formulation. # Input-oriented model under variable returns-to-scale. data("Lim_Zhu_2015") data_example <- make_deadata(Lim_Zhu_2015, dmus = 1, ni = 1, no = 5) cross <- cross_efficiency(data_example, epsilon = 0, orientation = "io", rts = "vrs", selfapp = TRUE, M2 = FALSE, M3 = FALSE) cross$Arbitrary$e
This function creates, from a data frame, a deadata
structure,
which is as list with fields input
, output
, dmunames
,
nc_inputs
, nc_outputs
, nd_inputs
, nd_outputs
.
make_deadata(datadea = NULL, ni = NULL, no = NULL, dmus = 1, inputs = NULL, outputs = NULL, nc_inputs = NULL, nc_outputs = NULL, nd_inputs = NULL, nd_outputs = NULL, ud_inputs = NULL, ud_outputs = NULL)
make_deadata(datadea = NULL, ni = NULL, no = NULL, dmus = 1, inputs = NULL, outputs = NULL, nc_inputs = NULL, nc_outputs = NULL, nd_inputs = NULL, nd_outputs = NULL, ud_inputs = NULL, ud_outputs = NULL)
datadea |
Data frame with DEA data. |
ni |
Number of inputs, if inputs are in columns 2:( |
no |
Number of outputs, if outputs are in columns ( |
dmus |
Column (number or name) of DMUs (optional). By default, it is the
first column. If there is not any DMU column, then it must be |
inputs |
Columns (numbers or names) of inputs (optional). It prevails over |
outputs |
Columns (numbers or names) of outputs (optional). It prevails over |
nc_inputs |
A numeric vector containing the indices of non-controllable inputs. |
nc_outputs |
A numeric vector containing the indices of non-controllable outputs. |
nd_inputs |
A numeric vector containing the indices of non-discretionary inputs. |
nd_outputs |
A numeric vector containing the indices of non-discretionary outputs. |
ud_inputs |
A numeric vector containing the indices of undesirable (good) inputs. |
ud_outputs |
A numeric vector containing the indices of undesirable (bad) outputs. |
An object of class deadata
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
data("Coll_Blasco_2006") data_example <- make_deadata(datadea = Coll_Blasco_2006, ni = 2, no = 2) # This is the same as: data_example <- make_deadata(Coll_Blasco_2006, inputs = 2:3, outputs = 4:5) # And the same as: dmunames <- c("A", "B", "C", "D", "E", "F") nd <- length(dmunames) # Number of DMUs inputnames <- c("Employees", "Capital") ni <- length(inputnames) # Number of Inputs outputnames <- c("Vehicles", "Orders") no <- length(outputnames) # Number of Outputs inputs <- matrix(c(8, 8, 11, 15, 14, 12, 12, 13, 11, 18, 18, 20), nrow = ni, ncol = nd, dimnames = list(inputnames, dmunames)) outputs <- matrix(c(14, 20, 25, 42, 8, 30, 25, 8, 40, 22, 24, 30), nrow = no, ncol = nd, dimnames = list(outputnames, dmunames)) data_example <- make_deadata(inputs = inputs, outputs = outputs) # If the first input is a non-controllable input: data_example <- make_deadata(Coll_Blasco_2006, inputs = 2:3, outputs = 4:5, nc_inputs = 1) # If the second output is a non-discretionary output: data_example <- make_deadata(Coll_Blasco_2006, inputs = 2:3, outputs = 4:5, nd_outputs = 2) # If the second input is a non-discretionary input and the second output is an undesirable: data_example <- make_deadata(Coll_Blasco_2006, inputs = 2:3, outputs = 4:5, nd_inputs = 2, ud_outputs = 2)
data("Coll_Blasco_2006") data_example <- make_deadata(datadea = Coll_Blasco_2006, ni = 2, no = 2) # This is the same as: data_example <- make_deadata(Coll_Blasco_2006, inputs = 2:3, outputs = 4:5) # And the same as: dmunames <- c("A", "B", "C", "D", "E", "F") nd <- length(dmunames) # Number of DMUs inputnames <- c("Employees", "Capital") ni <- length(inputnames) # Number of Inputs outputnames <- c("Vehicles", "Orders") no <- length(outputnames) # Number of Outputs inputs <- matrix(c(8, 8, 11, 15, 14, 12, 12, 13, 11, 18, 18, 20), nrow = ni, ncol = nd, dimnames = list(inputnames, dmunames)) outputs <- matrix(c(14, 20, 25, 42, 8, 30, 25, 8, 40, 22, 24, 30), nrow = no, ncol = nd, dimnames = list(outputnames, dmunames)) data_example <- make_deadata(inputs = inputs, outputs = outputs) # If the first input is a non-controllable input: data_example <- make_deadata(Coll_Blasco_2006, inputs = 2:3, outputs = 4:5, nc_inputs = 1) # If the second output is a non-discretionary output: data_example <- make_deadata(Coll_Blasco_2006, inputs = 2:3, outputs = 4:5, nd_outputs = 2) # If the second input is a non-discretionary input and the second output is an undesirable: data_example <- make_deadata(Coll_Blasco_2006, inputs = 2:3, outputs = 4:5, nd_inputs = 2, ud_outputs = 2)
This function creates, from a data frame, a deadata_fuzzy
structure, which is as list with fields input
, output
and
dmunames
. At the same time, input
and output
are lists with fields
mL
, mR
, dL
and dR
.
make_deadata_fuzzy(datadea, dmus = 1, inputs.mL = NULL, inputs.mR = NULL, inputs.dL = NULL, inputs.dR = NULL, outputs.mL = NULL, outputs.mR = NULL, outputs.dL = NULL, outputs.dR = NULL, nc_inputs = NULL, nc_outputs = NULL, nd_inputs = NULL, nd_outputs = NULL, ud_inputs = NULL, ud_outputs = NULL)
make_deadata_fuzzy(datadea, dmus = 1, inputs.mL = NULL, inputs.mR = NULL, inputs.dL = NULL, inputs.dR = NULL, outputs.mL = NULL, outputs.mR = NULL, outputs.dL = NULL, outputs.dR = NULL, nc_inputs = NULL, nc_outputs = NULL, nd_inputs = NULL, nd_outputs = NULL, ud_inputs = NULL, ud_outputs = NULL)
datadea |
Data frame with DEA data. |
dmus |
Column (number or name) of DMUs (optional). By default, it is the first
column. If there is not any DMU column, then it must be |
inputs.mL |
Where are (columns) the Alternatively to |
inputs.mR |
Where are (columns) the Alternatively to |
inputs.dL |
Where are (columns) the Alternatively to |
inputs.dR |
Where are (columns) the Alternatively to |
outputs.mL |
Analogous to |
outputs.mR |
Analogous to |
outputs.dL |
Analogous to |
outputs.dR |
Analogous to |
nc_inputs |
A numeric vector containing the indices of non-controllable inputs. |
nc_outputs |
A numeric vector containing the indices of non-controllable outputs. |
nd_inputs |
A numeric vector containing the indices of non-discretionary inputs. |
nd_outputs |
A numeric vector containing the indices of non-discretionary outputs. |
ud_inputs |
A numeric vector containing the indices of undesirable (good) inputs. |
ud_outputs |
A numeric vector containing the indices of undesirable (bad) outputs. |
An object of class deadata_fuzzy
.
# Example 1. If inputs and/or outputs are symmetric triangular fuzzy numbers data("Leon2003") data_example <- make_deadata_fuzzy(datadea = Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) # Example 2. If inputs and/or outputs are non-symmetric triangular fuzzy numbers data("Kao_Liu_2003") data_example <- make_deadata_fuzzy(Kao_Liu_2003, inputs.mL = 2, outputs.mL = 3:7, outputs.dL = c(NA, NA, 8, NA, 10), outputs.dR = c(NA, NA, 9, NA, 11))
# Example 1. If inputs and/or outputs are symmetric triangular fuzzy numbers data("Leon2003") data_example <- make_deadata_fuzzy(datadea = Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) # Example 2. If inputs and/or outputs are non-symmetric triangular fuzzy numbers data("Kao_Liu_2003") data_example <- make_deadata_fuzzy(Kao_Liu_2003, inputs.mL = 2, outputs.mL = 3:7, outputs.dL = c(NA, NA, 8, NA, 10), outputs.dR = c(NA, NA, 9, NA, 11))
This function creates, from a data frame, a list of
deadata
objects.
make_malmquist(datadea, nper = NULL, percol = NULL, arrangement = c("horizontal", "vertical"), ...)
make_malmquist(datadea, nper = NULL, percol = NULL, arrangement = c("horizontal", "vertical"), ...)
datadea |
Data frame with DEA data. |
nper |
Number of time periods (with dataset in wide format). |
percol |
Column of time period (with dataset in long format). |
arrangement |
Horizontal with data in wide format. Vertical with data in long format. |
... |
Other options to be passed to the |
An object of class deadata
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
# Example 1. If you have a dataset in wide format. data("Economy") data_example <- make_malmquist(datadea = Economy, nper = 5, arrangement = "horizontal", ni = 2, no = 1) # This is the same as: data_example <- make_malmquist(datadea = Economy, nper = 5, arrangement = "horizontal", inputs = 2:3, outputs = 4) # Example 2. If you have a dataset in long format. data("EconomyLong") data_example2 <- make_malmquist(EconomyLong, percol = 2, arrangement = "vertical", inputs = 3:4, outputs = 5)
# Example 1. If you have a dataset in wide format. data("Economy") data_example <- make_malmquist(datadea = Economy, nper = 5, arrangement = "horizontal", ni = 2, no = 1) # This is the same as: data_example <- make_malmquist(datadea = Economy, nper = 5, arrangement = "horizontal", inputs = 2:3, outputs = 4) # Example 2. If you have a dataset in long format. data("EconomyLong") data_example2 <- make_malmquist(EconomyLong, percol = 2, arrangement = "vertical", inputs = 3:4, outputs = 5)
This function calculates the input/output oriented Malmquist productivity index under constant or variable returns-to-scale.
malmquist_index(datadealist, dmu_eval = NULL, dmu_ref = NULL, orientation = c("io", "oo"), rts = c("crs", "vrs"), type1 = c("cont", "seq", "glob"), type2 = c("fgnz", "rd", "gl", "bias"), tc_vrs = FALSE, vtrans_i = NULL, vtrans_o = NULL)
malmquist_index(datadealist, dmu_eval = NULL, dmu_ref = NULL, orientation = c("io", "oo"), rts = c("crs", "vrs"), type1 = c("cont", "seq", "glob"), type2 = c("fgnz", "rd", "gl", "bias"), tc_vrs = FALSE, vtrans_i = NULL, vtrans_o = NULL)
datadealist |
A list with the data ( |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
A string, equal to "io" (input oriented) or "oo" (output oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant) or "vrs" (variable). |
type1 |
A string, equal to "cont" (contemporary), "seq" (sequential) or "glob" (global). |
type2 |
A string, equal to "fgnz" (Fare et al. 1994), "rd" (Ray and Desli 1997), "gl" (generalized) or "bias" (biased). |
tc_vrs |
Logical. If it is |
vtrans_i |
Numeric vector of translation for undesirable inputs in non-directional
basic models. If |
vtrans_o |
Numeric vector of translation for undesirable outputs in
non-directional basic models, analogous to |
A numeric list with Malmquist index and other parameters.
In the results: EC = Efficiency Change, PTEC = Pure Technical Efficiency Change, SEC = Scale Efficiency Change, TC = Technological Change, MI = Malmquist Index
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Caves, D.W.; Christensen, L. R.; Diewert, W.E. (1982). “The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity”. Econometrica, 50(6), 1393-1414.
Fare, R.; Grifell-Tatje, E.; Grosskopf, S.; Lovell, C.A.K. (1997). "Biased Technical Change and the Malmquist Productivity Index". Scandinavian Journal of Economics, 99(1), 119-127.
