
Package deSolve: Solving Initial Value Differential
Equations in R

Karline Soetaert
Royal Netherlands Institute

of Sea Research (NIOZ)
Yerseke, The Netherlands

Thomas Petzoldt
Technische Universität

Dresden
Germany

R. Woodrow Setzer
National Center for

Computational Toxicology
US Environmental Protection Agency

Abstract

R package deSolve (Soetaert, Petzoldt, and Setzer 2010b,c) the successor of R package
odesolve is a package to solve initial value problems (IVP) of:

• ordinary differential equations (ODE),
• differential algebraic equations (DAE),
• partial differential equations (PDE) and
• delay differential equations (DeDE).

The implementation includes stiff and nonstiff integration routines based on the ODE-
PACK FORTRAN codes (Hindmarsh 1983). It also includes fixed and adaptive time-step
explicit Runge-Kutta solvers and the Euler method (Press, Teukolsky, Vetterling, and
Flannery 1992), and the implicit Runge-Kutta method RADAU (Hairer and Wanner
2010).

In this vignette we outline how to implement differential equations as R -functions.
Another vignette (“compiledCode”) (Soetaert, Petzoldt, and Setzer 2008), deals with dif-
ferential equations implemented in lower-level languages such as FORTRAN, C, or C++,
which are compiled into a dynamically linked library (DLL) and loaded into R (R Devel-
opment Core Team 2008).

Note that another package, bvpSolve provides methods to solve boundary value prob-
lems (Soetaert, Cash, and Mazzia 2010a).

Keywords: differential equations, ordinary differential equations, differential algebraic equa-
tions, partial differential equations, initial value problems, R.

1. A simple ODE: chaos in the atmosphere

The Lorenz equations (Lorenz, 1963) were the first chaotic dynamic system to be described.
They consist of three differential equations that were assumed to represent idealized behavior
of the earth’s atmosphere. We use this model to demonstrate how to implement and solve
differential equations in R. The Lorenz model describes the dynamics of three state variables,
X, Y and Z. The model equations are:



2 Package deSolve: Solving Initial Value Differential Equations in R

dX

dt
= a · X + Y · Z

dY

dt
= b · (Y − Z)

dZ

dt
= −X · Y + c · Y − Z

with the initial conditions:

X(0) = Y (0) = Z(0) = 1

Where a, b and c are three parameters, with values of -8/3, -10 and 28 respectively.
Implementation of an IVP ODE in R can be separated in two parts: the model specification
and the model application. Model specification consists of:

• Defining model parameters and their values,

• Defining model state variables and their initial conditions,

• Implementing the model equations that calculate the rate of change (e.g. dX/dt) of the
state variables.

The model application consists of:

• Specification of the time at which model output is wanted,

• Integration of the model equations (uses R-functions from deSolve),

• Plotting of model results.

Below, we discuss the R-code for the Lorenz model.

1.1. Model specification

Model parameters

There are three model parameters: a, b, and c that are defined first. Parameters are stored
as a vector with assigned names and values:

> parameters <- c(a = -8/3,
+ b = -10,
+ c = 28)

State variables

The three state variables are also created as a vector, and their initial values given:



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 3

> state <- c(X = 1,
+ Y = 1,
+ Z = 1)

Model equations
The model equations are specified in a function (Lorenz) that calculates the rate of change
of the state variables. Input to the function is the model time (t, not used here, but required
by the calling routine), and the values of the state variables (state) and the parameters, in
that order. This function will be called by the R routine that solves the differential equations
(here we use ode, see below).
The code is most readable if we can address the parameters and state variables by their names.
As both parameters and state variables are ‘vectors’, they are converted into a list. The
statement with(as.list(c(state, parameters)), ...) then makes available the names
of this list.
The main part of the model calculates the rate of change of the state variables. At the end
of the function, these rates of change are returned, packed as a list. Note that it is necessary
to return the rate of change in the same ordering as the specification of the state
variables. This is very important. In this case, as state variables are specified X first,
then Y and Z, the rates of changes are returned as dX, dY, dZ.

> Lorenz<-function(t, state, parameters) {
+ with(as.list(c(state, parameters)),{
+ # rate of change
+ dX <- a*X + Y*Z
+ dY <- b * (Y-Z)
+ dZ <- -X*Y + c*Y - Z
+
+ # return the rate of change
+ list(c(dX, dY, dZ))
+ }) # end with(as.list ...
+ }

1.2. Model application

Time specification
We run the model for 100 days, and give output at 0.01 daily intervals. R’s function seq()
creates the time sequence:

> times <- seq(0, 100, by = 0.01)

Model integration
The model is solved using deSolve function ode, which is the default integration routine.
Function ode takes as input, a.o. the state variable vector (y), the times at which output is



4 Package deSolve: Solving Initial Value Differential Equations in R

required (times), the model function that returns the rate of change (func) and the parameter
vector (parms).
Function ode returns an object of class deSolve with a matrix that contains the values of the
state variables (columns) at the requested output times.

> library(deSolve)
> out <- ode(y = state, times = times, func = Lorenz, parms = parameters)
> head(out)

time X Y Z
[1,] 0.00 1.0000000 1.000000 1.000000
[2,] 0.01 0.9848912 1.012567 1.259918
[3,] 0.02 0.9731148 1.048823 1.523999
[4,] 0.03 0.9651593 1.107207 1.798314
[5,] 0.04 0.9617377 1.186866 2.088545
[6,] 0.05 0.9638068 1.287555 2.400161

Plotting results

Finally, the model output is plotted. We use the plot method designed for objects of class
deSolve, which will neatly arrange the figures in two rows and two columns; before plotting,
the size of the outer upper margin (the third margin) is increased (oma), such as to allow
writing a figure heading (mtext). First all model variables are plotted versus time, and
finally Z versus X:

> par(oma = c(0, 0, 3, 0))
> plot(out, xlab = "time", ylab = "-")
> plot(out[, "X"], out[, "Z"], pch = ".")
> mtext(outer = TRUE, side = 3, "Lorenz model", cex = 1.5)



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 5

0 20 40 60 80 100

0
10

20
30

40

X

time

−

0 20 40 60 80 100

−
10

0
10

20

Y

time

−

0 20 40 60 80 100

−
20

−
10

0
10

20

Z

time

−

0 10 20 30 40

−
20

−
10

0
10

20

out[, "X"]

ou
t[,

 "
Z

"]

Lorenz model

Figure 1: Solution of the ordinary differential equation - see text for R-code



6 Package deSolve: Solving Initial Value Differential Equations in R

2. Solvers for initial value problems of ordinary differential equations
Package deSolve contains several IVP ordinary differential equation solvers, that belong to
the most important classes of solvers. Most functions are based on original (FORTRAN) im-
plementations, e.g. the Backward Differentiation Formulae and Adams methods from ODE-
PACK (Hindmarsh 1983), or from (Brown, Byrne, and Hindmarsh 1989; Petzold 1983), the
implicit Runge-Kutta method RADAU (Hairer and Wanner 2010). The package contains also
a de novo implementation of several Runge-Kutta methods (Butcher 1987; Press et al. 1992;
Hairer, Norsett, and Wanner 2009).
All integration methods1 can be triggered from function ode, by setting ode’s argument
method), or can be run as stand-alone functions. Moreover, for each integration routine,
several options are available to optimise performance.
For instance, the next statements will use integration method radau to solve the model, and
set the tolerances to a higher value than the default. Both statements are the same:

> outb <- radau(state, times, Lorenz, parameters, atol = 1e-4, rtol = 1e-4)
> outc <- ode(state, times, Lorenz, parameters, method = "radau",
+ atol = 1e-4, rtol = 1e-4)

The default integration method, based on the FORTRAN code LSODA is one that switches au-
tomatically between stiff and non-stiff systems (Petzold 1983). This is a very robust method,
but not necessarily the most efficient solver for one particular problem. See (Soetaert et al.
2010b) for more information about when to use which solver in deSolve. For most cases, the
default solver, ode and using the default settings will do. Table 1 also gives a short overview
of the available methods.
To show how to trigger the various methods, we solve the model with several integration
routines, each time printing the time it took (in seconds) to find the solution:

> print(system.time(out1 <- rk4 (state, times, Lorenz, parameters)))

user system elapsed
0.478 0.000 0.477

> print(system.time(out2 <- lsode (state, times, Lorenz, parameters)))

user system elapsed
0.178 0.000 0.178

> print(system.time(out <- lsoda (state, times, Lorenz, parameters)))

user system elapsed
0.235 0.000 0.235

> print(system.time(out <- lsodes(state, times, Lorenz, parameters)))
1except zvode, the solver used for systems containing complex numbers.



