Package: dbacf (via r-universe)

October 22, 2024

Version 0.2.8

Date 2023-06-27

Title Autocovariance Estimation via Difference-Based Methods

Author Inder Tecuapetla-Gómez [aut, cre]

Maintainer Inder Tecuapetla-Gómez <itecuapetla@conabio.gob.mx>

Description Provides methods for (auto)covariance/correlation function estimation in change point regression with stationary errors circumventing the pre-estimation of the underlying signal of the observations. Generic, first-order, (m+1)-gapped, difference-based autocovariance function estimator is based on M. Levine and I. Tecuapetla-Gómez (2023) [<doi:10.48550/arXiv.1905.04578>](https://doi.org/10.48550/arXiv.1905.04578). Bias-reducing, second-order, (m+1)-gapped, difference-based estimator is based on I. Tecuapetla-Gómez and A. Munk (2017) [<doi:10.1111/sjos.12256>](https://doi.org/10.1111/sjos.12256). Robust autocovariance estimator for change point regression with autoregressive errors is based on S. Chakar et al. (2017) [<doi:10.3150/15-BEJ782>](https://doi.org/10.3150/15-BEJ782). It also includes a general projection-based method for covariance matrix estimation.

License GPL $(>= 2)$

Encoding UTF-8

Imports Matrix

Depends R ($>= 2.15.3$)

NeedsCompilation no

RoxygenNote 7.2.0

Repository CRAN

Date/Publication 2023-06-29 14:30:16 UTC

Contents

2 dbacf-package

dbacf-package *Autocovariance function estimation via difference-based methods*

Description

Difference-based (auto)covariance/correlation estimation in change point regression with stationary errors.

Provides bias-reducing methods for (auto)covariance-correlation estimation in change point regression with stationary m -dependent errors without having to pre-estimate the underlying signal of the observations. In the same spirit, provides a robust estimator of the autorregressive coefficient in change point regression with stationary, $AR(1)$ errors. It also includes a general projection-based method for covariance matrix estimation.

Autocovariance Estimation

[dbacf](#page-2-1) returns *and plots by default* (auto)covariance/correlation estimates without pre-estimating the underlying *not necessarily smooth* signal of observations with *stationary* m-dependent errors. The corresponding plot method [plot.dbacf](#page-7-1) allows for adjusting graphical parameters to users' liking. This method is based on [plot.acf](#page-0-0).

[dbacf_AR1](#page-4-1) returns (auto)covariance/correlation estimates while circumventing the difficult estimation of the underlying change point regression function from observations with stationary $AR(1)$ errors.

Covariance Matrix Estimation

Given a matrix estimate, *not necessarily positive definite*, of the covariance matrix of a stationary process, [nearPDToeplitz](#page-5-1) returns the nearest, *in the Frobenius norm*, covariance matrix to the initial estimate. See [projectToeplitz](#page-8-1) for the projection of a given symmetric matrix onto the space of Toeplitz matrices. See also [symBandedToeplitz](#page-9-1) for creating a (stationary process' large covariance) matrix by specifying its dimension and values of its autocovariance function.

Author(s)

Tecuapetla-Gómez, I. <itecuap@conabio.gob.mx>

dbacf 3

References

Grigoriadis, K.M., Frazho, A., Skelton, R. (1994). *Application of alternating convex projection methods for computation of positive Toeplitz matrices*, IEEE Transactions on signal processing 42(7), 1873–1875.

N. Higham (2002). *Computing the nearest correlation matrix - a problem from finance*, Journal of Numerical Analysis 22, 329–343.

Tecuapetla-Gómez, I and Munk, A. (2017). *Autocovariance estimation in regression with a discontinuous signal and* m*-dependent errors: A difference-based approach*. Scandinavian Journal of Statistics, 44(2), 346–368.

Levine, M. and Tecuapetla-Gómez, I. (2023). *Autocovariance function estimation via difference schemes for a semiparametric change point model with* m*-dependent errors*. Submitted.

dbacf *Difference-based (auto)covariance/correlation function estimation*

Description

Computes *and by default plots*the (auto)covariance/correlation function estimate without pre-estimating the underlying *piecewise constant signal* of the observations. To that end, a class of second-order *difference-based estimators* is implemented according to Eqs.(2.5)-(2.6) of Tecuapetla-Gómez and Munk (2017). By default, this function computes a subclass of estimates with minimal bias according to Eqs.(2.12)-(2.14) of the aforementioned paper.