Fare, R.; Grosskopf, S.; Lindgren, B.; Roos, P. (1989). “Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach”. Discussion paper n. 89-3. Southern Illinois University. Illinois.
Fare, R.; Grosskopf, S.; Lindgren, B.; Roos, P. (1992). “Productivity changes in Swedish Pharmacies 1980-89: A nonparametric Malmquist Approach”. Journal of productivity Analysis, 3(3), 85-101.
Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z. (1994). “Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries”. American Economic Review, 84(1), 66-83.
Fare, R.; Grosskopf, S.; Roos, P. (1998), Malmquist Productivity Indexes: A Survey of Theory and Practice. In: Fare R., Grosskopf S., Russell R.R. (eds) Index Numbers: Essays in Honour of Sten Malmquist. Springer.
Grifell-Tatje, E.; Lovell, C.A.K. (1999). "A Generalized Malmquist productivity index". Top, 7(1), 81-101.
Pastor, J.T.; Lovell, C.A.k. (2005). "A global Malmquist productiviyt index". Economics Letters, 88, 266-271.
Ray, S.C.; Desli, E. (1997). "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment". The American Economic Review, 87(5), 1033-1039.
Shestalova, V. (2003). "Sequential Malmquist Indices of Productivity Growth: An Application to OECD Industrial Activities". Journal of Productivity Analysis, 19, 211-226.
# Example 1. With dataset in wide format. # Replication of results in Wang and Lan (2011, p. 2768) data("Economy") data_example <- make_malmquist(datadea = Economy, nper = 5, arrangement = "horizontal", ni = 2, no = 1) result <- malmquist_index(data_example, orientation = "io") mi <- result$mi effch <- result$ec tech <- result$tc # Example 2. With dataset in long format. # Replication of results in Wang and Lan (2011, p. 2768) data("EconomyLong") data_example2 <- make_malmquist(EconomyLong, percol = 2, arrangement = "vertical", inputs = 3:4, outputs = 5) result2 <- malmquist_index(data_example2, orientation = "io") mi2 <- result2$mi effch2 <- result2$ec tech2 <- result2$tc # Example 3. Replication of results in Grifell-Tatje and Lovell (1999, p. 100). data("Grifell_Lovell_1999") data_example <- make_malmquist(Grifell_Lovell_1999, percol = 1, dmus = 2, inputs = 3, outputs = 4, arrangement = "vertical") result_fgnz <- malmquist_index(data_example, orientation = "oo", rts = "vrs", type1 = "cont", type2 = "fgnz") mi_fgnz <- result_fgnz$mi result_rd <- malmquist_index(data_example, orientation = "oo", rts = "vrs", type1 = "cont", type2 = "rd") mi_rd <- result_rd$mi result_gl <- malmquist_index(data_example, orientation = "oo", rts = "vrs", type1 = "cont", type2 = "gl") mi_gl <- result_gl$mi
# Example 1. With dataset in wide format. # Replication of results in Wang and Lan (2011, p. 2768) data("Economy") data_example <- make_malmquist(datadea = Economy, nper = 5, arrangement = "horizontal", ni = 2, no = 1) result <- malmquist_index(data_example, orientation = "io") mi <- result$mi effch <- result$ec tech <- result$tc # Example 2. With dataset in long format. # Replication of results in Wang and Lan (2011, p. 2768) data("EconomyLong") data_example2 <- make_malmquist(EconomyLong, percol = 2, arrangement = "vertical", inputs = 3:4, outputs = 5) result2 <- malmquist_index(data_example2, orientation = "io") mi2 <- result2$mi effch2 <- result2$ec tech2 <- result2$tc # Example 3. Replication of results in Grifell-Tatje and Lovell (1999, p. 100). data("Grifell_Lovell_1999") data_example <- make_malmquist(Grifell_Lovell_1999, percol = 1, dmus = 2, inputs = 3, outputs = 4, arrangement = "vertical") result_fgnz <- malmquist_index(data_example, orientation = "oo", rts = "vrs", type1 = "cont", type2 = "fgnz") mi_fgnz <- result_fgnz$mi result_rd <- malmquist_index(data_example, orientation = "oo", rts = "vrs", type1 = "cont", type2 = "rd") mi_rd <- result_rd$mi result_gl <- malmquist_index(data_example, orientation = "oo", rts = "vrs", type1 = "cont", type2 = "gl") mi_gl <- result_gl$mi
Finds the maximal friends subsets of a given set of DMUs, according to Tone (2010). It uses an ascending algorithm in order to find directly maximal subsets.
maximal_friends(datadea, dmu_ref = NULL, rts = c("crs", "vrs", "nirs", "ndrs"), tol = 1e-6, silent = FALSE)
maximal_friends(datadea, dmu_ref = NULL, rts = c("crs", "vrs", "nirs", "ndrs"), tol = 1e-6, silent = FALSE)
datadea |
A |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set,
i.e. the cluster of DMUs from which we want to find maximal friends.
If |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing) or "ndrs" (non-decreasing). |
tol |
Numeric, a tolerance margin for checking efficiency. It is 1e-6 by default. |
silent |
Logical, if |
A list with numeric vectors representing maximal friends subsets of DMUs.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Tone, K. (2010). "Variations on the theme of slacks-based measure of efficiency in DEA", European Journal of Operational Research, 200, 901-907. doi:10.1016/j.ejor.2009.01.027
## Not run: data("PFT1981") datadea <- make_deadata(PFT1981, ni = 5, no = 3) # We find maximal friends of a cluster formed by the first 20 DMUs result <- maximal_friends(datadea = datadea, dmu_ref = 1:20) ## End(Not run)
## Not run: data("PFT1981") datadea <- make_deadata(PFT1981, ni = 5, no = 3) # We find maximal friends of a cluster formed by the first 20 DMUs result <- maximal_friends(datadea = datadea, dmu_ref = 1:20) ## End(Not run)
Solve the additive model of Charnes et. al (1985). With the current version of deaR, it is possible to solve input-oriented, output-oriented, and non-oriented additive model under constant and non-constant returns to scale.
Besides, the user can set weights for the input slacks and/or output slacks. So, it is also possible to solve weighted additive models. For example: Measure of Inefficiency Proportions (MIP), Range Adjusted Measure (RAM), etc.
model_additive(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = NULL, weight_slack_i = 1, weight_slack_o = 1, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, compute_target = TRUE, returnlp = FALSE, ...)
model_additive(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = NULL, weight_slack_i = 1, weight_slack_o = 1, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, compute_target = TRUE, returnlp = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
This parameter is either |
weight_slack_i |
A value, vector of length |
weight_slack_o |
A value, vector of length |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
compute_target |
Logical. If it is |
returnlp |
Logical. If it is |
... |
Ignored, for compatibility issues. |
In this model, the efficiency score is the sum of the slacks. Therefore,
a DMU is efficient when the objective value (objval
) is zero.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stuz, J. (1985) "Foundations of Data Envelopment Analysis for Pareto-Koopmans Efficient Empirical Production Functions", Journal of Econometrics, 30(1-2), 91-107. doi:10.1016/0304-4076(85)90133-2
Charnes, A.; Cooper, W.W.; Lewin, A.Y.; Seiford, L.M. (1994). Data Envelopment Analysis: Theory, Methology, and Application. Boston: Kluwer Academic Publishers. doi:10.1007/978-94-011-0637-5
Cooper, W.W.; Park, K.S.; Pastor, J.T. (1999). "RAM: A Range Adjusted Measure of Inefficiencies for Use with Additive Models, and Relations to Other Models and Measures in DEA". Journal of Productivity Analysis, 11, p. 5-42. doi:10.1023/A:1007701304281
# Example 1. # Replication of results in Charnes et. al (1994, p. 27) x <- c(2, 3, 6, 9, 5, 4, 10) y <- c(2, 5, 7, 8, 3, 1, 7) data_example <- data.frame(dmus = letters[1:7], x, y) data_example <- make_deadata(data_example, ni = 1, no = 1) result <- model_additive(data_example, rts = "vrs") efficiencies(result) slacks(result) lambdas(result) # Example 2. # Measure of Inefficiency Proportions (MIP). x <- c(2, 3, 6, 9, 5, 4, 10) y <- c(2, 5, 7, 8, 3, 1, 7) data_example <- data.frame(dmus = letters[1:7], x, y) data_example <- make_deadata(data_example, ni = 1, no = 1) result2 <- model_additive(data_example, rts = "vrs", weight_slack_i = 1 / data_example[["input"]], weight_slack_o = 1 / data_example[["output"]]) slacks(result2) # Example 3. # Range Adjusted Measure of Inefficiencies (RAM). x <- c(2, 3, 6, 9, 5, 4, 10) y <- c(2, 5, 7, 8, 3, 1, 7) data_example <- data.frame(dmus = letters[1:7], x, y) data_example <- make_deadata(data_example, ni = 1, no = 1) range_i <- apply(data_example[["input"]], 1, max) - apply(data_example[["input"]], 1, min) range_o <- apply(data_example[["output"]], 1, max) - apply(data_example[["output"]], 1, min) w_range_i <- 1 / (range_i * (dim(data_example[["input"]])[1] + dim(data_example[["output"]])[1])) w_range_o <- 1 / (range_o * (dim(data_example[["input"]])[1] + dim(data_example[["output"]])[1])) result3 <- model_additive(data_example, rts = "vrs", weight_slack_i = w_range_i, weight_slack_o = w_range_o) slacks(result3)
# Example 1. # Replication of results in Charnes et. al (1994, p. 27) x <- c(2, 3, 6, 9, 5, 4, 10) y <- c(2, 5, 7, 8, 3, 1, 7) data_example <- data.frame(dmus = letters[1:7], x, y) data_example <- make_deadata(data_example, ni = 1, no = 1) result <- model_additive(data_example, rts = "vrs") efficiencies(result) slacks(result) lambdas(result) # Example 2. # Measure of Inefficiency Proportions (MIP). x <- c(2, 3, 6, 9, 5, 4, 10) y <- c(2, 5, 7, 8, 3, 1, 7) data_example <- data.frame(dmus = letters[1:7], x, y) data_example <- make_deadata(data_example, ni = 1, no = 1) result2 <- model_additive(data_example, rts = "vrs", weight_slack_i = 1 / data_example[["input"]], weight_slack_o = 1 / data_example[["output"]]) slacks(result2) # Example 3. # Range Adjusted Measure of Inefficiencies (RAM). x <- c(2, 3, 6, 9, 5, 4, 10) y <- c(2, 5, 7, 8, 3, 1, 7) data_example <- data.frame(dmus = letters[1:7], x, y) data_example <- make_deadata(data_example, ni = 1, no = 1) range_i <- apply(data_example[["input"]], 1, max) - apply(data_example[["input"]], 1, min) range_o <- apply(data_example[["output"]], 1, max) - apply(data_example[["output"]], 1, min) w_range_i <- 1 / (range_i * (dim(data_example[["input"]])[1] + dim(data_example[["output"]])[1])) w_range_o <- 1 / (range_o * (dim(data_example[["input"]])[1] + dim(data_example[["output"]])[1])) result3 <- model_additive(data_example, rts = "vrs", weight_slack_i = w_range_i, weight_slack_o = w_range_o) slacks(result3)
Solve the weighted version of the additive-min (mADD) model of Aparicio et. al (2007) with different returns to scale. For non constant returns to scale, a modification given by Zhu et al. (2018) is done.
model_addmin(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = NULL, weight_slack_i = 1, weight_slack_o = 1, rts = c("crs", "vrs", "nirs", "ndrs"), method = c("mf", "milp"), extreff = NULL, M_d = NULL, M_lambda = 1e3, maxfr = NULL, tol = 1e-6, silent = TRUE, compute_target = TRUE, check_target = FALSE, returnlp = FALSE, ...)