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 7

user system elapsed
0.164 0.000 0.164

> print(system.time(out <- daspk (state, times, Lorenz, parameters)))

user system elapsed
0.254 0.000 0.255

> print(system.time(out <- vode (state, times, Lorenz, parameters)))

user system elapsed
0.159 0.000 0.158

2.1. Runge-Kutta methods and Euler

The explicit Runge-Kutta methods are de novo implementations in C, based on the Butcher
tables (Butcher 1987). They comprise simple Runge-Kutta formulae (Euler’s method euler,
Heun’s method rk2, the classical 4th order Runge-Kutta, rk4) and several Runge-Kutta pairs
of order 3(2) to order 8(7). The embedded, explicit methods are according to Fehlberg (1967)
(rk..f, ode45), Dormand and Prince (1980, 1981) (rk..dp.), Bogacki and Shampine (1989)
(rk23bs, ode23) and Cash and Karp (1990) (rk45ck), where ode23 and ode45 are aliases for
the popular methods rk23bs resp. rk45dp7.
With the following statement all implemented methods are shown:

> rkMethod()

[1] "euler" "rk2" "rk4" "rk23" "rk23bs" "rk34f"
[7] "rk45f" "rk45ck" "rk45e" "rk45dp6" "rk45dp7" "rk78dp"

[13] "rk78f" "irk3r" "irk5r" "irk4hh" "irk6kb" "irk4l"
[19] "irk6l" "ode23" "ode45"

This list also contains implicit Runge-Kutta’s (irk..), but they are not yet optimally coded.
The only well-implemented implicit Runge-Kutta is the radau method (Hairer and Wanner
2010) that will be discussed in the section dealing with differential algebraic equations.
The properties of a Runge-Kutta method can be displayed as follows:

> rkMethod("rk23")

$ID
[1] "rk23"

$varstep
[1] TRUE

$FSAL



8 Package deSolve: Solving Initial Value Differential Equations in R

[1] FALSE

$A
[,1] [,2] [,3]

[1,] 0.0 0 0
[2,] 0.5 0 0
[3,] -1.0 2 0

$b1
[1] 0 1 0

$b2
[1] 0.1666667 0.6666667 0.1666667

$c
[1] 0.0 0.5 2.0

$stage
[1] 3

$Qerr
[1] 2

attr(,"class")
[1] "list" "rkMethod"

Here varstep informs whether the method uses a variable time-step; FSAL whether the first
same as last strategy is used, while stage and Qerr give the number of function evaluations
needed for one step, and the order of the local truncation error. A, b1, b2, c are the
coefficients of the Butcher table. Two formulae (rk45dp7, rk45ck) support dense output.
It is also possible to modify the parameters of a method (be very careful with this) or define
and use a new Runge-Kutta method:

> func <- function(t, x, parms) {
+ with(as.list(c(parms, x)),{
+ dP <- a * P - b * C * P
+ dC <- b * P * C - c * C
+ res <- c(dP, dC)
+ list(res)
+ })
+ }
> rKnew <- rkMethod(ID = "midpoint",
+ varstep = FALSE,
+ A = c(0, 1/2),
+ b1 = c(0, 1),
+ c = c(0, 1/2),
+ stage = 2,



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 9

+ Qerr = 1
+ )
> out <- ode(y = c(P = 2, C = 1), times = 0:100, func,
+ parms = c(a = 0.1, b = 0.1, c = 0.1), method = rKnew)
> head(out)

time P C
[1,] 0 2.000000 1.000000
[2,] 1 1.990000 1.105000
[3,] 2 1.958387 1.218598
[4,] 3 1.904734 1.338250
[5,] 4 1.830060 1.460298
[6,] 5 1.736925 1.580136

Fixed time-step methods

There are two explicit methods that do not adapt the time step: the euler method and the
rk4 method.
They are implemented in two ways:

• as a rkMethod of the general rk solver. In this case the time step used can be specified
independently from the times argument, by setting argument hini. Function ode uses
this general code.

• as special solver codes euler and rk4. These implementations are simplified and with
less options to avoid overhead. The timestep used is determined by the time increment
in the times argument.

For example, the next two statements both trigger the Euler method, the first using the
“special” code with a time step = 1, as imposed by the times argument, the second using the
generalized method with a time step set by hini. Unsurprisingly, the first solution method
completely fails (the time step = 1 is much too large for this problem).

out <- euler(y = state, times = 0:40, func = Lorenz, parms = parameters)
outb <- ode(y = state, times = 0:40, func = Lorenz, parms = parameters,

method = "euler", hini = 0.01)

2.2. Model diagnostics and summaries

Function diagnostics prints several diagnostics of the simulation to the screen. For the
Runge-Kutta and lsode routine called above they are:

> diagnostics(out1)

--------------------
rk return code



10 Package deSolve: Solving Initial Value Differential Equations in R

--------------------

return code (idid) = 0
Integration was successful.

--------------------
INTEGER values
--------------------

1 The return code : 0
2 The number of steps taken for the problem so far: 10000
3 The number of function evaluations for the problem so far: 40001

18 The order (or maximum order) of the method: 4

> diagnostics(out2)

--------------------
lsode return code
--------------------

return code (idid) = 2
Integration was successful.

--------------------
INTEGER values
--------------------

1 The return code : 2
2 The number of steps taken for the problem so far: 12778
3 The number of function evaluations for the problem so far: 16633
5 The method order last used (successfully): 5
6 The order of the method to be attempted on the next step: 5
7 If return flag =-4,-5: the largest component in error vector 0
8 The length of the real work array actually required: 58
9 The length of the integer work array actually required: 23

14 The number of Jacobian evaluations and LU decompositions so far: 721

--------------------
RSTATE values
--------------------

1 The step size in t last used (successfully): 0.01
2 The step size to be attempted on the next step: 0.01
3 The current value of the independent variable which the solver has reached: 100.0072
4 Tolerance scale factor > 1.0 computed when requesting too much accuracy: 0

There is also a summary method for deSolve objects. This is especially handy for multi-
dimensional problems (see below)



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 11

> summary(out1)

X Y Z
Min. 9.617372e-01 -17.965128 -24.107629
1st Qu. 1.702231e+01 -7.347550 -7.151654
Median 2.305675e+01 -1.946728 -1.450773
Mean 2.368979e+01 -1.385164 -1.401846
3rd Qu. 3.020200e+01 3.606680 2.984168
Max. 4.783395e+01 19.555041 27.183473
N 1.000100e+04 10001.000000 10001.000000
sd 8.501340e+00 7.846889 8.929121



12 Package deSolve: Solving Initial Value Differential Equations in R

3. Partial differential equations
As package deSolve includes integrators that deal efficiently with arbitrarily sparse and
banded Jacobians, it is especially well suited to solve initial value problems resulting from 1,
2 or 3-dimensional partial differential equations (PDE), using the method-of-lines approach.
The PDEs are first written as ODEs, using finite differences. This can be efficiently done
with functions from R-package ReacTran (Soetaert and Meysman 2010). However, here we
will create the finite differences in R-code.
Several special-purpose solvers are included in deSolve:

• ode.band integrates 1-dimensional problems comprizing one species,

• ode.1D integrates 1-dimensional problems comprizing one or many species,

• ode.2D integrates 2-dimensional problems,

• ode.3D integrates 3-dimensional problems.

As an example, consider the Aphid model described in Soetaert and Herman (2009). It is a
model where aphids (a pest insect) slowly diffuse and grow on a row of plants. The model
equations are:

∂N

∂t
= −∂F lux

∂ x
+ g · N

and where the diffusive flux is given by:

Flux = −D
∂N

∂ x

with boundary conditions

Nx=0 = Nx=60 = 0

and initial condition

Nx = 0 for x ̸= 30
Nx = 1 for x = 30

In the method of lines approach, the spatial domain is subdivided in a number of boxes and
the equation is discretized as:

dNi

dt
= −Fluxi,i+1 − Fluxi−1,i

∆xi
+ g · Ni

with the flux on the interface equal to:

Fluxi−1,i = −Di−1,i · Ni − Ni−1
∆xi−1,i



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 13

Note that the values of state variables (here densities) are defined in the centre of boxes (i),
whereas the fluxes are defined on the box interfaces. We refer to Soetaert and Herman (2009)
for more information about this model and its numerical approximation.
Here is its implementation in R. First the model equations are defined:

> Aphid <- function(t, APHIDS, parameters) {
+ deltax <- c (0.5, rep(1, numboxes - 1), 0.5)
+ Flux <- -D * diff(c(0, APHIDS, 0)) / deltax
+ dAPHIDS <- -diff(Flux) / delx + APHIDS * r
+
+ # the return value
+ list(dAPHIDS )
+ } # end

Then the model parameters and spatial grid are defined

> D <- 0.3 # m2/day diffusion rate
> r <- 0.01 # /day net growth rate
> delx <- 1 # m thickness of boxes
> numboxes <- 60
> # distance of boxes on plant, m, 1 m intervals
> Distance <- seq(from = 0.5, by = delx, length.out = numboxes)

Aphids are initially only present in two central boxes:

> # Initial conditions: # ind/m2
> APHIDS <- rep(0, times = numboxes)
> APHIDS[30:31] <- 1
> state <- c(APHIDS = APHIDS) # initialise state variables

The model is run for 200 days, producing output every day; the time elapsed in seconds to
solve this 60 state-variable model is estimated (system.time):

> times <-seq(0, 200, by = 1)
> print(system.time(
+ out <- ode.1D(state, times, Aphid, parms = 0, nspec = 1, names = "Aphid")
+ ))

user system elapsed
0.013 0.000 0.013

Matrix out consist of times (1st column) followed by the densities (next columns).