Usage

```
dbacf(
  data,
 m,
  d,
  type = c("covariance", "correlation"),
  order = c("second", "first"),
 plot = TRUE,
  ...
)
```
Arguments

4 dbacf dbac

Value

An object of class "dbacf" containing:

Note

Although the theoretical properties of the methods implemented in this function were derived for change point regression with stationary *Gaussian* m-dependent errors, these methods have proven robust against non-normality of the errors and as efficient as other methods in which pre-estimation of an underlying smooth signal is required. For further details see Section 6 of Tecuapetla-Gómez and Munk (2017).

The first-order difference-based estimator was implemented following Eqs.(4)-(5) of Levine and Tecuapetla-Gómez (2023). For the robustness of this estimator see Section 4 of the just mentioned paper.

References

Tecuapetla-Gómez, I and Munk, A. (2017). *Autocovariance estimation in regression with a discontinuous signal and* m*-dependent errors: A difference-based approach*. Scandinavian Journal of Statistics, 44(2), 346–368.

Levine, M. and Tecuapetla-Gómez, I. (2023). *Autocovariance function estimation via difference schemes for a semiparametric change point model with* m*-dependent errors*. Submitted.

See Also

[acf](#page-0-0), [plot.dbacf](#page-7-1)

Examples

```
ma2 \le - arima.sim(n = 50, model = list(ma = c(0.4, -0.4), order = c(0, 0, 2)),
                 sd = 0.25dbacf(data=ma2, m = 2)
dbacf(data=ma2, m = 2, order="first")
```


Description

In the context of change point regression with a stationary $AR(1)$ error process, this function estimates the autoregressive coefficient along with the autocovariance/correlation function as a function of given lags.

Usage

```
dbacf_AR1(data, type = c("covariance", "correlation"), lags)
```
Arguments

Value

An object of class "dbacf" containing:

- acf numeric vector of length lags + 1 giving estimated (auto)covariance/correlation function
- rho numeric, estimate of autoregressive coefficient
- acfType string indicating whether covariance or correlation has been computed
- n integer giving length(data)

References

Chakar, S. and Lebarbier, E. and Lévy-Leduc, C. and Robin, S. (2017). *A robust approach for estimating change-points in the mean of an AR(1) process*, Bernoulli, 23(2), 1408-1447

Examples

```
ar1 <- arima.sim(n = 50, model = list(ar = c(0.5), order = c(1, 0, 0)),
                sd = 0.25dbacf_AR1(ar1, type="correlation", lags=10)
```
Description

Computes the nearest positive definite Toeplitz matrix to an initial approximation, typically a covariance (correlation) matrix of a stationary process. This function implements an *alternating projection algorithm* that combines Grigoriadis et al. (1994) and Higham (2002). For further details see Section 5 of Tecuapetla-Gómez and Munk (2017).

Usage

```
nearPDToeplitz(
  matrix,
  type = c("covariance", "correlation"),
  toleranceEigen = 1e-06,
  toleranceConvergence = 1e-06,
  tolerancePosDef = 1e-06,
  maxIterations = 100,
  doEigen = TRUE
)
```
Arguments

Details

This function is based on an alternating projection algorithm which involves projecting sequentially and iteratively the initial matrix into the set of symmetric positive definite and into the space of Toeplitz matrices, respectively. The iteration process will stop because either a criterion of convergence is met or maxIterations has been exceeded (without convergence). Criterion of convergence: if the Frobenius norm of the difference of the projection matrices computed in the last

two iterations of the algorithm is smaller than toleranceConvergence, then the algorithm stops returning the projection matrix computed in the last iteration.

When projecting onto the set of symmetric positive definite matrices, toleranceEigen controls the relative magnitude of any eigenvalue λ_k with respect to the largest one λ_1 and all eigenvalues λ_k are treated as zero if $\lambda_k/\lambda_1 \leq$ toleranceEigen.

Value

A list containing:

References

Grigoriadis, K.M., Frazho, A., Skelton, R. (1994). *Application of alternating convex projection methods for computation of positive Toeplitz matrices*, IEEE Transactions on signal processing 42(7), 1873–1875.

N. Higham (2002). *Computing the nearest correlation matrix - a problem from finance*, Journal of Numerical Analysis 22, 329–343.

Tecuapetla-Gómez, I and Munk, A. (2017). *Autocovariance estimation in regression with a discontinuous signal and* m*-dependent errors: A difference-based approach*. Scandinavian Journal of Statistics, 44(2), 346–368.