model_addmin(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = NULL, weight_slack_i = 1, weight_slack_o = 1, rts = c("crs", "vrs", "nirs", "ndrs"), method = c("mf", "milp"), extreff = NULL, M_d = NULL, M_lambda = 1e3, maxfr = NULL, tol = 1e-6, silent = TRUE, compute_target = TRUE, check_target = FALSE, returnlp = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
This parameter is either |
weight_slack_i |
A value, vector of length |
weight_slack_o |
A value, vector of length |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant),
"vrs" (variable), "nirs" (non-increasing) or "ndrs" (non-decreasing). Under non-increasing
or non-decreasing returns to scale, you may set |
method |
A string with the method: "mf" (default) for maximal friends, or "milp" for the mixed integer linear program of Aparicio et al. (2007). MILP method is faster but very problematic numerically. |
extreff |
A vector with the extreme efficient DMUs for "milp" method, as it
is returned by function |
M_d |
Numeric, a big positive quantity for "milp" method. It is an upper
bound for auxiliary variables named "d" in Aparicio (2007). If |
M_lambda |
Numeric, a big positive quantity for "milp" method. It is an upper bound for lambda variables. A very big value can produce catastrophic cancellations. If the results are not correct or the solver hangs, try to change its value (1e3 by default). |
maxfr |
A list with the maximal friends sets for "mf" method, as it is returned by function
|
tol |
Numeric, a tolerance margin for checking efficiency in |
silent |
Logical. If |
compute_target |
Logical. If it is |
check_target |
Logical. If it is |
returnlp |
Logical. If it is |
... |
For compatibility issues. |
In this model, the efficiency score is the sum of the slacks. Therefore,
a DMU is efficient when the objective value (objval
) is zero.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Aparicio, J.; Ruiz, J.L.; Sirvent, I. (2007) "Closest targets and minimum distance to the Pareto-efficient frontier in DEA", Journal of Productivity Analysis, 28, 209-218. doi:10.1007/s11123-007-0039-5
Zhu, Q.; Wu, J.; Ji, X.; Li, F. (2018) "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity", Omega, 79, 1-8. doi:10.1016/j.omega.2017.07.003
model_additive
, extreme_efficient
,
maximal_friends
# Example 1. data("Airlines") datadea <- make_deadata(Airlines, inputs = 4:7, outputs = 2:3) result <- model_addmin(datadea = datadea, method = "milp") targets(result) ## Not run: # Example 2. Directional model with Additive-min model in second stage data("Airlines") datadea <- make_deadata(Airlines, inputs = 4:7, outputs = 2:3) resdir <- model_basic(datadea = datadea, orientation = "dir", maxslack = FALSE) proj_input <- targets(resdir)[[1]] + slacks(resdir)[[1]] proj_output <- targets(resdir)[[2]] - slacks(resdir)[[2]] nd <- ncol(datadea$dmunames) # Number of DMUs maxfr <- maximal_friends(datadea = datadea) for (i in 1:nd) { datadea2 <- datadea datadea2$input[, i] <- proj_input[i, ] datadea2$output[, i] <- proj_output[i, ] DMUaux <- model_addmin(datadea = datadea2, method = "mf", maxfr = maxfr, dmu_eval = i)$DMU[[1]] resdir$DMU[[i]]$slack_input <- DMUaux$slack_input resdir$DMU[[i]]$slack_output <- DMUaux$slack_output resdir$DMU[[i]]$target_input <- DMUaux$target_input resdir$DMU[[i]]$target_output <- DMUaux$target_output } targets(resdir) ## End(Not run)
# Example 1. data("Airlines") datadea <- make_deadata(Airlines, inputs = 4:7, outputs = 2:3) result <- model_addmin(datadea = datadea, method = "milp") targets(result) ## Not run: # Example 2. Directional model with Additive-min model in second stage data("Airlines") datadea <- make_deadata(Airlines, inputs = 4:7, outputs = 2:3) resdir <- model_basic(datadea = datadea, orientation = "dir", maxslack = FALSE) proj_input <- targets(resdir)[[1]] + slacks(resdir)[[1]] proj_output <- targets(resdir)[[2]] - slacks(resdir)[[2]] nd <- ncol(datadea$dmunames) # Number of DMUs maxfr <- maximal_friends(datadea = datadea) for (i in 1:nd) { datadea2 <- datadea datadea2$input[, i] <- proj_input[i, ] datadea2$output[, i] <- proj_output[i, ] DMUaux <- model_addmin(datadea = datadea2, method = "mf", maxfr = maxfr, dmu_eval = i)$DMU[[1]] resdir$DMU[[i]]$slack_input <- DMUaux$slack_input resdir$DMU[[i]]$slack_output <- DMUaux$slack_output resdir$DMU[[i]]$target_input <- DMUaux$target_input resdir$DMU[[i]]$target_output <- DMUaux$target_output } targets(resdir) ## End(Not run)
Solve the additive super-efficiency model proposed by Du, Liang and Zhu (2010). It is an extension of the SBM super-efficiency to the additive DEA model.
model_addsupereff(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = NULL, weight_slack_i = NULL, weight_slack_o = NULL, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, compute_target = TRUE, returnlp = FALSE, ...)
model_addsupereff(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = NULL, weight_slack_i = NULL, weight_slack_o = NULL, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, compute_target = TRUE, returnlp = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
This parameter is either |
weight_slack_i |
A value, vector of length |
weight_slack_o |
A value, vector of length |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
compute_target |
Logical. If it is |
returnlp |
Logical. If it is |
... |
Ignored, for compatibility issues. |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Du, J.; Liang, L.; Zhu, J. (2010). "A Slacks-based Measure of Super-efficiency in Data Envelopment Analysis. A Comment", European Journal of Operational Research, 204, 694-697. doi:10.1016/j.ejor.2009.12.007
Zhu, J. (2014). Quantitative Models for Performance Evaluation and Benchmarking. Data Envelopment Analysis with Spreadsheets. 3rd Edition Springer, New York. doi:10.1007/978-3-319-06647-9
model_additive
, model_supereff
,
model_sbmsupereff
# Replication of results in Du, Liang and Zhu (2010, Table 6, p.696) data("Power_plants") Power_plants <- make_deadata(Power_plants, ni = 4, no = 2) result <- model_addsupereff(Power_plants, rts = "crs") efficiencies(result)
# Replication of results in Du, Liang and Zhu (2010, Table 6, p.696) data("Power_plants") Power_plants <- make_deadata(Power_plants, ni = 4, no = 2) result <- model_addsupereff(Power_plants, rts = "crs") efficiencies(result)
It solves input and output oriented, along with directional, basic DEA models (envelopment form) under constant (CCR model), variable (BCC model), non-increasing, non-decreasing or generalized returns to scale. By default, models are solved in a two-stage process (slacks are maximized).
You can use the model_basic
function to solve directional DEA
models by choosing orientation
= "dir".
The model_basic function allows to treat with non-discretional, non-controllable and undesirable inputs/outputs.
model_basic(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = c("io", "oo", "dir"), dir_input = NULL, dir_output = NULL, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, maxslack = TRUE, weight_slack_i = 1, weight_slack_o = 1, vtrans_i = NULL, vtrans_o = NULL, compute_target = TRUE, compute_multiplier = FALSE, returnlp = FALSE, silent_ud = FALSE, ...)
model_basic(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = c("io", "oo", "dir"), dir_input = NULL, dir_output = NULL, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, maxslack = TRUE, weight_slack_i = 1, weight_slack_o = 1, vtrans_i = NULL, vtrans_o = NULL, compute_target = TRUE, compute_multiplier = FALSE, returnlp = FALSE, silent_ud = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation
reference set.
If |
orientation |
A string, equal to "io" (input oriented), "oo" (output oriented), or "dir" (directional). |
dir_input |
A value, vector of length |
dir_output |
A value, vector of length |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
maxslack |
Logical. If it is |
weight_slack_i |
A value, vector of length |
weight_slack_o |
A value, vector of length |
vtrans_i |
Numeric vector of translation for undesirable inputs with non-directional
orientation. If |
vtrans_o |
Numeric vector of translation for undesirable outputs with
non-directional orientation, analogous to |
compute_target |
Logical. If it is |
compute_multiplier |
Logical. If it is |
returnlp |
Logical. If it is |
silent_ud |
Logical. For internal use, to avoid multiple warnings in the execution
of |
... |
Ignored, for compatibility issues. |
(1) Model proposed by Seiford and Zhu (2002) is applied for undesirable
inputs/outputs and non-directional orientation (i.e., input or output oriented).
You should select "vrs" returns to scale (BCC model) in order to maintain translation
invariance. If deaR detects that you are not specifying rts
= "vrs", it
makes the change to "vrs" automatically.
(2) With undesirable inputs and non-directional orientation use input-oriented BCC model, and with undesirable outputs and non-directional orientation use output-oriented BCC model. Alternatively, you can also treat the undesirable outputs as inputs and then apply the input-oriented BCC model (similarly with undesirable inputs).
(3) Model proposed by Fare and Grosskopf (2004) is applied for undesirable inputs/outputs and directional orientation.
(4) With orientation
= "dir" (directional distance function model), efficient
DMUs are those for which beta
= 0.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Charnes, A.; Cooper, W.W.; Rhodes, E. (1978). “Measuring the efficiency of decision making units”, European Journal of Operational Research 2, 429–444.
Charnes, A.; Cooper, W.W.; Rhodes, E. (1979). “Short communication: Measuring the efficiency of decision making units”, European Journal of Operational Research 3, 339.
Charnes, A.; Cooper, W.W.; Rhodes, E. (1981). "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through", Management Science, 27(6), 668-697.
Banker, R.; Charnes, A.; Cooper, W.W. (1984). “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis”, Management Science; 30; 1078-1092.
Undesirable inputs/outputs:
Pastor, J.T. (1996). "Translation Invariance in Data Envelopment Analysis: a Generalization", Annals of Operations Research, 66(2), 91-102.
Seiford, L.M.; Zhu, J. (2002). “Modeling undesirable factors in efficiency evaluation”, European Journal of Operational Research 142, 16-20.
Färe, R. ; Grosskopf, S. (2004). “Modeling undesirable factors in efficiency evaluation: Comment”, European Journal of Operational Research 157, 242-245.
Hua Z.; Bian Y. (2007). DEA with Undesirable Factors. In: Zhu J., Cook W.D. (eds) Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston, MA.
Non-discretionary/Non-controllable inputs/outputs:
Banker, R.; Morey, R. (1986). “Efficiency Analysis for Exogenously Fixed Inputs and Outputs”, Operations Research; 34; 513-521.
Ruggiero J. (2007). Non-Discretionary Inputs. In: Zhu J., Cook W.D. (eds) Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston, MA.
Directional DEA model:
Chambers, R.G.; Chung, Y.; Färe, R. (1996). "Benefit and Distance Functions", Journal of Economic Theory, 70(2), 407-419.