> head(out[,1:5])



14 Package deSolve: Solving Initial Value Differential Equations in R

time APHIDS1 APHIDS2 APHIDS3 APHIDS4
[1,] 0 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
[2,] 1 1.667194e-55 9.555028e-52 2.555091e-48 4.943131e-45
[3,] 2 3.630860e-41 4.865105e-39 5.394287e-37 5.053775e-35
[4,] 3 2.051210e-34 9.207997e-33 3.722714e-31 1.390691e-29
[5,] 4 1.307456e-30 3.718598e-29 9.635350e-28 2.360716e-26
[6,] 5 6.839152e-28 1.465288e-26 2.860056e-25 5.334391e-24

The summary method gives the mean, min, max, ... of the entire 1-D variable:

> summary(out)

Aphid
Min. 0.000000e+00
1st Qu. 1.705086e-03
Median 4.051383e-02
Mean 1.062271e-01
3rd Qu. 1.931426e-01
Max. 1.000000e+00
N 1.206000e+04
sd 1.303048e-01

Finally, the output is plotted. It is simplest to do this with deSolve’s S3-method image

image(out, method = "filled.contour", grid = Distance,
xlab = "time, days", ylab = "Distance on plant, m",
main = "Aphid density on a row of plants")

As this is a 1-D model, it is best solved with deSolve function ode.1D. A multi-species IVP
example can be found in Soetaert and Herman (2009). For 2-D and 3-D problems, we refer
to the help-files of functions ode.2D and ode.3D.
The output of one-dimensional models can also be plotted using S3-method plot.1D and
matplot.1D. In both cases, we can simply take a subset of the output, and add observations.

> data <- cbind(dist = c(0,10, 20, 30, 40, 50, 60),
+ Aphid = c(0,0.1,0.25,0.5,0.25,0.1,0))

> par (mfrow = c(1,2))
> matplot.1D(out, grid = Distance, type = "l", mfrow = NULL,
+ subset = time %in% seq(0, 200, by = 10),
+ obs = data, obspar = list(pch = 18, cex = 2, col="red"))
> plot.1D(out, grid = Distance, type = "l", mfrow = NULL,
+ subset = time == 100,
+ obs = data, obspar = list(pch = 18, cex = 2, col="red"))



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 15

Figure 2: Solution of the 1-dimensional aphid model - see text for R -code



16 Package deSolve: Solving Initial Value Differential Equations in R

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aphid

x

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

A
ph

id

Figure 3: Solution of the Aphid model - plotted with matplot.1D, plot.1D - see text for R-code



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 17

4. Differential algebraic equations
Package deSolve contains two functions that solve initial value problems of differential alge-
braic equations. They are:

• radau which implements the implicit Runge-Kutta RADAU5 (Hairer and Wanner 2010),

• daspk, based on the backward differentiation code DASPK (Brenan, Campbell, and
Petzold 1996).

Function radau needs the input in the form My′ = f(t, y, y′) where M is the mass matrix.
Function daspk also supports this input, but can also solve problems written in the form
F (t, y, y′) = 0.
radau solves problems up to index 3; daspk solves problems of index ≤ 1.

4.1. DAEs of index maximal 1
Function daspk from package deSolve solves (relatively simple) DAEs of index2 maximal 1.
The DAE has to be specified by the residual function instead of the rates of change (as in
ODE). Consider the following simple DAE:

dy1
dt

= −y1 + y2

y1 · y2 = t

where the first equation is a differential, the second an algebraic equation. To solve it, it is
first rewritten as residual functions:

0 = dy1
dt

+ y1 − y2

0 = y1 · y2 − t

In R we write:

> daefun <- function(t, y, dy, parameters) {
+ res1 <- dy[1] + y[1] - y[2]
+ res2 <- y[2] * y[1] - t
+
+ list(c(res1, res2))
+ }
> library(deSolve)
> yini <- c(1, 0)
> dyini <- c(1, 0)
> times <- seq(0, 10, 0.1)
> ## solver
> system.time(out <- daspk(y = yini, dy = dyini,
+ times = times, res = daefun, parms = 0))

2note that many – apparently simple – DAEs are higher-index DAEs



18 Package deSolve: Solving Initial Value Differential Equations in R

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

dae

time

y

Figure 4: Solution of the differential algebraic equation model - see text for R-code

user system elapsed
0.005 0.000 0.005

> matplot(out[,1], out[,2:3], type = "l", lwd = 2,
+ main = "dae", xlab = "time", ylab = "y")

4.2. DAEs of index up to three

Function radau from package deSolve can solve DAEs of index up to three provided that
they can be written in the form Mdy/dt = f(t, y).
Consider the well-known pendulum equation:

x′ = u

y′ = v

u′ = −λx

v′ = −λy − 9.8
0 = x2 + y2 − 1

where the dependent variables are x, y, u, v and λ.
Implemented in R to be used with function radau this becomes:

> pendulum <- function (t, Y, parms) {
+ with (as.list(Y),
+ list(c(u,
+ v,
+ -lam * x,
+ -lam * y - 9.8,
+ x^2 + y^2 -1



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 19

+ ))
+ )
+ }

A consistent set of initial conditions are:

> yini <- c(x = 1, y = 0, u = 0, v = 1, lam = 1)

and the mass matrix M :

> M <- diag(nrow = 5)
> M[5, 5] <- 0
> M

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 0

Function radau requires that the index of each equation is specified; there are 2 equations of
index 1, two of index 2, one of index 3:

> index <- c(2, 2, 1)
> times <- seq(from = 0, to = 10, by = 0.01)
> out <- radau (y = yini, func = pendulum, parms = NULL,
+ times = times, mass = M, nind = index)

> plot(out, type = "l", lwd = 2)
> plot(out[, c("x", "y")], type = "l", lwd = 2)



20 Package deSolve: Solving Initial Value Differential Equations in R

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

time

0 2 4 6 8 10

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

y

time

0 2 4 6 8 10
−

4
−

2
0

2
4

u

time

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

v

time

0 2 4 6 8 10

0
5

10
15

20
25

30

lam

time

−1.0 0.0 0.5 1.0

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

x

y

Figure 5: Solution of the pendulum problem, an index 3 differential algebraic equation using
radau - see text for R-code



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 21

5. Integrating systems containing complex numbers, function zvode
Function zvode solves ODEs that are composed of complex variables. We use zvode to solve
the following system of 2 ODEs:

dz

dt
= i · z

dw

dt
= −i · w · w · z

where

w(0) = 1/2.1
z(0) = 1

on the interval t = [0, 2π]

> ZODE2 <- function(Time, State, Pars) {
+ with(as.list(State), {
+ df <- 1i * f
+ dg <- -1i * g * g * f
+ return(list(c(df, dg)))
+ })
+ }
> yini <- c(f = 1+0i, g = 1/2.1+0i)
> times <- seq(0, 2 * pi, length = 100)
> out <- zvode(func = ZODE2, y = yini, parms = NULL, times = times,
+ atol = 1e-10, rtol = 1e-10)

The analytical solution is:

f(t) = exp(1i · t)

and

g(t) = 1/(f(t) + 1.1)

The numerical solution, as produced by zvode matches the analytical solution:

> analytical <- cbind(f = exp(1i*times), g = 1/(exp(1i*times)+1.1))
> tail(cbind(out[,2], analytical[,1]))

[,1] [,2]
[95,] 0.9500711-3.120334e-01i 0.9500711-3.120334e-01i
[96,] 0.9679487-2.511480e-01i 0.9679487-2.511480e-01i
[97,] 0.9819287-1.892512e-01i 0.9819287-1.892512e-01i
[98,] 0.9919548-1.265925e-01i 0.9919548-1.265925e-01i
[99,] 0.9979867-6.342392e-02i 0.9979867-6.342392e-02i

[100,] 1.0000000+1.984294e-09i 1.0000000-2.449294e-16i



22 Package deSolve: Solving Initial Value Differential Equations in R

6. Making good use of the integration options
The solvers from ODEPACK can be fine-tuned if it is known whether the problem is stiff or
non-stiff, or if the structure of the Jacobian is sparse. We repeat the example from lsode to
show how we can make good use of these options.
The model describes the time evolution of 5 state variables:

> f1 <- function (t, y, parms) {
+ ydot <- vector(len = 5)
+
+ ydot[1] <- 0.1*y[1] -0.2*y[2]
+ ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]
+ ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]
+ ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]
+ ydot[5] <- -0.3*y[4] +0.1*y[5]
+
+ return(list(ydot))
+ }

and the initial conditions and output times are:

> yini <- 1:5
> times <- 1:20

The default solution, using lsode assumes that the model is stiff, and the integrator generates
the Jacobian, which is assummed to be full:

> out <- lsode(yini, times, f1, parms = 0, jactype = "fullint")

It is possible for the user to provide the Jacobian. Especially for large problems this can
result in substantial time savings. In a first case, the Jacobian is written as a full matrix:

> fulljac <- function (t, y, parms) {
+ jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,
+ data = c(0.1, -0.2, 0 , 0 , 0 ,
+ -0.3, 0.1, -0.2, 0 , 0 ,
+ 0 , -0.3, 0.1, -0.2, 0 ,
+ 0 , 0 , -0.3, 0.1, -0.2,
+ 0 , 0 , 0 , -0.3, 0.1))
+ return(jac)
+ }

and the model solved as:

> out2 <- lsode(yini, times, f1, parms = 0, jactype = "fullusr",
+ jacfunc = fulljac)



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 23

The Jacobian matrix is banded, with one nonzero band above (up) and one below(down) the
diagonal. First we let lsode estimate the banded Jacobian internally (jactype = "bandint"):

> out3 <- lsode(yini, times, f1, parms = 0, jactype = "bandint",
+ bandup = 1, banddown = 1)

It is also possible to provide the nonzero bands of the Jacobian in a function:

> bandjac <- function (t, y, parms) {
+ jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,
+ data = c( 0 , -0.2, -0.2, -0.2, -0.2,
+ 0.1, 0.1, 0.1, 0.1, 0.1,
+ -0.3, -0.3, -0.3, -0.3, 0))
+ return(jac)
+ }

in which case the model is solved as:

> out4 <- lsode(yini, times, f1, parms = 0, jactype = "bandusr",
+ jacfunc = bandjac, bandup = 1, banddown = 1)

Finally, if the model is specified as “non-stiff” (by setting mf=10), there is no need to specify
the Jacobian:

> out5 <- lsode(yini, times, f1, parms = 0, mf = 10)



24 Package deSolve: Solving Initial Value Differential Equations in R

7. Events and roots
As from version 1.6, events are supported. Events occur when the values of state variables
are instantaneously changed. They can be specified as a data.frame, or in a function. Events
can also be triggered by a root function.
Several integrators (lsoda, lsodar, lsode, lsodes and radau) can estimate the root of one
or more functions. For the first 4 integration methods, the root finding algorithm is based
on the algorithm in solver LSODAR, and implemented in FORTRAN. For radau, the root
solving algorithm is written in C-code, and it works slightly different. Thus, some problems
involving roots may be more efficient to solve with either lsoda, lsode, or lsodes, while
other problems are more efficiently solved with radau.
If a root is found, then the integration will be terminated, unless an event function is defined.
A help file with information on roots and events can be opened by typing ?events or ?roots.

7.1. Event specified in a data.frame
In this example, two state variables with constant decay are modeled:

> eventmod <- function(t, var, parms) {
+ list(dvar = -0.1*var)
+ }
> yini <- c(v1 = 1, v2 = 2)
> times <- seq(0, 10, by = 0.1)

At time 1 and 9 a value is added to variable v1, at time 1 state variable v2 is multiplied
with 2, while at time 5 the value of v2 is replaced with 3. These events are specified in a
data.frame, eventdat:

> eventdat <- data.frame(var = c("v1", "v2", "v2", "v1"), time = c(1, 1, 5, 9),
+ value = c(1, 2, 3, 4), method = c("add", "mult", "rep", "add"))
> eventdat

var time value method
1 v1 1 1 add
2 v2 1 2 mult
3 v2 5 3 rep
4 v1 9 4 add

The model is solved with ode:

> out <- ode(func = eventmod, y = yini, times = times, parms = NULL,
+ events = list(data = eventdat))

> plot(out, type = "l", lwd = 2)

7.2. Event triggered by a root function
This model describes the position (y1) and velocity (y2) of a bouncing ball:



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 25

0 2 4 6 8 10

1
2

3
4

v1

time

0 2 4 6 8 10

2.
0

2.
5

3.
0

3.
5

v2

time

Figure 6: A simple model that contains events

> ballode<- function(t, y, parms) {
+ dy1 <- y[2]
+ dy2 <- -9.8
+ list(c(dy1, dy2))
+ }

An event is triggered when the ball hits the ground (height = 0) Then velocity (y2) is reversed
and reduced by 10 percent. The root function, y[1] = 0, triggers the event:

> root <- function(t, y, parms) y[1]

The event function imposes the bouncing of the ball

> event <- function(t, y, parms) {
+ y[1]<- 0
+ y[2]<- -0.9 * y[2]
+ return(y)
+ }

After specifying the initial values and times, the model is solved, here using lsode.

> yini <- c(height = 0, v = 20)
> times <- seq(from = 0, to = 20, by = 0.01)
> out <- lsode(times = times, y = yini, func = ballode, parms = NULL,
+ events = list(func = event, root = TRUE), rootfun = root)

> plot(out, which = "height", type = "l",lwd = 2,
+ main = "bouncing ball", ylab = "height")



26 Package deSolve: Solving Initial Value Differential Equations in R

0 5 10 15 20

0
5

10
15

20

bouncing ball

time

he
ig

ht

Figure 7: A model, with event triggered by a root function

7.3. Events and time steps

The use of events requires that all event times are contained in the output time steps, otherwise
such events would be skipped. This sounds easy but sometimes problems can occur due to
the limited accuracy of floating point arithmetics of the computer. To make things work as
excpected, two requirements have to be fulfilled:

1. all event times have to be contained exactly in times, i.e. with the maximum possible
accuracy of floating point arithmetics.

2. two time steps should not be too close together, otherwise numerical problems would
occur during the integration.

Starting from version 1.10 of deSolve this is now checked (and if necessary also fixed) au-
tomatically by the solver functions. A warning is issued to inform the user about possible
problems, especially that the output time steps were now adjusted and therefore different
from the ones originally specified by the user. This means that all values of eventtimes are
now contained but only the subset of times that have no exact or “rather close” neighbors in
eventtimes.
Instead of relying on this automatism, matching times and eventtimes can also be managed
by the user, either by appropriate rounding or by using function cleanEventTimes shown
below.
Let’s assume we have a vector of time steps times and another vector of event times eventtimes:

> times <- seq(0, 1, 0.1)
> eventtimes <- c(0.7, 0.9)

If we now check whether the eventtimes are in times:

> eventtimes %in% times



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 27

[1] FALSE TRUE

we get the surprising answer that this is only partly the case, because seq made small nu-
merical errors. The easiest method to get rid of this is rounding:

> times2 <- round(times, 1)
> times - times2

[1] 0.000000e+00 0.000000e+00 0.000000e+00 5.551115e-17 0.000000e+00
[6] 0.000000e+00 1.110223e-16 1.110223e-16 0.000000e+00 0.000000e+00

[11] 0.000000e+00

The last line shows us that the error was always smaller than, say 10−15, what is typical for
ordinary double precision arithmetics. The accuracy of the machine can be determined with
.Machine$double.eps.
To check if all eventtimes are now contained in the new times vector times2, we use:

> eventtimes %in% times2

[1] TRUE TRUE

or

> all(eventtimes %in% times2)

[1] TRUE

and see that everything is o.k. now.
In few cases, rounding may not work properly, for example if a pharmacokinetic model is
simulated with a daily time step, but drug injection occurs at precisely fixed times within the
day. Then one has to add all additional event times to the ordinary time stepping:

> times <- 1:10
> eventtimes <- c(1.3, 3.4, 4, 7.9, 8.5)
> newtimes <- sort(unique(c(times, eventtimes)))

If, however, an event and a time step are almost (but not exactly) the same, then it is more
safe to use:

> times <- 1:10
> eventtimes <- c(1.3, 3.4, 4, 7.9999999999999999, 8.5)
> newtimes <- sort(c(eventtimes, cleanEventTimes(times, eventtimes)))

because cleanEventTimes removes not only the doubled 4 (like unique, but also the “almost
doubled” 8, while keeping the exact event time. The tolerance of cleanEventTimes can be
adjusted using an optional argument eps.
As said, this is normally done automatically by the differential equation solvers and in most
cases appropriate rounding will be sufficient to get rid of the warnings.



28 Package deSolve: Solving Initial Value Differential Equations in R

8. Delay differential equations
As from deSolve version 1.7, time lags are supported, and a new general solver for delay
differential equations, dede has been added.
We implement the lemming model, example 6 from (Shampine and Thompson 2000).
Function lagvalue calculates the value of the state variable at t - 0.74. As long a these lag
values are not known, the value 19 is assigned to the state variable. Note that the simulation
starts at time = - 0.74.