See Also

[nearPD](#page-0-0), [projectToeplitz](#page-8-1), [symBandedToeplitz](#page-9-1), [posdefify](#page-0-0)

Examples

```
# Higham (2002), p. 334
(\text{mat} < -\text{matrix}(c(1, 1, 0, 1, 1, 1, 0, 1, 1), \text{byrow} = \text{TRUE}, \text{ncol} = 3))matProj <- matrix(c(1, 0.7607, 0.1573, 0.7607, 1, 0.7607, 0.1573, 0.7607, 1),
                   byrow = TRUE, ncol = 3)
nrPDT.mat <- nearPDToeplitz(mat, type = "correlation")
stopifnot( identical(unname(matProj), unname(round(as.matrix(nrPDT.mat$projection),
                      digits=4)))
eigen(nrPDT.mat$projection)$values
# Toeplitz banded matrix near to the covariance matrix of 100 realizations
# of an MA(5) with following parameters:
n <- 1e2
```
alphas $\leq -c(-2, 0.5, -4, 0, 0.75)$

```
(true.acf <- ARMAacf(ma = alphas))
alphasMat <- symBandedToeplitz(true.acf, n = n)
stopifnot( min(eigen(alphasMat)$values) > 0 ) # alphasMat is a positive definite matrix
(l <- length(true.acf))
(acf.modified <- c(true.acf[-c(1 - 1, 1)], 0.25)) # modifying original acf
x <- acf.modified
acfMat <- symBandedToeplitz(x, n = n)
# no. of non positive eigenvalues of acfMat (6)
length( eigen(acfMat)$values[eigen(acfMat)$values < 0 ] )
# acfMat is a 100 x 100 symmetric banded Toeplitz matrix
acfMat[1:15, 1:30]
system.time(nrPDT.acfMat <- nearPDToeplitz(acfMat, type = "correlation"))
y <- eigen(nrPDT.acfMat$projection)$values
# no. of non positive eigenvalues of nrPDT.acfMat
length( y[y < 0 ] ) # none!
```
plot.dbacf *Plot autocovariance and autocorrelation functions*

Description

This function returns the plot method for objects of class "dbacf".

Usage

```
## S3 method for class 'dbacf'
plot(
  x,
  type = "h",
  xlab = "Lag",ylab = paste("ACF", ifelse(x$acfType == "covariance", "(cov)", " ")),
  xlim = c(0, xlim + 1),main = paste("Series", x$series),
  ltyZeroLine = 3,
  colZeroLine = "blue",
  ...
\mathcal{L}
```
Arguments

projectToeplitz 9

Value

No return value

Note

[dbacf](#page-2-1) documents the structure of objects of class "dbacf".

See Also

[acf](#page-0-0), [dbacf](#page-2-1).

projectToeplitz *Projection onto the set of symmetric Toeplitz matrices*

Description

Computes the orthogonal projection onto the space of symmetric Toeplitz matrices as given in Grigoriadis et al. (1994).

Usage

projectToeplitz(matrix)

Arguments

matrix a symmetric matrix.

Value

The computed projection matrix.

References

Grigoriadis, K.M., Frazho, A., Skelton, R. (1994). *Application of alternating convex projection methods for computation of positive Toeplitz matrices*, IEEE Transactions on signal processing 42(7), 1873–1875

See Also

[nearPDToeplitz](#page-5-1)

Examples

```
A \leq -\text{matrix}(c(2, 1, 1, 1, 2, 0, 1, 0, 0), byrow = 3, nrow = 3)projectToeplitz(A)
```
symBandedToeplitz *Creates a symmetric banded Toeplitz matrix*

Description

Creates a symmetric banded Toeplitz matrix

Usage

symBandedToeplitz(x, n)

Arguments

Value

An $n \times n$ symmetric banded Toeplitz matrix whose entries in main band are given by object x.

See Also

[nearPDToeplitz](#page-5-1), [bandSparse](#page-0-0)

Examples

```
alphas <-c(-2, 0.5, -4)(true.acf <- ARMAacf(ma = alphas))
symBandedToeplitz(true.acf, n = 10)
```


Index

∗ package dbacf-package, [2](#page-1-0)

acf, *[4](#page-3-0)*, *[9](#page-8-0)*

bandSparse, *[10](#page-9-0)*

dbacf, *[2](#page-1-0)*, [3,](#page-2-0) *[9,](#page-8-0) [10](#page-9-0)* dbacf-package, [2](#page-1-0) dbacf_AR1, *[2](#page-1-0)*, [5](#page-4-0)

nearPD, *[7](#page-6-0)* nearPDToeplitz, *[2](#page-1-0)*, [6,](#page-5-0) *[9,](#page-8-0) [10](#page-9-0)*

plot, *[8](#page-7-0)* plot.acf, *[2](#page-1-0)* plot.dbacf, *[2](#page-1-0)*, *[4](#page-3-0)*, [8](#page-7-0) posdefify, *[7](#page-6-0)* projectToeplitz, *[2](#page-1-0)*, *[7](#page-6-0)*, [9](#page-8-0)

symBandedToeplitz, *[2](#page-1-0)*, *[7](#page-6-0)*, [10](#page-9-0)

ts, *[3](#page-2-0)*, *[5](#page-4-0)*