Chambers, R.G.; Chung, Y.; Färe, R. (1998). "Profit Directional Distance Functions and Nerlovian Efficiency", Journal of Optimization Theory and Applications, 95, 351-354.
model_multiplier
, model_supereff
# Example 1. Basic DEA model with desirable inputs/outputs. # Replication of results in Charnes, Cooper and Rhodes (1981). data("PFT1981") # Selecting DMUs in Program Follow Through (PFT) PFT <- PFT1981[1:49, ] PFT <- make_deadata(PFT, inputs = 2:6, outputs = 7:9 ) eval_pft <- model_basic(PFT, orientation = "io", rts = "crs") eff <- efficiencies(eval_pft) s <- slacks(eval_pft) lamb <- lambdas(eval_pft) tar <- targets(eval_pft) ref <- references(eval_pft) returns <- rts(eval_pft) # Example 2. Basic DEA model with undesirable outputs. # Replication of results in Hua and Bian (2007). data("Hua_Bian_2007") # The third output is an undesirable output. data_example <- make_deadata(Hua_Bian_2007, ni = 2, no = 3, ud_outputs = 3) # Translation parameter (vtrans_o) is set to 1500 result <- model_basic(data_example, orientation = "oo", rts = "vrs", vtrans_o = 1500) eff <- efficiencies(result) 1 / eff # results M5 in Table 6-5 (p.119) # Example 3. Basic DEA model with non-discretionary (fixed) inputs. # Replication of results in Ruggiero (2007). data("Ruggiero2007") # The second input is a non-discretionary input. datadea <- make_deadata(Ruggiero2007, ni = 2, no = 1, nd_inputs = 2) result <- model_basic(datadea, orientation = "io", rts = "crs") efficiencies(result)
# Example 1. Basic DEA model with desirable inputs/outputs. # Replication of results in Charnes, Cooper and Rhodes (1981). data("PFT1981") # Selecting DMUs in Program Follow Through (PFT) PFT <- PFT1981[1:49, ] PFT <- make_deadata(PFT, inputs = 2:6, outputs = 7:9 ) eval_pft <- model_basic(PFT, orientation = "io", rts = "crs") eff <- efficiencies(eval_pft) s <- slacks(eval_pft) lamb <- lambdas(eval_pft) tar <- targets(eval_pft) ref <- references(eval_pft) returns <- rts(eval_pft) # Example 2. Basic DEA model with undesirable outputs. # Replication of results in Hua and Bian (2007). data("Hua_Bian_2007") # The third output is an undesirable output. data_example <- make_deadata(Hua_Bian_2007, ni = 2, no = 3, ud_outputs = 3) # Translation parameter (vtrans_o) is set to 1500 result <- model_basic(data_example, orientation = "oo", rts = "vrs", vtrans_o = 1500) eff <- efficiencies(result) 1 / eff # results M5 in Table 6-5 (p.119) # Example 3. Basic DEA model with non-discretionary (fixed) inputs. # Replication of results in Ruggiero (2007). data("Ruggiero2007") # The second input is a non-discretionary input. datadea <- make_deadata(Ruggiero2007, ni = 2, no = 1, nd_inputs = 2) result <- model_basic(datadea, orientation = "io", rts = "crs") efficiencies(result)
With this non-radial DEA model (Zhu, 1996), the user can specify the preference input (or output) weigths that reflect the relative degree of desirability of the adjustments of the current input (or output) levels.
model_deaps(datadea, dmu_eval = NULL, dmu_ref = NULL, weight_eff = 1, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, restricted_eff = TRUE, maxslack = TRUE, weight_slack = 1, compute_target = TRUE, returnlp = FALSE, ...)
model_deaps(datadea, dmu_eval = NULL, dmu_ref = NULL, weight_eff = 1, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, restricted_eff = TRUE, maxslack = TRUE, weight_slack = 1, compute_target = TRUE, returnlp = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
weight_eff |
Preference weights. If input-oriented, it is a value, vector of length
|
orientation |
A string, equal to "io" (input-oriented) or "oo" (output-oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
restricted_eff |
Logical. If it is |
maxslack |
Logical. If it is |
weight_slack |
If input-oriented, it is a value, vector of length |
compute_target |
Logical. If it is |
returnlp |
Logical. If it is |
... |
Ignored, for compatibility issues. |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Zhu, J. (1996). “Data Envelopment Analysis with Preference Structure”, The Journal of the Operational Research Society, 47(1), 136. doi:10.2307/2584258
Zhu, J. (2014). Quantitative Models for Performance Evaluation and Benchmarking. Data Envelopment Analysis with Spreadsheets. 3rd Edition Springer, New York. doi:10.1007/978-3-319-06647-9
model_nonradial
, model_profit
,
model_sbmeff
data("Fortune500") data_deaps <- make_deadata(datadea = Fortune500, ni = 3, no = 2) result <- model_deaps(data_deaps, weight_eff = c(1, 2, 3), orientation = "io", rts = "vrs") efficiencies(result)
data("Fortune500") data_deaps <- make_deadata(datadea = Fortune500, ni = 3, no = 2) result <- model_deaps(data_deaps, weight_eff = c(1, 2, 3), orientation = "io", rts = "vrs") efficiencies(result)
FDH model allows the free disposability to construct the production possibility set. The central feature of the FDH model is the lack of convexity for its production possibility set (Thrall, 1999).
model_fdh(datadea, fdh_modelname = c("basic"), ...)
model_fdh(datadea, fdh_modelname = c("basic"), ...)
datadea |
A |
fdh_modelname |
A string containing the name of the model to apply FDH. For now, only "basic" is available. |
... |
|
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Cherchye, L.; Kuosmanen, T.; Post, T. (2000). "What Is the Economic Meaning of FDH? A Reply to Thrall". Journal of Productivity Analysis, 13(3), 263–267.
Deprins, D.; Simar, L. and Tulkens, H. (1984). Measuring Labor-Efficiency in Post Offices. In M. Marchand, P. Pestieau and H. Tulkens (eds.), The Performance of Public Entreprises: Concepts and Measurement. Amsterdam: North-Holland.
Sanei, M.; Mamizadeh Chatghayeb, S. (2013). “Free Disposal Hull Models in Supply Chain Management”, International Journal of Mathematical Modelling and Computations, 3(3), 125-129.
Thrall, R. M. (1999). "What Is the Economic Meaning of FDH?", Journal of Productivity Analysis, 11(3), 243–50.
# Example 1. FDH input-oriented. # Replication of results in Sanei and Mamizadeh Chatghayeb (2013) data("Supply_Chain") data_fdh1 <- make_deadata(Supply_Chain, inputs = 2:4, outputs = 5:6) result <- model_fdh(data_fdh1) # by default orientation = "io" efficiencies(result) # Example 2. FDH output-oriented. # Replication of results in Sanei and Mamizadeh Chatghayeb (2013) data("Supply_Chain") data_fdh2 <- make_deadata(Supply_Chain, inputs = 5:6, outputs = 7:8) result2 <- model_fdh(data_fdh2, orientation = "oo") efficiencies(result2)
# Example 1. FDH input-oriented. # Replication of results in Sanei and Mamizadeh Chatghayeb (2013) data("Supply_Chain") data_fdh1 <- make_deadata(Supply_Chain, inputs = 2:4, outputs = 5:6) result <- model_fdh(data_fdh1) # by default orientation = "io" efficiencies(result) # Example 2. FDH output-oriented. # Replication of results in Sanei and Mamizadeh Chatghayeb (2013) data("Supply_Chain") data_fdh2 <- make_deadata(Supply_Chain, inputs = 5:6, outputs = 7:8) result2 <- model_fdh(data_fdh2, orientation = "oo") efficiencies(result2)
Solve input-oriented and output-oriented basic DEA models (multiplicative form) under constant (CCR DEA model), variable (BCC DEA model), non-increasing, non-decreasing or generalized returns to scale. It does not take into account non-controllable, non-discretionary or undesirable inputs/outputs.
model_multiplier(datadea, dmu_eval = NULL, dmu_ref = NULL, epsilon = 0, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, returnlp = FALSE, compute_lambda = TRUE, ...)
model_multiplier(datadea, dmu_eval = NULL, dmu_ref = NULL, epsilon = 0, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, returnlp = FALSE, compute_lambda = TRUE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
epsilon |
Numeric, multipliers must be >= |
orientation |
A string, equal to "io" (input-oriented) or "oo" (output-oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
returnlp |
Logical. If it is |
compute_lambda |
Logical. If it is |
... |
Ignored, for compatibility issues. |
(1) Very important with the multiplier model: "The optimal weights for an efficient DMU need not be unique" (Cooper, Seiford and Tone, 2007:31). "Usually, the optimal weights for inefficient DMUs are unique, the exception being when the line of the DMU is parallel to one of the boundaries of the feasible region" (Cooper, Seiford and Tone, 2007:32).
(2) The measure of technical input (or output) efficiency obtained by using multiplier DEA models is better the smaller the value of epsilon.
(3) Epsilon is usually set equal to 10^-6. However, if epsilon is not set correctly, the multiplier model can be infeasible (Zhu,2014:49).
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Charnes, A.; Cooper, W.W. (1962). “Programming with Linear Fractional Functionals”, Naval Research Logistics Quarterly 9, 181-185. doi:10.1002/nav.3800090303
Charnes, A.; Cooper, W.W.; Rhodes, E. (1978). “Measuring the Efficiency of Decision Making Units”, European Journal of Operational Research 2, 429–444. doi:10.1016/0377-2217(78)90138-8
Charnes, A.; Cooper, W.W.; Rhodes, E. (1979). “Short Communication: Measuring the Efficiency of Decision Making Units”, European Journal of Operational Research 3, 339. doi:10.1016/0377-2217(79)90229-7
Golany, B.; Roll, Y. (1989). "An Application Procedure for DEA", OMEGA International Journal of Management Science, 17(3), 237-250. doi:10.1016/0305-0483(89)90029-7
Seiford, L.M.; Thrall, R.M. (1990). “Recent Developments in DEA. The Mathematical Programming Approach to Frontier Analysis”, Journal of Econometrics 46, 7-38. doi:10.1016/0304-4076(90)90045-U
Zhu, J. (2014). Quantitative Models for Performance Evaluation and Benchmarking. Data Envelopment Analysis with Spreadsheets. 3rd Edition Springer, New York. doi:10.1007/978-3-319-06647-9
# Example 1. # Replication of results in Golany and Roll (1989). data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989[1:10, ], inputs = 2:4, outputs = 5:6) result <- model_multiplier(data_example, epsilon = 0, orientation = "io", rts = "crs") efficiencies(result) multipliers(result) # Example 2. # Multiplier model with infeasible solutions (See note). data("Fortune500") data_Fortune <- make_deadata(datadea = Fortune500, inputs = 2:4, outputs = 5:6) result2 <- model_multiplier(data_Fortune, epsilon = 1e-6, orientation = "io", rts = "crs") # Results for General Motors and Ford Motor are not shown by deaR # because the solution is infeasible. efficiencies(result2) multipliers(result2)
# Example 1. # Replication of results in Golany and Roll (1989). data("Golany_Roll_1989") data_example <- make_deadata(datadea = Golany_Roll_1989[1:10, ], inputs = 2:4, outputs = 5:6) result <- model_multiplier(data_example, epsilon = 0, orientation = "io", rts = "crs") efficiencies(result) multipliers(result) # Example 2. # Multiplier model with infeasible solutions (See note). data("Fortune500") data_Fortune <- make_deadata(datadea = Fortune500, inputs = 2:4, outputs = 5:6) result2 <- model_multiplier(data_Fortune, epsilon = 1e-6, orientation = "io", rts = "crs") # Results for General Motors and Ford Motor are not shown by deaR # because the solution is infeasible. efficiencies(result2) multipliers(result2)
Non-radial DEA model allows for non-proportional reductions in each input or augmentations in each output.
model_nonradial(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, maxslack = TRUE, weight_slack = 1, compute_target = TRUE, returnlp = FALSE, ...)
model_nonradial(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = c("io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, maxslack = TRUE, weight_slack = 1, compute_target = TRUE, returnlp = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
A string, equal to "io" (input-oriented) or "oo" (output-oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
maxslack |
Logical. If it is |
weight_slack |
If input-oriented, it is a value, vector of length |
compute_target |
Logical. If it is |
returnlp |
Logical. If it is |
... |
Ignored, for compatibility issues. |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Banker, R.D.; Morey, R.C. (1986). "Efficiency Analysis for Exogenously Fixed Inputs and Outputs", Operations Research, 34, 80-97. doi:10.1287/opre.34.4.513
Färe, R.; Lovell, C.K. (1978). "Measuring the Technical Efficiency of Production", Journal of Economic Theory, 19(1), 150-162. doi:10.1016/0022-0531(78)90060-1
Wu, J.; Tsai, H.; Zhou, Z. (2011). "Improving Efficiency in International Tourist Hotels in Taipei Using a Non-Radial DEA Model", International Journal of Contemporary Hospitatlity Management, 23(1), 66-83. doi:10.1108/09596111111101670
Zhu, J. (1996). “Data Envelopment Analysis with Preference Structure”, The Journal of the Operational Research Society, 47(1), 136. doi:10.2307/2584258
model_deaps
, model_profit
, model_sbmeff
# Replication of results in Wu, Tsai and Zhou (2011) data("Hotels") data_hotels <- make_deadata(Hotels, inputs = 2:5, outputs = 6:8) result <- model_nonradial(data_hotels, orientation = "oo", rts = "vrs") efficiencies(result)
# Replication of results in Wu, Tsai and Zhou (2011) data("Hotels") data_hotels <- make_deadata(Hotels, inputs = 2:5, outputs = 6:8) result <- model_nonradial(data_hotels, orientation = "oo", rts = "vrs") efficiencies(result)
Cost, revenue and profit efficiency DEA models.
model_profit(datadea, dmu_eval = NULL, dmu_ref = NULL, price_input = NULL, price_output = NULL, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, restricted_optimal = TRUE, returnlp = FALSE, ...)
model_profit(datadea, dmu_eval = NULL, dmu_ref = NULL, price_input = NULL, price_output = NULL, rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, restricted_optimal = TRUE, returnlp = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
price_input |
Unit prices of inputs for cost or profit efficiency models.