> library(deSolve)
> #-----------------------------
> # the derivative function
> #-----------------------------
> derivs <- function(t, y, parms) {
+ if (t < 0)
+ lag <- 19
+ else
+ lag <- lagvalue(t - 0.74)
+
+ dy <- r * y * (1 - lag/m)
+ list(dy, dy = dy)
+ }
> #-----------------------------
> # parameters
> #-----------------------------
>
> r <- 3.5; m <- 19
> #-----------------------------
> # initial values and times
> #-----------------------------
>
> yinit <- c(y = 19.001)
> times <- seq(-0.74, 40, by = 0.01)
> #-----------------------------
> # solve the model
> #-----------------------------
>
> yout <- dede(y = yinit, times = times, func = derivs,
+ parms = NULL, atol = 1e-10)

> plot(yout, which = 1, type = "l", lwd = 2,
+ main = "Lemming model", mfrow = c(1,2))
> plot(yout[,2], yout[,3], xlab = "y", ylab = "dy", type = "l", lwd = 2)



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 29

0 10 20 30 40

0
20

40
60

80
10

0

Lemming model

time

0 20 40 60 80 100

−
20

0
0

10
0

y

dy

Figure 8: A delay differential equation model



30 Package deSolve: Solving Initial Value Differential Equations in R

9. Discrete time models, difference equations
There is one special-purpose solver, triggered with method = "iteration" which can be used
in cases where the new values of the state variables are directly estimated by the user, and
need not be found by numerical integration.
This is for instance useful when the model consists of difference equations, or for 1-D models
when transport is implemented by an implicit or a semi-implicit method.
We give here an example of a discrete time model, represented by a difference equation: the
Teasel model as from Soetaert and Herman (2009, p287).
The dynamics of this plant is described by 6 stages and the transition from one stage to
another is in a transition matrix:
We define the stages and the transition matrix first:

> Stages <- c("DS 1yr", "DS 2yr", "R small", "R medium", "R large", "F")
> NumStages <- length(Stages)
> # Population matrix
> A <- matrix(nrow = NumStages, ncol = NumStages, byrow = TRUE, data = c(
+ 0, 0, 0, 0, 0, 322.38,
+ 0.966, 0, 0, 0, 0, 0 ,
+ 0.013, 0.01, 0.125, 0, 0, 3.448 ,
+ 0.007, 0, 0.125, 0.238, 0, 30.170,
+ 0.008, 0, 0.038, 0.245, 0.167, 0.862 ,
+ 0, 0, 0, 0.023, 0.75, 0 ) )

The difference function is defined as usual, but does not return the “rate of change” but rather
the new relative stage densities are returned. Thus, each time step, the updated values are
divided by the summed densities:

> Teasel <- function (t, y, p) {
+ yNew <- A %*% y
+ list (yNew / sum(yNew))
+ }

The model is solved using method “iteration”:

> out <- ode(func = Teasel, y = c(1, rep(0, 5) ), times = 0:50,
+ parms = 0, method = "iteration")

and plotted using R-function matplot:

> matplot(out[,1], out[,-1], main = "Teasel stage distribution", type = "l")
> legend("topright", legend = Stages, lty = 1:6, col = 1:6)

10. Plotting deSolve Objects
There are S3 plot and image methods for plotting 0-D (plot), and 1-D and 2-D model output
(image) as generated with ode, ode.1D, ode.2D.



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 31

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Teasel stage distribution

out[, 1]

ou
t[,

 −
1]

DS 1yr
DS 2yr
R small
R medium
R large
F

Figure 9: A difference model solved with method = “iteration”

How to use it and examples can be found by typing ?plot.deSolve.

10.1. Plotting Multiple Scenario’s
The plot method for deSolve objects can also be used to compare different scenarios, e.g
from the same model but with different sets of parameters or initial values, with one single
call to plot.
As an example we implement the simple combustion model, which can be found on https:
//www.scholarpedia.org/article/Stiff_systems:

y′ = y2 · (1 − y)

The model is run with 4 different values of the initial conditions: y = 0.01, 0.02, 0.03, 0.04 and
written to deSolve objects out, out2, out3, out4.

> library(deSolve)
> combustion <- function (t, y, parms)
+ list(y^2 * (1-y) )

> yini <- 0.01
> times <- 0 : 200

> out <- ode(times = times, y = yini, parms = 0, func = combustion)
> out2 <- ode(times = times, y = yini*2, parms = 0, func = combustion)

https://www.scholarpedia.org/article/Stiff_systems
https://www.scholarpedia.org/article/Stiff_systems


32 Package deSolve: Solving Initial Value Differential Equations in R

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

combustion

time

yini*i

1
2
3
4

Figure 10: Plotting 4 outputs in one figure

> out3 <- ode(times = times, y = yini*3, parms = 0, func = combustion)
> out4 <- ode(times = times, y = yini*4, parms = 0, func = combustion)

The different scenarios are plotted at once, and a suitable legend is written.

> plot(out, out2, out3, out4, main = "combustion")
> legend("bottomright", lty = 1:4, col = 1:4, legend = 1:4, title = "yini*i")

10.2. Plotting Output with Observations

With the help of the optional argument obs it is possible to specify observed data that should
be added to a deSolve plot.
We exemplify this using the ccl4model in package deSolve. (see ?ccl4model for what this
is about). This model example has been implemented in compiled code. An observed data
set is also available, called ccl4data. It contains toxicant concentrations in a chamber where
rats were dosed with CCl4.

> head(ccl4data)

time initconc animal ChamberConc
1 0.083 1000 A 828.4376
2 0.167 1000 A 779.6795
3 0.333 1000 A 713.8045
4 0.500 1000 A 672.0502
5 0.667 1000 A 631.9522
6 0.833 1000 A 600.6975



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 33

We select the data from animal “A”:

> obs <- subset (ccl4data, animal == "A", c(time, ChamberConc))
> names(obs) <- c("time", "CP")
> head(obs)

time CP
1 0.083 828.4376
2 0.167 779.6795
3 0.333 713.8045
4 0.500 672.0502
5 0.667 631.9522
6 0.833 600.6975

After assigning values to the parameters and providing initial conditions, the ccl4model can
be run. We run the model three times, each time with a different value for the first parameter.
Output is written to matrices out out2, and out3.

> parms <- c(0.182, 4.0, 4.0, 0.08, 0.04, 0.74, 0.05, 0.15, 0.32, 16.17,
+ 281.48, 13.3, 16.17, 5.487, 153.8, 0.04321671,
+ 0.40272550, 951.46, 0.02, 1.0, 3.80000000)
> yini <- c(AI = 21, AAM = 0, AT = 0, AF = 0, AL = 0, CLT = 0, AM = 0)
> out <- ccl4model(times = seq(0, 6, by = 0.05), y = yini, parms = parms)
> par2 <- parms
> par2[1] <- 0.1
> out2 <- ccl4model(times = seq(0, 6, by = 0.05), y = yini, parms = par2)
> par3 <- parms
> par3[1] <- 0.05
> out3 <- ccl4model(times = seq(0, 6, by = 0.05), y = yini, parms = par3)

We plot all these scenarios and the observed data at once:

> plot(out, out2, out3, which = c("AI", "MASS", "CP"),
+ col = c("black", "red", "green"), lwd = 2,
+ obs = obs, obspar = list(pch = 18, col = "blue", cex = 1.2))
> legend("topright", lty = c(1,2,3,NA), pch = c(NA, NA, NA, 18),
+ col = c("black", "red", "green", "blue"), lwd = 2,
+ legend = c("par1", "par2", "par3", "obs"))

If we do not select specific variables, then only the ones for which there are observed data
are plotted. Assume we have measured the total mass at the end of day 6. We put this in a
second data set:

> obs2 <- data.frame(time = 6, MASS = 12)
> obs2

time MASS
1 6 12



34 Package deSolve: Solving Initial Value Differential Equations in R

0 1 2 3 4 5 6

8
12

16
20

AI

time

0 1 2 3 4 5 6

0
2

4
6

8
12

MASS

time

0 1 2 3 4 5 6

40
0

60
0

80
0

CP

time

par1
par2
par3
obs

Figure 11: Plotting output and observations in one figure



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 35

0 1 2 3 4 5 6

0
2

4
6

8
10

12

MASS

time

0 1 2 3 4 5 6

40
0

60
0

80
0

CP

time

Figure 12: Plotting variables in common with observations

then we plot the data together with the three model runs as follows:

> plot(out, out2, out3, lwd = 2,
+ obs = list(obs, obs2),
+ obspar = list(pch = c(16, 18), col = c("blue", "black"),
+ cex = c(1.2 , 2))
+ )

10.3. Plotting Summary Histograms
The hist function plots the histogram for each variable; all plot parameters can be set
individually (here for col).
To generate the next plot, we overrule the default mfrow setting which would plot the figures
in 3 rows and 3 columns (and hence plot one figure in isolation)

> hist(out, col = grey(seq(0, 1, by = 0.1)), mfrow = c(3, 4))

10.4. Plotting multi-dimensional output
The image function plots time versus x images for models solved with ode.1D, or generates
x-y plots for models solved with ode.2D.

1-D model output
We exemplify its use by means of a Lotka-Volterra model, implemented in 1-D. The model
describes a predator and its prey diffusing on a flat surface and in concentric circles. This is
a 1-D model, solved in the cylindrical coordinate system.