It is a value, vector of length |
price_output |
Unit prices of outputs for revenue or profit efficiency models.
It is a value, vector of length |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
restricted_optimal |
Logical. If it is |
returnlp |
Logical. If it is |
... |
Ignored, for compatibility issues. |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Coelli, T.; Prasada Rao, D.S.; Battese, G.E. (1998). An introduction to efficiency and productivity analysis. Jossey-Bass, San Francisco, pp 73–104. doi:10.1002/ev.1441
model_deaps
, model_nonradial
,
model_sbmeff
# Example 1. Replication of results in Coelli et al. (1998, p.166). # Cost efficiency model. data("Coelli_1998") # Selection of prices: input_prices is the transpose where the prices for inputs are. input_prices <- t(Coelli_1998[, 5:6]) data_example1 <- make_deadata(Coelli_1998, ni = 2, no = 1) result1 <- model_profit(data_example1, price_input = input_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result1) # Example 2. Revenue efficiency model. data("Coelli_1998") # Selection of prices for output: output_prices is the transpose where the prices for outputs are. output_prices <- t(Coelli_1998[, 7]) data_example2 <- make_deadata(Coelli_1998, ni = 2, no = 1) result2 <- model_profit(data_example2, price_output = output_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result2) # Example 3. Profit efficiency model. data("Coelli_1998") # Selection of prices for inputs and outputs: input_prices and output_prices are # the transpose where the prices (for inputs and outputs) are. input_prices <- t(Coelli_1998[, 5:6]) output_prices <- t(Coelli_1998[, 7]) data_example3 <- make_deadata(Coelli_1998, ni = 2, no = 1) result3 <- model_profit(data_example3, price_input = input_prices, price_output = output_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result3)
# Example 1. Replication of results in Coelli et al. (1998, p.166). # Cost efficiency model. data("Coelli_1998") # Selection of prices: input_prices is the transpose where the prices for inputs are. input_prices <- t(Coelli_1998[, 5:6]) data_example1 <- make_deadata(Coelli_1998, ni = 2, no = 1) result1 <- model_profit(data_example1, price_input = input_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result1) # Example 2. Revenue efficiency model. data("Coelli_1998") # Selection of prices for output: output_prices is the transpose where the prices for outputs are. output_prices <- t(Coelli_1998[, 7]) data_example2 <- make_deadata(Coelli_1998, ni = 2, no = 1) result2 <- model_profit(data_example2, price_output = output_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result2) # Example 3. Profit efficiency model. data("Coelli_1998") # Selection of prices for inputs and outputs: input_prices and output_prices are # the transpose where the prices (for inputs and outputs) are. input_prices <- t(Coelli_1998[, 5:6]) output_prices <- t(Coelli_1998[, 7]) data_example3 <- make_deadata(Coelli_1998, ni = 2, no = 1) result3 <- model_profit(data_example3, price_input = input_prices, price_output = output_prices, rts = "crs", restricted_optimal = FALSE) # notice that the option by default is restricted_optimal = TRUE efficiencies(result3)
Range directional model from Portela et al. (2004).
model_rdm(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = c("no", "io", "oo"), irdm = FALSE, maxslack = TRUE, weight_slack_i = 1, weight_slack_o = 1, compute_target = TRUE, returnlp = FALSE, ...)
model_rdm(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = c("no", "io", "oo"), irdm = FALSE, maxslack = TRUE, weight_slack_i = 1, weight_slack_o = 1, compute_target = TRUE, returnlp = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
A string, equal to "no" (non-oriented), "io" (input oriented), or "oo" (output oriented). |
irdm |
Logical. If it is |
maxslack |
Logical. If it is |
weight_slack_i |
A value, vector of length |
weight_slack_o |
A value, vector of length |
compute_target |
Logical. If it is |
returnlp |
Logical. If it is |
... |
Ignored, for compatibility issues. |
Undesirable inputs/outputs are treated as negative inputs/outputs in this model.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Portela, M.; Thanassoulis, E.; Simpson, G. (2004). "Negative data in DEA: a directional distance approach applied to bank branches", Journal of the Operational Research Society, 55 1111-1121.
Calculate the SBM model proposed by Tone (2001).
model_sbmeff(datadea, dmu_eval = NULL, dmu_ref = NULL, weight_input = 1, weight_output = 1, orientation = c("no", "io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, kaizen = FALSE, maxfr = NULL, tol = 1e-6, silent = FALSE, compute_target = TRUE, returnlp = FALSE, ...)
model_sbmeff(datadea, dmu_eval = NULL, dmu_ref = NULL, weight_input = 1, weight_output = 1, orientation = c("no", "io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, kaizen = FALSE, maxfr = NULL, tol = 1e-6, silent = FALSE, compute_target = TRUE, returnlp = FALSE, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
weight_input |
A value, vector of length |
weight_output |
A value, vector of length |
orientation |
A string, equal to "no" (non-oriented), "io" (input-oriented) or "oo" (output-oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
kaizen |
Logical. If |
maxfr |
A list with the maximal friends sets, as it is returned by function
|
tol |
Numeric, a tolerance margin for checking efficiency (only for the kaizen version). |
silent |
Logical. If |
compute_target |
Logical. If it is |
returnlp |
Logical. If it is |
... |
Other options (currently not implemented) |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Tone, K. (2001). "A Slacks-Based Measure of Efficiency in Data Envelopment Analysis", European Journal of Operational Research, 130, 498-509. doi:10.1016/S0377-2217(99)00407-5
Tone, K. (2010). "Variations on the theme of slacks-based measure of efficiency in DEA", European Journal of Operational Research, 200, 901-907. doi:10.1016/j.ejor.2009.01.027
Cooper, W.W.; Seiford, L.M.; Tone, K. (2007). Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software. 2nd Edition. Springer, New York. doi:10.1007/978-0-387-45283-8
Aparicio, J.; Ruiz, J.L.; Sirvent, I. (2007) "Closest targets and minimum distance to the Pareto-efficient frontier in DEA", Journal of Productivity Analysis, 28, 209-218. doi:10.1007/s11123-007-0039-5
model_nonradial
, model_deaps
,
model_profit
, model_sbmsupereff
# Example 1. Replication of results in Tone (2001, p.505) data("Tone2001") data_example <- make_deadata(Tone2001, ni = 2, no = 2) result_SBM <- model_sbmeff(data_example, orientation = "no", rts = "crs") result_CCR <- model_basic(data_example, orientation = "io", rts = "crs") efficiencies(result_SBM) efficiencies(result_CCR) slacks(result_SBM) slacks(result_CCR) # Example 2. Replication of results in Tone (2003), pp 10-11 case 1:1. data("Tone2003") data_example <- make_deadata(Tone2003, ni = 1, no = 2, ud_outputs = 2) result <- model_sbmeff(data_example, rts = "vrs") efficiencies(result) targets(result) # Example 3. Replication of results in Aparicio (2007). data("Airlines") datadea <- make_deadata(Airlines, inputs = 4:7, outputs = 2:3) result <- model_sbmeff(datadea = datadea, kaizen = TRUE) efficiencies(result) targets(result)
# Example 1. Replication of results in Tone (2001, p.505) data("Tone2001") data_example <- make_deadata(Tone2001, ni = 2, no = 2) result_SBM <- model_sbmeff(data_example, orientation = "no", rts = "crs") result_CCR <- model_basic(data_example, orientation = "io", rts = "crs") efficiencies(result_SBM) efficiencies(result_CCR) slacks(result_SBM) slacks(result_CCR) # Example 2. Replication of results in Tone (2003), pp 10-11 case 1:1. data("Tone2003") data_example <- make_deadata(Tone2003, ni = 1, no = 2, ud_outputs = 2) result <- model_sbmeff(data_example, rts = "vrs") efficiencies(result) targets(result) # Example 3. Replication of results in Aparicio (2007). data("Airlines") datadea <- make_deadata(Airlines, inputs = 4:7, outputs = 2:3) result <- model_sbmeff(datadea = datadea, kaizen = TRUE) efficiencies(result) targets(result)
Slack based measure of superefficiency model (Tone 2002) with n
DMUs, m
inputs and s
outputs.
model_sbmsupereff(datadea, dmu_eval = NULL, dmu_ref = NULL, weight_input = 1, weight_output = 1, orientation = c("no", "io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, compute_target = TRUE, compute_rho = FALSE, kaizen = FALSE, silent = FALSE, returnlp = FALSE)
model_sbmsupereff(datadea, dmu_eval = NULL, dmu_ref = NULL, weight_input = 1, weight_output = 1, orientation = c("no", "io", "oo"), rts = c("crs", "vrs", "nirs", "ndrs", "grs"), L = 1, U = 1, compute_target = TRUE, compute_rho = FALSE, kaizen = FALSE, silent = FALSE, returnlp = FALSE)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
weight_input |
A value, vector of length |
weight_output |
A value, vector of length |
orientation |
A string, equal to "no" (non-oriented), "io" (input-oriented) or "oo" (output-oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
compute_target |
Logical. If it is |
compute_rho |
Logical. If it is |
kaizen |
Logical. If |
silent |
Logical. If |
returnlp |
Logical. If it is |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Tone, K. (2002). "A slacks-based measure of super-efficiency in data envelopment analysis", European Journal of Operational Research, 143, 32-41. doi:10.1016/S0377-2217(01)00324-1
Tone, K. (2010). "Variations on the theme of slacks-based measure of efficiency in DEA", European Journal of Operational Research, 200, 901-907. doi:10.1016/j.ejor.2009.01.027
Cooper, W.W.; Seiford, L.M.; Tone, K. (2007). Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software. 2nd Edition. Springer, New York. doi:10.1007/978-0-387-45283-8
model_sbmeff
, model_supereff
,
model_addsupereff
# Replication of results in Tone(2002, p.39) data("Power_plants") data_example <- make_deadata(Power_plants, ni = 4, no = 2) result <- model_sbmsupereff(data_example, orientation = "io", rts = "crs") efficiencies(result) slacks(result)$slack_input references(result)
# Replication of results in Tone(2002, p.39) data("Power_plants") data_example <- make_deadata(Power_plants, ni = 4, no = 2) result <- model_sbmsupereff(data_example, orientation = "io", rts = "crs") efficiencies(result) slacks(result)$slack_input references(result)
Solve Andersen and Petersen radial Super-efficiency DEA model.
model_supereff(datadea, dmu_eval = NULL, dmu_ref = NULL, supereff_modelname = c("basic"), ...)
model_supereff(datadea, dmu_eval = NULL, dmu_ref = NULL, supereff_modelname = c("basic"), ...)
datadea |
An object of class |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
supereff_modelname |
A string containing the name of the radial model to apply super-efficiency. |
... |
|
(1) Radial super-efficiency model under variable (vrs, nirs, ndrs, grs) returns to scale can be infeasible for certain DMUs. See example 2.
(2) DMUs with infeasible solution are not shown in the results.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Andersen, P.; Petersen, N.C. (1993). "A procedure for ranking efficient units in data envelopment analysis", Management Science, 39, 1261-1264.
Tone, K. (2002). "A slacks-based measure of super-efficiency in data envelopment analysis", European Journal of Operational Research, 143, 32-41.
model_basic
, model_sbmsupereff
,
model_addsupereff
# Example 1. # Replication of results in Tone (2002, p.38) data("Power_plants") data_example <- make_deadata(Power_plants, ni = 4, no = 2) result <- model_supereff(data_example, orientation = "io", rts = "crs") eff <- efficiencies(result) # Example 2. # Results of Super-efficiency with vrs returns to scale show infeasibility solutions # for DMUs D4 and D6 (these DMUs are not shown in deaR results). data("Power_plants") data_example2 <- make_deadata(Power_plants, ni = 4, no = 2) result2 <- model_supereff(data_example2, orientation = "io", rts = "vrs") eff2 <- efficiencies(result2)
# Example 1. # Replication of results in Tone (2002, p.38) data("Power_plants") data_example <- make_deadata(Power_plants, ni = 4, no = 2) result <- model_supereff(data_example, orientation = "io", rts = "crs") eff <- efficiencies(result) # Example 2. # Results of Super-efficiency with vrs returns to scale show infeasibility solutions # for DMUs D4 and D6 (these DMUs are not shown in deaR results). data("Power_plants") data_example2 <- make_deadata(Power_plants, ni = 4, no = 2) result2 <- model_supereff(data_example2, orientation = "io", rts = "vrs") eff2 <- efficiencies(result2)
Solve the Fuzzy input-oriented and output-oriented DEA model proposed
by Guo and Tanaka (2001) under constant returns to scale. In deaR is implemented
the LP poblem given by the model (16) in Guo and Tanaka (2001, p.155). The fuzzy
efficiencies are calculated according to equations in (17) (Guo and Tanaka, 2001, p.155).
The (crisp) relative efficiencies and multipliers for the case h
= 1 are
obtained from the CCR model (model_multiplier
).
modelfuzzy_guotanaka(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = c("io", "oo"), h = 1)
modelfuzzy_guotanaka(datadea, dmu_eval = NULL, dmu_ref = NULL, orientation = c("io", "oo"), h = 1)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
A string, equal to "io" (input oriented) or "oo" (output oriented). |
h |
A numeric vector with the h-levels (in [0,1]). |
An object of class deadata_fuzzy
.
The optimal solution of model (16) is not unique.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Emrouznejad, A.; Tavana, M.; Hatami-Marbini, A. (2014). “The State of the Art in Fuzzy Data Envelopment Analysis”, in A. Emrouznejad and M. Tavana (eds.), Performance Measurement with Fuzzy Data Envelopment Analysis. Studies in Fuzziness and Soft Computing 309. Springer, Berlin. doi:10.1007/978-3-642-41372-8_1
Guo, P.; Tanaka, H. (2001). "Fuzzy DEA: A Perceptual Evaluation Method", Fuzzy Sets and Systems, 119, 149–160. doi:10.1016/S0165-0114(99)00106-2
Hatami-Marbini, A.; Emrouznejad, A.; Tavana, M. (2011). "A Taxonomy and Review of the Fuzzy Data Envelopment Analysis Literature: Two Decades in the Making", European Journal of Operational Research, 214, 457–472. doi:10.1016/j.ejor.2011.02.001
model_basic
, model_multiplier
,
modelfuzzy_kaoliu
, modelfuzzy_possibilistic
,
cross_efficiency_fuzzy
# Example 1. # Replication results in Guo and Tanaka (2001, p. 159). # In deaR is implemented the LP poblem given by the model 16 in Guo and Tanaka (2001, p. 155). # The fuzzy efficiencies are calculated according to equations in (17) (Guo and Tanaka, 2001,p.155). data("Guo_Tanaka_2001") data_example <- make_deadata_fuzzy(Guo_Tanaka_2001, inputs.mL = 2:3, inputs.dL = 4:5, outputs.mL = 6:7, outputs.dL = 8:9) result <- modelfuzzy_guotanaka(data_example, h = c(0, 0.5, 0.75, 1), orientation = "io") efficiencies(result) # Example 2. data("Guo_Tanaka_2001") data_example <- make_deadata_fuzzy(Guo_Tanaka_2001, inputs.mL = 2:3, inputs.dL = 4:5, outputs.mL = 6:7, outputs.dL = 8:9) result2 <- modelfuzzy_guotanaka(data_example, h = seq(0, 1, by = 0.1), orientation = "io") efficiencies(result2)
# Example 1. # Replication results in Guo and Tanaka (2001, p. 159). # In deaR is implemented the LP poblem given by the model 16 in Guo and Tanaka (2001, p. 155). # The fuzzy efficiencies are calculated according to equations in (17) (Guo and Tanaka, 2001,p.155). data("Guo_Tanaka_2001") data_example <- make_deadata_fuzzy(Guo_Tanaka_2001, inputs.mL = 2:3, inputs.dL = 4:5, outputs.mL = 6:7, outputs.dL = 8:9) result <- modelfuzzy_guotanaka(data_example, h = c(0, 0.5, 0.75, 1), orientation = "io") efficiencies(result) # Example 2. data("Guo_Tanaka_2001") data_example <- make_deadata_fuzzy(Guo_Tanaka_2001, inputs.mL = 2:3, inputs.dL = 4:5, outputs.mL = 6:7, outputs.dL = 8:9) result2 <- modelfuzzy_guotanaka(data_example, h = seq(0, 1, by = 0.1), orientation = "io") efficiencies(result2)
Solve the fuzzy DEA model by Kao and Liu (2000)
modelfuzzy_kaoliu(datadea, dmu_eval = NULL, kaoliu_modelname = c("basic", "additive", "addsupereff", "deaps", "fdh", "multiplier", "nonradial", "profit", "rdm", "sbmeff", "sbmsupereff", "supereff"), alpha = 1, ...)
modelfuzzy_kaoliu(datadea, dmu_eval = NULL, kaoliu_modelname = c("basic", "additive", "addsupereff", "deaps", "fdh", "multiplier", "nonradial", "profit", "rdm", "sbmeff", "sbmsupereff", "supereff"), alpha = 1, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
kaoliu_modelname |
a string containing the name of the model. |
alpha |
A numeric vector with the alpha-cuts (in [0,1]). If |
... |
|
An object of class deadata_fuzzy
.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Boscá, J.E.; Liern, V.; Sala, R.; Martínez, A. (2011). "Ranking Decision Making Units by Means of Soft Computing DEA Models". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 19(1), p.115-134.
Emrouznejad, A.; Tavana, M.; Hatami-Marbini, A. (2014). “The State of the Art in Fuzzy Data Envelopment Analysis”, in A. Emrouznejad and M. Tavana (eds.), Performance Measurement with Fuzzy Data Envelopment Analysis. Studies in Fuzziness and Soft Computing 309. Springer, Berlin.
Hatami-Marbini, A.; Emrouznejad, A.; Tavana, M. (2011). "A Taxonomy and Review of the Fuzzy Data Envelopment Analysis Literature: Two Decades in the Making", European Journal of Operational Research, 214, 457–472.
Kao, C.; Liu, S.T. (2000). “Fuzzy efficiency measures in data envelopment analysis, Fuzzy Sets and Systems”, 119, 149–160.
Kao, C., Liu, S.T., (2000). “Data envelopment analysis with missing data: An application to university libraries in Taiwan”, Journal of the Operational Research Society, 51, 897–905.
Kao, C., Liu, S.T. (2003). “A mathematical programming approach to fuzzy efficiency ranking”, International Journal of Production Economics, 85.
model_basic
, model_multiplier
,
modelfuzzy_possibilistic
, modelfuzzy_guotanaka
# Example 1. # Replication of results in Boscá, Liern, Sala and Martínez (2011, p.125) data("Leon2003") data_example <- make_deadata_fuzzy(datadea = Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_kaoliu(data_example, kaoliu_modelname = "basic", alpha = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") efficiencies(result) # Example 2. # Replication of results in Kao and Liu (2003, p.152) data("Kao_Liu_2003") data_example <- make_deadata_fuzzy(Kao_Liu_2003, inputs.mL = 2, outputs.mL = 3:7, outputs.dL = c(NA, NA, 8, NA, 10), outputs.dR = c(NA, NA, 9, NA, 11)) result <- modelfuzzy_kaoliu(data_example, kaoliu_modelname = "basic", orientation = "oo", rts = "vrs", alpha = 0) sol <- efficiencies(result) eff <- data.frame(1 / sol$Worst, 1 / sol$Best) names(eff) <- c("eff_lower", "eff_upper") eff
# Example 1. # Replication of results in Boscá, Liern, Sala and Martínez (2011, p.125) data("Leon2003") data_example <- make_deadata_fuzzy(datadea = Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_kaoliu(data_example, kaoliu_modelname = "basic", alpha = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") efficiencies(result) # Example 2. # Replication of results in Kao and Liu (2003, p.152) data("Kao_Liu_2003") data_example <- make_deadata_fuzzy(Kao_Liu_2003, inputs.mL = 2, outputs.mL = 3:7, outputs.dL = c(NA, NA, 8, NA, 10), outputs.dR = c(NA, NA, 9, NA, 11)) result <- modelfuzzy_kaoliu(data_example, kaoliu_modelname = "basic", orientation = "oo", rts = "vrs", alpha = 0) sol <- efficiencies(result) eff <- data.frame(1 / sol$Worst, 1 / sol$Best) names(eff) <- c("eff_lower", "eff_upper") eff
Solve the possibilistic fuzzy DEA model proposed by León et. al (2003).
modelfuzzy_possibilistic(datadea, dmu_eval = NULL, poss_modelname = c("basic"), h = 1, ...)
modelfuzzy_possibilistic(datadea, dmu_eval = NULL, poss_modelname = c("basic"), h = 1, ...)
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
poss_modelname |
a string containing the name of the model. |
h |
A numeric vector with the h-levels (in [0,1]). |
... |
|
An object of class deadata_fuzzy
.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Emrouznejad, A.; Tavana, M.; Hatami-Marbini, A. (2014). “The State of the Art in Fuzzy Data Envelopment Analysis”, in A. Emrouznejad and M. Tavana (eds.), Performance Measurement with Fuzzy Data Envelopment Analysis. Studies in Fuzziness and Soft Computing 309. Springer, Berlin. doi:10.1007/978-3-642-41372-8_1
Hatami-Marbini, A.; Emrouznejad, A.; Tavana, M. (2011). "A Taxonomy and Review of the Fuzzy Data Envelopment Analysis Literature: Two Decades in the Making", European Journal of Operational Research, 214, 457–472. doi:10.1016/j.ejor.2011.02.001
Leon, T.; Liern, V. Ruiz, J.; Sirvent, I. (2003). "A Possibilistic Programming Approach to the Assessment of Efficiency with DEA Models", Fuzzy Sets and Systems, 139, 407–419. doi:10.1016/S0165-0114(02)00608-5
model_basic
, modelfuzzy_kaoliu
,
modelfuzzy_guotanaka
# Replication of results in Leon et. al (2003, p. 416) data("Leon2003") data_example <- make_deadata_fuzzy(Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_possibilistic(data_example, h = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") efficiencies(result)
# Replication of results in Leon et. al (2003, p. 416) data("Leon2003") data_example <- make_deadata_fuzzy(Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_possibilistic(data_example, h = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") efficiencies(result)
Extract the multipliers of the DMUs from a dea
or
dea_fuzzy
solution.
multipliers(deasol)
multipliers(deasol)
deasol |
Object of class |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_multiplier(data_example, orientation = "io", rts = "crs") multipliers(result)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_multiplier(data_example, orientation = "io", rts = "crs") multipliers(result)
Data from Project Follow Through (PTF) in public school education. There are 49 DMUs (school sites) in PFT and 21 DMUs in Non-Follow Through (NFT). Authors consider 3 outputs (Y) and 5 inputs (X).
data("PFT1981")
data("PFT1981")
Data frame with 70 rows and 10 columns. Definition of inputs (X) and outputs (Y):
Total Reading Scores (as measured by the Metropolitan Achievement Test).