36 Package deSolve: Solving Initial Value Differential Equations in R

AI

time

F
re

qu
en

cy

10 20

0
20

40

AAM

time

F
re

qu
en

cy

0 2 4

0
20

40
AT

time
F

re
qu

en
cy

0.0 0.2 0.4

0
20

40
60

AF

time

F
re

qu
en

cy

0 2 4 6 8

0
10

20

AL

time

F
re

qu
en

cy

0.00 0.20

0
20

40
60

CLT

time

F
re

qu
en

cy

0 100 250

0
10

20

AM

time

F
re

qu
en

cy

0.00 0.15 0.30

0
10

20

DOSE

time

F
re

qu
en

cy

0 4 8 14
0

20
40

60

MASS

time

F
re

qu
en

cy

0 4 8 14

0
20

50

CP

time

F
re

qu
en

cy

300 700

0
20

40

Figure 13: Plotting histograms of all output variables



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 37

Note that it is simpler to implement this model in R-package ReacTran (Soetaert and Meysman
2010).
We start by defining the derivative function

lvmod <- function (time, state, parms, N, rr, ri, dr, dri) {
with (as.list(parms), {

PREY <- state[1:N]
PRED <- state[(N+1):(2*N)]

## Fluxes due to diffusion
## at internal and external boundaries: zero gradient
FluxPrey <- -Da * diff(c(PREY[1], PREY, PREY[N]))/dri
FluxPred <- -Da * diff(c(PRED[1], PRED, PRED[N]))/dri

## Biology: Lotka-Volterra model
Ingestion <- rIng * PREY * PRED
GrowthPrey <- rGrow * PREY * (1-PREY/cap)
MortPredator <- rMort * PRED

## Rate of change = Flux gradient + Biology
dPREY <- -diff(ri * FluxPrey)/rr/dr +

GrowthPrey - Ingestion
dPRED <- -diff(ri * FluxPred)/rr/dr +

Ingestion * assEff - MortPredator

return (list(c(dPREY, dPRED)))
})

}

Then we define the parameters, which we put in a list

R <- 20 # total radius of surface, m
N <- 100 # 100 concentric circles
dr <- R/N # thickness of each layer
r <- seq(dr/2,by = dr,len = N) # distance of center to mid-layer
ri <- seq(0,by = dr,len = N+1) # distance to layer interface
dri <- dr # dispersion distances
parms <- c(Da = 0.05, # m2/d, dispersion coefficient

rIng = 0.2, # /day, rate of ingestion
rGrow = 1.0, # /day, growth rate of prey
rMort = 0.2 , # /day, mortality rate of pred
assEff = 0.5, # -, assimilation efficiency
cap = 10) # density, carrying capacity

After defining initial conditions, the model is solved with routine ode.1D

state <- rep(0, 2 * N)
state[1] <- state[N + 1] <- 10



38 Package deSolve: Solving Initial Value Differential Equations in R

times <- seq(0, 200, by = 1) # output wanted at these time intervals
print(system.time(

out <- ode.1D(y = state, times = times, func = lvmod, parms = parms,
nspec = 2, names = c("PREY", "PRED"),
N = N, rr = r, ri = ri, dr = dr, dri = dri)

))

user system elapsed
0.121 0.009 0.131

The summary method provides summaries for both 1-dimensional state variables:

summary(out)

PREY PRED
Min. 0.000000 0.000000
1st Qu. 1.996668 3.970746
Median 2.000000 4.000000
Mean 2.094254 3.333389
3rd Qu. 2.000066 4.000008
Max. 10.000000 10.000000
N 20100.000000 20100.000000
sd 1.648847 1.526742

while the S3-method subset can be used to extract only specific values of the variables:

p10 <- subset(out, select = "PREY", subset = time == 10)
head(p10, n = 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 6.304707 6.436374 6.687753 7.033897 7.436098 7.843497 8.198683

[,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 8.44655 8.542749 8.457464 8.173474 7.682188 6.983525 6.09314

[,15] [,16] [,17] [,18] [,19] [,20] [,21]
[1,] 5.054634 3.947258 2.876796 1.946159 1.22074 0.7120999 0.388549

[,22] [,23] [,24] [,25] [,26]
[1,] 0.1996948 0.09733824 0.04526957 0.02018686 0.00866459

[,27] [,28] [,29] [,30] [,31]
[1,] 0.003590384 0.001439632 0.0005595871 0.0002111643 7.745135e-05

[,32] [,33] [,34] [,35] [,36]
[1,] 2.763954e-05 9.605149e-06 3.252992e-06 1.074404e-06 3.462836e-07

[,37] [,38] [,39] [,40] [,41]
[1,] 1.089753e-07 3.350363e-08 1.006801e-08 2.958638e-09 8.506159e-10

[,42] [,43] [,44] [,45] [,46]
[1,] 2.393626e-10 6.595368e-11 1.780133e-11 4.708254e-12 1.220725e-12

[,47] [,48] [,49] [,50] [,51]
[1,] 3.103673e-13 7.740666e-14 1.894361e-14 4.550522e-15 1.07325e-15



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 39

[,52] [,53] [,54] [,55] [,56]
[1,] 2.486015e-16 5.657001e-17 1.264912e-17 2.779928e-18 6.006319e-19

[,57] [,58] [,59] [,60] [,61]
[1,] 1.276096e-19 2.666569e-20 5.481592e-21 1.108743e-21 2.207026e-22

[,62] [,63] [,64] [,65] [,66]
[1,] 4.324292e-23 8.341186e-24 1.584226e-24 2.963127e-25 5.458728e-26

[,67] [,68] [,69] [,70] [,71]
[1,] 9.906072e-27 1.771079e-27 3.120002e-28 5.416316e-29 9.26688e-30

[,72] [,73] [,74] [,75] [,76]
[1,] 1.562748e-30 2.597843e-31 4.257409e-32 6.87897e-33 1.095928e-33

[,77] [,78] [,79] [,80] [,81]
[1,] 1.721681e-34 2.667263e-35 4.075197e-36 6.140815e-37 9.12685e-38

[,82] [,83] [,84] [,85] [,86]
[1,] 1.337994e-38 1.934836e-39 2.75999e-40 3.883822e-41 5.391532e-42

[,87] [,88] [,89] [,90] [,91]
[1,] 7.383755e-43 9.976169e-44 1.329779e-44 1.748762e-45 2.268934e-46

[,92] [,93] [,94] [,95] [,96]
[1,] 2.904397e-47 3.668048e-48 4.570454e-49 5.618603e-50 6.814592e-51

[,97] [,98] [,99] [,100]
[1,] 8.154381e-52 9.626882e-53 1.122896e-53 1.436052e-54

We first plot both 1-dimensional state variables at once; we specify that the figures are
arranged in two rows, and 2 columns; when we call image, we overrule the default mfrow
setting (mfrow = NULL). Next we plot "PREY" again, once with the default xlim and ylim,
and next zooming in. Note that xlim and ylim are a list here. When we call image for the
second time, we overrule the default mfrow setting by specifying (mfrow = NULL).

image(out, grid = r, mfrow = c(2, 2), method = "persp", border = NA,
ticktype = "detailed", legend = TRUE)

image(out, grid = r, which = c("PREY", "PREY"), mfrow = NULL,
xlim = list(NULL, c(0, 10)), ylim = list(NULL, c(0, 5)),
add.contour = c(FALSE, TRUE))

2-D model output

When using image with a 2-D model, then the 2-D values at all output times will be plotted.
Sometimes we want only output at a specific time value. We then use S3-method subset to
extract 2-D variables at suitable time-values and use R’s image, filled.contour or contour
method to depict them.
Consider the very simple 2-D model (100*100), containing just 1-st order consumption, at
a rate r_x2y2, where r_x2y2 depends on the position along the grid. First the derivative
function is defined:

Simple2D <- function(t, Y, par) {
y <- matrix(nrow = nx, ncol = ny, data = Y) # vector to 2-D matrix
dY <- - r_x2y2 * y # consumption



40 Package deSolve: Solving Initial Value Differential Equations in R

Figure 14: image plots



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 41

return(list(dY))
}

Then the grid is created, and the consumption rate made a function of grid position (outer).

dy <- dx <- 1 # grid size
nx <- ny <- 100
x <- seq (dx/2, by = dx, len = nx)
y <- seq (dy/2, by = dy, len = ny)
# in each grid cell: consumption depending on position
r_x2y2 <- outer(x, y, FUN=function(x,y) ((x-50)^2 + (y-50)^2)*1e-4)

After defining the initial values, the model is solved using solver ode.2D. We use Runge-Kutta
method ode45.