Total Math Scores (total mathematics score by the Metropolitan Achievement Test.
Total Coopersmith Scores (Coopersmith self-esteem inventory, intended as a measure of self-esteem).
Education level of mother (as measured in terms of percentage of high school graduates among female parents).
Occupation Index (highest occupation of a family member according to a pre-arranged rating scale).
Parental Visit Index (representing the number of visits to the school site).
Counseling Index (parent counselling index calculated from data on time spent with child on school-related topics such as reading together, etc.).
Number of Teachers (number of teachers at a given site).
PFT or NFT.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Charnes, A.; Cooper, W.W.; Rhodes, E. (1981). "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through", Management Science, 27(6), 668-697. doi:10.1287/mnsc.27.6.668
# Example 1. Replication of results in Charnes, Cooper and Rhodes (1981) data("PFT1981") # selecting DMUs in Project Follow Through (PFT) PFT <- PFT1981[1:49, ] PFT <- make_deadata(PFT, dmus = 1, inputs = 2:6, outputs = 7:9 ) eval_pft <- model_basic(PFT, orientation = "io", rts = "crs") eff_pft <- efficiencies(eval_pft) # Example 2. Replication of results in Charnes, Cooper and Rhodes (1981) data("PFT1981") # selecting DMUs in Non-Follow Through (NFT) NFT <- PFT1981[50:70,] NFT <- make_deadata(NFT, dmus = 1, inputs = 2:6, outputs = 7:9 ) eval_nft <- model_basic(NFT, orientation = "io", rts = "crs") eff_nft <- efficiencies(eval_nft)
# Example 1. Replication of results in Charnes, Cooper and Rhodes (1981) data("PFT1981") # selecting DMUs in Project Follow Through (PFT) PFT <- PFT1981[1:49, ] PFT <- make_deadata(PFT, dmus = 1, inputs = 2:6, outputs = 7:9 ) eval_pft <- model_basic(PFT, orientation = "io", rts = "crs") eff_pft <- efficiencies(eval_pft) # Example 2. Replication of results in Charnes, Cooper and Rhodes (1981) data("PFT1981") # selecting DMUs in Non-Follow Through (NFT) NFT <- PFT1981[50:70,] NFT <- make_deadata(NFT, dmus = 1, inputs = 2:6, outputs = 7:9 ) eval_nft <- model_basic(NFT, orientation = "io", rts = "crs") eff_nft <- efficiencies(eval_nft)
Plot some attribute of a DEA model.
## S3 method for class 'dea' plot(x, tol = 1e-04, showPlots = TRUE, ...)
## S3 method for class 'dea' plot(x, tol = 1e-04, showPlots = TRUE, ...)
x |
An object of class |
tol |
Numeric. Absolute tolerance for numeric comparisons. By default, it is 1e-4. |
showPlots |
Logical. When TRUE (default) the plots are shown one by one. When it is FALSE the plots are not shown and are returned by the function (invisibly) as a list. |
... |
Ignored, for compatibility issues. |
Depending on the model, it returns some plots.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Zhu, J. (2014). Quantitative Models for Performance Evaluation and Benchmarking. Data Envelopment Analysis with Spreadsheets. 3rd Edition Springer, New York. doi:10.1007/978-3-319-06647-9
data_example <- make_deadata(datadea = Fortune500, inputs = 2:4, outputs = 5:6) result <- model_basic(data_example) plot(result)
data_example <- make_deadata(datadea = Fortune500, inputs = 2:4, outputs = 5:6) result <- model_basic(data_example) plot(result)
Plot some attributes of a fuzzy DEA model (Guo-Tanaka, Kao-Liu and possibilistic models).
## S3 method for class 'dea_fuzzy' plot(x, showPlots = TRUE, ...)
## S3 method for class 'dea_fuzzy' plot(x, showPlots = TRUE, ...)
x |
An object of class |
showPlots |
Logical. When TRUE (default) the plots are shown one by one. When it is FALSE the plots are not shown and are returned by the function (invisibly) as a list. |
... |
Ignored, for compatibility issues. |
Depending on the model, it returns some plots.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Zhu, J. (2014). Quantitative Models for Performance Evaluation and Benchmarking. Data Envelopment Analysis with Spreadsheets. 3rd Edition Springer, New York. doi:10.1007/978-3-319-06647-9
This dataset consists of six power plants with 4 inputs (X) and 2 outputs (Y).
data("Power_plants")
data("Power_plants")
Data frame with 15 rows and 7 columns. Definition of inputs (X) and outputs (Y):
Manpower requiered
Construction costs in millions of dollars
Annual maintenance costs in millions of dollars
Number of villages to be evacuated
Power generated in megawatts
Safety level
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Andersen, P.; Petersen, N.C. (1993). "A procedure for ranking efficient units in data envelopment analysis", Management Science, 39, 1261-1264.
Doyle, J. and Green R. (1993). "Data envelopment analysis and multiple criteria decision making", Omega, 21 (6), 713-715. doi:10.1016/0305-0483(93)90013-B
Tone, K. (2002). "A slacks-based measure of super-efficiency in data envelopment analysis", European Journal of Operational Research, 143, 32-41. doi:10.1016/S0377-2217(01)00324-1
make_deadata
, model_supereff
,
model_sbmsupereff
# Example 1. Radial super-efficiency model. # Replication of results in Tone (2002) data("Power_plants") data_example <- make_deadata(Power_plants, ni = 4, no = 2) result <- model_supereff(data_example, orientation = "io", rts = "crs") eff <- efficiencies(result) eff # Example 2. SBM super-efficiency model. data("Power_plants") data_example <- make_deadata(Power_plants, ni = 4, no = 2) result2 <- model_sbmsupereff(data_example, orientation = "io", rts = "crs") efficiencies(result2) slacks(result2)$input references(result2)
# Example 1. Radial super-efficiency model. # Replication of results in Tone (2002) data("Power_plants") data_example <- make_deadata(Power_plants, ni = 4, no = 2) result <- model_supereff(data_example, orientation = "io", rts = "crs") eff <- efficiencies(result) eff # Example 2. SBM super-efficiency model. data("Power_plants") data_example <- make_deadata(Power_plants, ni = 4, no = 2) result2 <- model_sbmsupereff(data_example, orientation = "io", rts = "crs") efficiencies(result2) slacks(result2)$input references(result2)
Print method for deadata
class.
## S3 method for class 'deadata' print(x, ...)
## S3 method for class 'deadata' print(x, ...)
x |
A |
... |
For compatibility issues. |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Print method for deadata_fuzzy
class.
## S3 method for class 'deadata_fuzzy' print(x, ...)
## S3 method for class 'deadata_fuzzy' print(x, ...)
x |
A |
... |
For compatibility issues. |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
This function is deprecated. Use make_deadata
instead.
read_data(datadea = NULL, ni = NULL, no = NULL, dmus = 1, inputs = NULL, outputs = NULL, nc_inputs = NULL, nc_outputs = NULL, nd_inputs = NULL, nd_outputs = NULL, ud_inputs = NULL, ud_outputs = NULL)
read_data(datadea = NULL, ni = NULL, no = NULL, dmus = 1, inputs = NULL, outputs = NULL, nc_inputs = NULL, nc_outputs = NULL, nd_inputs = NULL, nd_outputs = NULL, ud_inputs = NULL, ud_outputs = NULL)
datadea |
Data frame with DEA data. |
ni |
Number of inputs, if inputs are in columns 2:( |
no |
Number of outputs, if outputs are in columns ( |
dmus |
Column (number or name) of DMUs (optional). By default, it is the
first column. If there is not any DMU column, then it must be |
inputs |
Columns (numbers or names) of inputs (optional). It prevails over |
outputs |
Columns (numbers or names) of outputs (optional). It prevails over |
nc_inputs |
A numeric vector containing the indices of non-controllable inputs. |
nc_outputs |
A numeric vector containing the indices of non-controllable outputs. |
nd_inputs |
A numeric vector containing the indices of non-discretionary inputs. |
nd_outputs |
A numeric vector containing the indices of non-discretionary outputs. |
ud_inputs |
A numeric vector containing the indices of undesirable (good) inputs. |
ud_outputs |
A numeric vector containing the indices of undesirable (bad) outputs. |
This function is deprecated. Use make_deadata_fuzzy
instead.
read_data_fuzzy(datadea, dmus = 1, inputs.mL = NULL, inputs.mR = NULL, inputs.dL = NULL, inputs.dR = NULL, outputs.mL = NULL, outputs.mR = NULL, outputs.dL = NULL, outputs.dR = NULL, nc_inputs = NULL, nc_outputs = NULL, nd_inputs = NULL, nd_outputs = NULL, ud_inputs = NULL, ud_outputs = NULL)
read_data_fuzzy(datadea, dmus = 1, inputs.mL = NULL, inputs.mR = NULL, inputs.dL = NULL, inputs.dR = NULL, outputs.mL = NULL, outputs.mR = NULL, outputs.dL = NULL, outputs.dR = NULL, nc_inputs = NULL, nc_outputs = NULL, nd_inputs = NULL, nd_outputs = NULL, ud_inputs = NULL, ud_outputs = NULL)
datadea |
Data frame with DEA data. |
dmus |
Column (number or name) of DMUs (optional). By default, it is the first
column. If there is not any DMU column, then it must be |
inputs.mL |
Where are (columns) the Alternatively to |
inputs.mR |
Where are (columns) the Alternatively to |
inputs.dL |
Where are (columns) the Alternatively to |
inputs.dR |
Where are (columns) the Alternatively to |
outputs.mL |
Analogous to |
outputs.mR |
Analogous to |
outputs.dL |
Analogous to |
outputs.dR |
Analogous to |
nc_inputs |
A numeric vector containing the indices of non-controllable inputs. |
nc_outputs |
A numeric vector containing the indices of non-controllable outputs. |
nd_inputs |
A numeric vector containing the indices of non-discretionary inputs. |
nd_outputs |
A numeric vector containing the indices of non-discretionary outputs. |
ud_inputs |
A numeric vector containing the indices of undesirable (good) inputs. |
ud_outputs |
A numeric vector containing the indices of undesirable (bad) outputs. |
This function is deprecated. Use make_malmquist
instead.
read_malmquist(datadea, nper = NULL, percol = NULL, arrangement = c("horizontal", "vertical"), ...)
read_malmquist(datadea, nper = NULL, percol = NULL, arrangement = c("horizontal", "vertical"), ...)
datadea |
Data frame with DEA data. |
nper |
Number of time periods (with dataset in wide format). |
percol |
Column of time period (with dataset in long format). |
arrangement |
Horizontal with data in wide format. Vertical with data in long format. |
... |
Other options to be passed to the |
Extract the reference set for each DMU (inefficient DMUs and efficicent DMUs that are combination of other efficient DMUs) from a DEA model solution.