C <- matrix(nrow = nx, ncol = ny, 1)
ODE3 <- ode.2D(y = C, times = 1:100, func = Simple2D, parms = NULL,

dimens = c(nx, ny), names = "C", method = "ode45")

We print a summary, and extract the 2-D variable at time = 50

summary(ODE3)

C
Min. 8.522667e-22
1st Qu. 4.331846e-06
Median 2.630735e-03
Mean 1.311539e-01
3rd Qu. 1.202539e-01
Max. 1.000000e+00
N 1.000000e+06
sd 2.489394e-01

t50 <- matrix(nrow = nx, ncol = ny,
data = subset(ODE3, select = "C", subset = (time == 50)))

We use function contour to plot both the consumption rate and the values of the state
variables at time = 50.

par(mfrow = c(1, 2))
contour(x, y, r_x2y2, main = "consumption")
contour(x, y, t50, main = "Y(t = 50)")



42 Package deSolve: Solving Initial Value Differential Equations in R

consumption

 0.05 

 0.1 

 0.15 

 0.2 

 0.25 

 0.25 

 0.25 

 0.25 

 0.3 

 0.3 

 0.3 

 0.3 

 0.35 

 0.35 

 0.35 

 0.35 

 0.4 

 0.4 

 0.4 

 0.4 

0 20 40 60 80 100

0
20

40
60

80
10

0

Y(t = 50)

 0.1 

 0.2 

 0.3 

 0.4  0.5 

 0.6 

 0.7  0.8 

 0.9 

0 20 40 60 80 100

0
20

40
60

80
10

0

Figure 15: Contour plot of 2-D variables



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 43

11. Troubleshooting

11.1. Avoiding numerical errors

The solvers from ODEPACK should be first choice for any problem and the defaults of the
control parameters are reasonable for many practical problems. However, there are cases
where they may give dubious results. Consider the following Lotka-Volterra type of model:

PCmod <- function(t, x, parms) {
with(as.list(c(parms, x)), {

dP <- c*P - d*C*P # producer
dC <- e*P*C - f*C # consumer
res <- c(dP, dC)
list(res)

})
}

and with the following (biologically not very realistic)3 parameter values:

parms <- c(c = 10, d = 0.1, e = 0.1, f = 0.1)

After specification of initial conditions and output times, the model is solved – using lsoda:

xstart <- c(P = 0.5, C = 1)
times <- seq(0, 200, 0.1)
out <- ode(y = xstart, times = times,

func = PCmod, parms = parms)

DLSODA- At T(=R1) and step size H(=R2), the error
test failed repeatedly or with ABS(H) = HMIN

In above message, R1 = 89.9566, R2 = 1.40508e-10

tail(out)

time P C
[896,] 89.50000 -5.437180e+10 -1.049789e-07
[897,] 89.60000 -1.477988e+11 8.127606e-13
[898,] 89.70000 -4.017604e+11 -8.353735e-08
[899,] 89.80000 -1.092102e+12 -1.136036e-14
[900,] 89.90000 -2.968659e+12 1.519005e-12
[901,] 89.95657 -5.226781e+12 3.661942e-06

3they are not realistic because producers grow unlimited with a high rate and consumers with 100 %
efficiency



44 Package deSolve: Solving Initial Value Differential Equations in R

We see that the simulation was stopped before reaching the final simulation time and both
producers and consumer values may have negative values.
What has happened? Being an implicit method, lsoda generates very small negative values
for producers, from day 40 on; these negative values, small at first grow in magnitude until
they become infinite or even NaNs (not a number). This is because the model equations are
not intended to be used with negative numbers, as negative concentrations are not realistic.
A quick-and-dirty solution is to reduce the maximum time step to a considerably small value
(e.g. hmax = 0.02 which, of course, reduces computational efficiency. However, a much
better solution is to think about the reason of the failure, i.e in our case the absolute
accuracy because the states can reach very small absolute values. Therefore, it helps here to
reduce atol to a very small number or even to zero:

out <- ode(y = xstart,times = times, func = PCmod,
parms = parms, atol = 0)

matplot(out[,1], out[,2:3], type = "l",
xlab = "time", ylab = "Producer, Consumer")

It is, of course, not possible to set both, atol and rtol simultaneously to zero. As we see
from this example, it is always a good idea to test simulation results for plausibility. This can
be done by theoretical considerations or by comparing the outcome of different ODE solvers
and parametrizations.

11.2. Checking model specification

If a model outcome is obviously unrealistic or one of the deSolve functions complains about
numerical problems it is even more likely that the “numerical problem” is in fact a result of
an unrealistic model or a programming error. In such cases, playing with solver parameters
will not help. Here are some common mistakes we observed in our models and the codes of
our students:

• The function with the model definition must return a list with the derivatives of all state
variables in correct order (and optionally some global values). Check if the number
and order of your states is identical in the initial states y passed to the solver, in
the assignments within your model equations and in the returned values. Check also
whether the return value is the last statement of your model definition.

• The order of function arguments in the model definition is t, y, parms, .... This
order is strictly fixed, so that the deSolve solvers can pass their data, but naming is
flexible and can be adapted to your needs, e.g. time, init, params. Note also that
all three arguments must be given, even if t is not used in your model.

• Mixing of variable names: if you use the with()-construction explained above, you must
ensure to avoid naming conflicts between parameters (parms) and state variables (y).

The solvers included in package deSolve are thorougly tested, however they come with no
warranty and the user is solely responsible for their correct application. If you encounter
unexpected behavior, first check your model and read the documentation. If this doesn’t



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 45

help, feel free to ask a question to an appropriate mailing list, e.g. r-help@r-project.org
or, more specific, r-sig-dynamic-models@r-project.org.

11.3. Making sense of deSolve’s error messages

As many of deSolve’s functions are wrappers around existing FORTRAN codes, the warning
and error messages are derived from these codes. Whereas these codes are highly robust, well
tested, and efficient, they are not always as user-friendly as we would like. Especially some
of the warnings/error messages may appear to be difficult to understand.
Consider the first example on the ode function:

LVmod <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey/K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

return(list(c(dPrey, dPredator)))
})

}
pars <- c(rIng = 0.2, # /day, rate of ingestion

rGrow = 1.0, # /day, growth rate of prey
rMort = 0.2 , # /day, mortality rate of predator
assEff = 0.5, # -, assimilation efficiency
K = 10) # mmol/m3, carrying capacity

yini <- c(Prey = 1, Predator = 2)
times <- seq(0, 200, by = 1)
out <- ode(func = LVmod, y = yini,

parms = pars, times = times)

This model is easily solved by the default integration method, lsoda.
Now we change one of the parameters to an unrealistic value: rIng is set to 100. This means
that the predator ingests 100 times its own body-weight per day if there are plenty of prey.
Needless to say that this is very unhealthy, if not lethal.
Also, lsoda cannot solve the model anymore. Thus, if we try:

pars["rIng"] <- 100
out2 <- ode(func = LVmod, y = yini,

parms = pars, times = times)

A lot of seemingly incomprehensible messages will be written to the screen. We repeat the
latter part of them:

r-help@r-project.org
r-sig-dynamic-models@r-project.org


46 Package deSolve: Solving Initial Value Differential Equations in R

DLSODA- Warning..Internal T (=R1) and H (=R2) are
such that in the machine, T + H = T on the next step

(H = step size). Solver will continue anyway.
In above message, R1 = 53.4272, R2 = 2.44876e-15

DLSODA- Above warning has been issued I1 times.
It will not be issued again for this problem.

In above message, I1 = 10

DLSODA- At current T (=R1), MXSTEP (=I1) steps
taken on this call before reaching TOUT

In above message, I1 = 5000
In above message, R1 = 53.4272

Warning messages:
1: In lsoda(y, times, func, parms, ...) :

an excessive amount of work (> maxsteps ) was done,
but integration was not successful - increase maxsteps

2: In lsoda(y, times, func, parms, ...) :
Returning early. Results are accurate, as far as they go

The first sentence tells us that at T = 53.4272, the solver used a step size H = 2.44876e-15.
This step size is so small that it cannot tell the difference between T and T + H. Nevertheless,
the solver tried again.
The second sentence tells that, as this warning has been occurring 10 times, it will not be
outputted again.
As expected, this error did not go away, so soon the maximal number of steps (5000) has
been exceeded. This is indeed what the next message is about:
The third sentence tells that at T = 53.4272, maxstep = 5000 steps have been done.
The one before last message tells why the solver returned prematurely, and suggests a solution.
Simply increasing maxsteps will not work and it makes more sense to first see if the output
tells what happens:

plot(out2, type = "l", lwd = 2, main = "corrupt Lotka-Volterra model")

You may, of course, consider to use another solver:

pars["rIng"] <- 100
out3 <- ode(func = LVmod, y = yini, parms = pars,

times = times, method = "ode45", atol = 1e-14, rtol = 1e-14)

but don’t forget to think about this too and, for example, increase simulation time to 1000
and try different values of atol and rtol. We leave this open as an exercise to the reader.



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 47

0 10 20 30 40 50

−
4e

+
62

−
2e

+
62

0e
+

00

corrupt Lotka−Volterra model

time

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

corrupt Lotka−Volterra model

time

Figure 16: A model that cannot be solved correctly



48 Package deSolve: Solving Initial Value Differential Equations in R

References

Bogacki P, Shampine LF (1989). “A 3(2) Pair of Runge-Kutta Formulas.” Applied Mathematics
Letters, 2, 1–9.