references(deasol, thr = 1e-4)
references(deasol, thr = 1e-4)
deasol |
Object of class |
thr |
Tolerance threshold (for avoiding miss detection of efficient DMUs due to round off errors) |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
# Replication results model DEA1 in Tomkins and Green (1988). data("Departments") # Calculate Total income Departments$Total_income <- Departments[, 5] + Departments[, 6] + Departments[, 7] data_DEA1 <- make_deadata(Departments, inputs = 9, outputs = c(2, 3, 4, 12)) result <- model_basic(data_DEA1, orientation = "io", rts = "crs") references(result) # Table 3 (p.157)
# Replication results model DEA1 in Tomkins and Green (1988). data("Departments") # Calculate Total income Departments$Total_income <- Departments[, 5] + Departments[, 6] + Departments[, 7] data_DEA1 <- make_deadata(Departments, inputs = 9, outputs = c(2, 3, 4, 12)) result <- model_basic(data_DEA1, orientation = "io", rts = "crs") references(result) # Table 3 (p.157)
Extract the returns to scale.
rts(deamodel, thr = 1e-4)
rts(deamodel, thr = 1e-4)
deamodel |
Object of class |
thr |
Threshold for the tolerance for considering something equal to 1. Defaults to 1e-4. |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_basic(data_example, orientation = "io", rts ="crs") rts(result)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_basic(data_example, orientation = "io", rts ="crs") rts(result)
Simulated data of 35 DMUs with two inputs and one output.
data("Ruggiero2007")
data("Ruggiero2007")
Data frame with 35 rows and 4 columns. Definition of inputs (X) and outputs (Y):
Input 1
Input 2
Output 1
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Ruggiero J. (2007). Non-Discretionary Inputs. In: Zhu J., Cook W.D. (eds) Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston, MA. doi:10.1007/978-0-387-71607-7_5
# Example. Replication of results in Ruggiero (2007). data("Ruggiero2007") # the second input is a non-discretionary input datadea <- make_deadata(Ruggiero2007, ni = 2, no = 1, nd_inputs = 2) result <- model_basic(datadea, orientation = "io", rts = "crs") efficiencies(result) slacks(result)
# Example. Replication of results in Ruggiero (2007). data("Ruggiero2007") # the second input is a non-discretionary input datadea <- make_deadata(Ruggiero2007, ni = 2, no = 1, nd_inputs = 2) result <- model_basic(datadea, orientation = "io", rts = "crs") efficiencies(result) slacks(result)
Extract the slacks of the DMUs from a dea
or dea_fuzzy
solution.
slacks(deasol)
slacks(deasol)
deasol |
Object of class |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_multiplier(data_example, orientation = "io", rts = "crs") slacks(result)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_multiplier(data_example, orientation = "io", rts = "crs") slacks(result)
Summary of the results obtained by a conventional DEA model.
## S3 method for class 'dea' summary(object, exportExcel = FALSE, filename = NULL, returnList = FALSE, ...)
## S3 method for class 'dea' summary(object, exportExcel = FALSE, filename = NULL, returnList = FALSE, ...)
object |
An object of class |
exportExcel |
Logical value. If TRUE (FALSE by default) the results are also exported to an Excel file. |
filename |
Character string. Absolute file name (including path) of the exported Excel file. If NULL, then the file name will be "ResultsDEA" + timestamp.xlsx. |
returnList |
Logical value. If TRUE then the results are given as a list of data frames. If FALSE (default) all the data frames are merged into a single data frame. |
... |
Ignored. Used for compatibility issues. |
Depending on the model it returns a single data.frame containing: efficiencies, slacks, lambdas, targets, references or a list of data.frames with the cross-efficiencies computed with different methods (Arbitrary, Method II or Method III (see CITA)) or, in case the model is a Malmquist index, a single data.frame with the coefficients for the different periods.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Charnes, A.; Cooper, W.W.; Rhodes, E. (1981). "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through", Management Science, 27(6), 668-697. doi:10.1287/mnsc.27.6.668
data("PFT1981") # Selecting DMUs in Program Follow Through (PFT) PFT <- PFT1981[1:49, ] PFT <- make_deadata(PFT, inputs = 2:6, outputs = 7:9 ) eval_pft <- model_basic(PFT, orientation = "io", rts = "crs") summary(eval_pft)
data("PFT1981") # Selecting DMUs in Program Follow Through (PFT) PFT <- PFT1981[1:49, ] PFT <- make_deadata(PFT, inputs = 2:6, outputs = 7:9 ) eval_pft <- model_basic(PFT, orientation = "io", rts = "crs") summary(eval_pft)
Summary of the results obtained by a fuzzy DEA model.
## S3 method for class 'dea_fuzzy' summary(object, ..., exportExcel = FALSE, filename = NULL, returnList = FALSE)
## S3 method for class 'dea_fuzzy' summary(object, ..., exportExcel = FALSE, filename = NULL, returnList = FALSE)
object |
An object of class |
... |
Extra options. |
exportExcel |
Logical value. If TRUE (FALSE by default) the results are also exported to an Excel file. |
filename |
Character string. Absolute file name (including path) of the exported Excel file. If NULL, then the file name will be "ResultsDEA" + timestamp.xlsx. |
returnList |
Logical value. If TRUE then the results are given as a list of data frames. If FALSE (default) all the data frames are merged into a single data frame. |
If the model is that from Guo and Tanaka (modelfuzzy_guotanaka
), it returns a data.frame
with columns: DMU, alpha cuts and efficiencies.
For the possibilistic model (modelfuzzy_possibilistic
) it returns a data.frame with columns:
DMU, alpha-cuts, efficiencies and the corresponding lambda values
For the Kao-Liu model (modelfuzzy_kaoliu
), the result may depend on the crisp sub-model used.
It will contain a data.frame with the efficiencies (if any), the slacks and superslacks (if any),
the lambda values and the targets.
If exportExcel
is TRUE, then an Excel file will be created containing as many
sheets as necessary depending on the variables returned.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Leon, T.; Liern, V. Ruiz, J.; Sirvent, I. (2003). "A Possibilistic Programming Approach to the Assessment of Efficiency with DEA Models", Fuzzy Sets and Systems, 139, 407–419. doi:10.1016/S0165-0114(02)00608-5
data("Leon2003") data_example <- make_deadata_fuzzy(Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_possibilistic(data_example, h = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") summary(result)
data("Leon2003") data_example <- make_deadata_fuzzy(Leon2003, inputs.mL = 2, inputs.dL = 3, outputs.mL = 4, outputs.dL = 5) result <- modelfuzzy_possibilistic(data_example, h = seq(0, 1, by = 0.1), orientation = "io", rts = "vrs") summary(result)
Data of 17 supply chain (buyer-supplier relationship in manufacturing).
data("Supply_Chain")
data("Supply_Chain")
Data frame with 17 rows and 8 columns. Definition of inputs (X) and outputs (Y):
Inputs of buyers
Outputs of buyers, Inputs of suppliers
Outputs of suppliers
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Sanei, M.; Mamizadeh Chatghayeb, S. (2013). “Free Disposal Hull Models in Supply Chain Management”, International Journal of Mathematical Modelling and Computations, 3(3), 125-129.
# Example. FDH input-oriented. # Replication of results in Sanei and Mamizadeh Chatghayeb (2013) data("Supply_Chain") data_fdh1 <- make_deadata(Supply_Chain, dmus = 1, inputs = 2:4, outputs = 5:6) # by default orientation = "io" result <- model_fdh(data_fdh1) efficiencies(result)
# Example. FDH input-oriented. # Replication of results in Sanei and Mamizadeh Chatghayeb (2013) data("Supply_Chain") data_fdh1 <- make_deadata(Supply_Chain, dmus = 1, inputs = 2:4, outputs = 5:6) # by default orientation = "io" result <- model_fdh(data_fdh1) efficiencies(result)
Extract the targets of the DMUs from a dea
or dea_fuzzy
solution.
targets(deasol)
targets(deasol)
deasol |
Object of class |
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_multiplier(data_example, orientation = "io", rts = "crs") targets(result)
data("Coll_Blasco_2006") data_example <- make_deadata(Coll_Blasco_2006, ni = 2, no = 2) result <- model_multiplier(data_example, orientation = "io", rts = "crs") targets(result)
Data of 5 DMUs producing 2 outputs by using 2 inputs
data("Tone2001")
data("Tone2001")
Data frame with 5 rows and 5 columns. Definition of inputs (X) and outputs (Y):
Input1
Input2
Output1
Output2
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Tone, K. (2001). "A Slacks-Based Measure of Efficiency in Data Envelopment Analysis", European Journal of Operational Research, 130, 498-509. doi:10.1016/S0377-2217(99)00407-5
# Example. Replication of results in Tone (2001, p. 505) data("Tone2001") data_example <- make_deadata(Tone2001, ni = 2, no = 2) result <- model_sbmeff(data_example, orientation = "no", rts = "crs") efficiencies(result) slacks(result)
# Example. Replication of results in Tone (2001, p. 505) data("Tone2001") data_example <- make_deadata(Tone2001, ni = 2, no = 2) result <- model_sbmeff(data_example, orientation = "no", rts = "crs") efficiencies(result) slacks(result)
Data of 9 DMUs producing 2 outputs, being second output undesirable, by using 1 input.
data("Tone2003")
data("Tone2003")
Data frame with 9 rows and 4 columns. Definition of inputs (X) and outputs (Y):
Input
Output1 ("good" output)
Output2 (undesirable "bad" output)
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolos ([email protected]). Department of Business Mathematics
Rafael Benitez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Tone, K. (2003). "Dealing with undesirable outputs in DEA: A Slacks-Based Measure (SBM) approach", GRIPS Research Report Series I-2003-0005.
# Example. Replication of results in Tone (2003), pp 10-11. data("Tone2003") data_example <- make_deadata(Tone2003, ni = 1, no = 2, ud_outputs = 2) result <- model_sbmeff(data_example, rts = "vrs") efficiencies(result) targets(result)
# Example. Replication of results in Tone (2003), pp 10-11. data("Tone2003") data_example <- make_deadata(Tone2003, ni = 1, no = 2, ud_outputs = 2) result <- model_sbmeff(data_example, rts = "vrs") efficiencies(result) targets(result)
This function transforms a deadata or deadata_fuzzy class with undesirable inputs/outputs according to Seiford and Zhu (2002). Onwards, it is recommended to use a DEA model with variable returns to scale (vrs).
undesirable_basic(datadea, vtrans_i = NULL, vtrans_o = NULL)
undesirable_basic(datadea, vtrans_i = NULL, vtrans_o = NULL)
datadea |
A |
vtrans_i |
Numeric vector of translation for undesirable inputs. If |
vtrans_o |
Numeric vector of translation for undesirable outputs, analogous to
|
An list with the transformed object of class deadata
or deadata_fuzzy
and the corresponding translation vectors vtrans_i
and vtrans_o
.
Vicente Coll-Serrano ([email protected]). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós ([email protected]). Department of Business Mathematics
Rafael Benítez ([email protected]). Department of Business Mathematics
University of Valencia (Spain)
Seiford, L.M.; Zhu, J. (2002). “Modeling undesirable factors in efficiency evaluation”, European Journal of Operational Research 142, 16-20.
Hua Z.; Bian Y. (2007). DEA with Undesirable Factors. In: Zhu J., Cook W.D. (eds) Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis. Springer, Boston, MA.
data("Hua_Bian_2007") # The third output is an undesirable output. data_example <- make_deadata(Hua_Bian_2007, ni = 2, no = 3, ud_outputs = 3) # rts must be "vrs" for undesirable inputs/outputs: # Translation parameter is set to (max + 1) result <- model_basic(data_example, orientation = "oo", rts = "vrs")
data("Hua_Bian_2007") # The third output is an undesirable output. data_example <- make_deadata(Hua_Bian_2007, ni = 2, no = 3, ud_outputs = 3) # rts must be "vrs" for undesirable inputs/outputs: # Translation parameter is set to (max + 1) result <- model_basic(data_example, orientation = "oo", rts = "vrs")