Brenan KE, Campbell SL, Petzold LR (1996). Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations. SIAM Classics in Applied Mathematics.

Brown PN, Byrne GD, Hindmarsh AC (1989). “VODE, A Variable-Coefficient ODE Solver.”
SIAM Journal on Scientific and Statistical Computing, 10, 1038–1051.

Butcher JC (1987). The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta
and General Linear Methods, volume 2. John Wiley & Sons, Chichester and New York.

Cash JR, Karp AH (1990). “A Variable Order Runge-Kutta Method for Initial Value Problems
With Rapidly Varying Right-Hand Sides.” ACM Transactions on Mathematical Software,
16, 201–222.

Dormand JR, Prince PJ (1980). “A family of embedded Runge-Kutta formulae.” Journal of
Computational and Applied Mathematics, 6, 19–26.

Dormand JR, Prince PJ (1981). “High Order Embedded Runge-Kutta Formulae.” Journal of
Computational and Applied Mathematics, 7, 67–75.

Fehlberg E (1967). “Klassische Runge-Kutta-Formeln fuenfter and siebenter Ordnung mit
Schrittweiten-Kontrolle.” Computing (Arch. Elektron. Rechnen), 4, 93–106.

Hairer E, Norsett SP, Wanner G (2009). Solving Ordinary Differential Equations I: Nonstiff
Problems. Second Revised Edition. Springer-Verlag, Heidelberg.

Hairer E, Wanner G (2010). Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Second Revised Edition. Springer-Verlag, Heidelberg.

Hindmarsh AC (1983). “ODEPACK, a Systematized Collection of ODE Solvers.” In R Steple-
man (ed.), Scientific Computing, Vol. 1 of IMACS Transactions on Scientific Computation,
pp. 55–64. IMACS / North-Holland, Amsterdam.

Petzold LR (1983). “Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of
Ordinary Differential Equations.” SIAM Journal on Scientific and Statistical Computing,
4, 136–148.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in FOR-
TRAN. The Art of Scientific Computing. 2nd edition. Cambridge University Press.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org.

Shampine L, Thompson S (2000). Solving Delay Differential Equations with dde23. URL
http://www.runet.edu/~thompson/webddes/tutorial.pdf.

http://www.R-project.org
http://www.R-project.org
http://www.runet.edu/~thompson/webddes/tutorial.pdf


Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 49

Soetaert K, Cash JR, Mazzia F (2010a). bvpSolve: Solvers for Boundary Value Problems of
Ordinary Differential Equations. R package version 1.2, URL http://CRAN.R-project.
org/package=bvpSolve.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

Soetaert K, Meysman F (2010). ReacTran: Reactive transport modelling in 1D, 2D and 3D.
R package version 1.3.

Soetaert K, Petzoldt T, Setzer R (2010b). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1–25. ISSN 1548-7660. URL http://www.
jstatsoft.org/v33/i09.

Soetaert K, Petzoldt T, Setzer RW (2008). R package deSolve: Writing Code in Compiled
Languages. deSolve vignette - R package version 1.8.

Soetaert K, Petzoldt T, Setzer RW (2010c). deSolve: General solvers for initial value problems
of ordinary differential equations (ODE), partial differential equations (PDE), differential
algebraic equations (DAE) and delay differential equations (DDE). R package version 1.8.

Affiliation:
Karline Soetaert
Centre for Estuarine and Marine Ecology (CEME)
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl
URL: https://www.nioz.nl

Thomas Petzoldt
Institut für Hydrobiologie
Technische Universität Dresden
01062 Dresden, Germany
E-mail: thomas.petzoldt@tu-dresden.de
URL: https://tu-dresden.de/Members/thomas.petzoldt/

R. Woodrow Setzer
National Center for Computational Toxicology
US Environmental Protection Agency

http://CRAN.R-project.org/package=bvpSolve
http://CRAN.R-project.org/package=bvpSolve
http://www.jstatsoft.org/v33/i09
http://www.jstatsoft.org/v33/i09
mailto:karline.soetaert@nioz.nl
https://www.nioz.nl
mailto:thomas.petzoldt@tu-dresden.de
https://tu-dresden.de/Members/thomas.petzoldt/


50 Package deSolve: Solving Initial Value Differential Equations in R

Table 1: Summary of the functions that solve differential equations
Function Description

ode integrates systems of ordinary differential equations, assumes a full,
banded or arbitrary sparse Jacobian

ode.1D integrates systems of ODEs resulting from 1-dimensional reaction-
transport problems

ode.2D integrates systems of ODEs resulting from 2-dimensional reaction-
transport problems

ode.3D integrates systems of ODEs resulting from 3-dimensional reaction-
transport problems

ode.band integrates systems of ODEs resulting from unicomponent 1-
dimensional reaction-transport problems

dede integrates systems of delay differential equations
daspk solves systems of differential algebraic equations, assumes a full or

banded Jacobian
radau solves systems of ordinary or differential algebraic equations, assumes

a full or banded Jacobian; includes a root solving procedure
lsoda integrates ODEs, automatically chooses method for stiff or non-stiff

problems, assumes a full or banded Jacobian
lsodar same as lsoda, but includes a root-solving procedure
lsode or vode integrates ODEs, user must specify if stiff or non-stiff assumes a full

or banded Jacobian; Note that, as from version 1.7, lsode includes a
root finding procedure, similar to lsodar.

lsodes integrates ODEs, using stiff method and assuming an arbitrary sparse
Jacobian. Note that, as from version 1.7, lsodes includes a root
finding procedure, similar to lsodar

rk integrates ODEs, using Runge-Kutta methods (includes Runge-Kutta
4 and Euler as special cases)

rk4 integrates ODEs, using the classical Runge-Kutta 4th order method
(special code with less options than rk)

euler integrates ODEs, using Euler’s method (special code with less options
than rk)

zvode integrates ODEs composed of complex numbers, full, banded, stiff or
nonstiff



Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 51

Table 2: Meaning of the integer return parameters in the different integration routines. If out
is the output matrix, then this vector can be retrieved by function attributes(out)$istate;
its contents is displayed by function diagnostics(out). Note that the number of function
evaluations, is without the extra evaluations needed to generate the output for the ordinary
variables.

Nr Description

1 the return flag; the conditions under which the last call to the solver returned. For
lsoda, lsodar, lsode, lsodes, vode, rk, rk4, euler these are: 2: the solver was
successful, -1: excess work done, -2: excess accuracy requested, -3: illegal input detected,
-4: repeated error test failures, -5: repeated convergence failures, -6: error weight became
zero

2 the number of steps taken for the problem so far
3 the number of function evaluations for the problem so far
4 the number of Jacobian evaluations so far
5 the method order last used (successfully)
6 the order of the method to be attempted on the next step
7 If return flag = -4,-5: the largest component in the error vector
8 the length of the real work array actually required. (FORTRAN code)
9 the length of the integer work array actually required. (FORTRAN code)
10 the number of matrix LU decompositions so far
11 the number of nonlinear (Newton) iterations so far
12 the number of convergence failures of the solver so far
13 the number of error test failures of the integrator so far
14 the number of Jacobian evaluations and LU decompositions so far
15 the method indicator for the last succesful step, 1 = adams (nonstiff), 2 = bdf (stiff)
17 the number of nonzero elements in the sparse Jacobian
18 the current method indicator to be attempted on the next step, 1 = adams (nonstiff), 2

= bdf (stiff)
19 the number of convergence failures of the linear iteration so far



52 Package deSolve: Solving Initial Value Differential Equations in R

Table 3: Meaning of the double precision return parameters in the different integration
routines. If out is the output matrix, then this vector can be retrieved by function
attributes(out)$rstate; its contents is displayed by function diagnostics(out)

Nr Description

1 the step size in t last used (successfully)
2 the step size to be attempted on the next step
3 the current value of the independent variable which the solver has actually reached
4 a tolerance scale factor, greater than 1.0, computed when a request for too much accuracy

was detected
5 the value of t at the time of the last method switch, if any (only lsoda, lsodar)


	A simple ODE: chaos in the atmosphere
	Model specification
	Model parameters
	State variables
	Model equations

	Model application
	Time specification
	Model integration
	Plotting results


	Solvers for initial value problems of ordinary differential equations
	Runge-Kutta methods and Euler
	Fixed time-step methods

	Model diagnostics and summaries

	Partial differential equations
	Differential algebraic equations
	DAEs of index maximal 1
	DAEs of index up to three

	Integrating systems containing complex numbers, function zvode
	Making good use of the integration options
	Events and roots
	Event specified in a data.frame
	Event triggered by a root function
	Events and time steps

	Delay differential equations
	Discrete time models, difference equations
	Plotting deSolve Objects
	Plotting Multiple Scenario's
	Plotting Output with Observations
	Plotting Summary Histograms
	Plotting multi-dimensional output
	1-D model output
	2-D model output


	Troubleshooting
	Avoiding numerical errors
	Checking model specification
	Making sense of deSolve's error messages

	References

