Package 'dateutils'

Title: Date Utils
Description: Utilities for mixed frequency data. In particular, use to aggregate and normalize tabular mixed frequency data, index dates to end of period, and seasonally adjust tabular data.
Authors: Seth Leonard [aut, cre], Jiancong Liu [ctb]
Maintainer: Seth Leonard <[email protected]>
License: MIT + file LICENSE
Version: 0.1.5
Built: 2024-12-14 06:46:58 UTC
Source: CRAN

Help Index


Add NA values to the tail of a wide data.table

Description

Add NA values to the tail of a wide data.table to be filled by forecasting routines

Usage

add_forecast_dates(
  dt,
  horizon = 1,
  frq = c("month", "week", "quarter", "year"),
  date_name = "ref_date"
)

Arguments

dt

data.table in wide format

horizon

number of periods to add at specified 'frq'

frq

frequency for aggregation, one of '"month"', '"week"', '"quarter"', or '"year"'

date_name

name of date column

Value

NA-filled data.table in wide format

Examples

add_forecast_dates(fred[series_name == "gdp constant prices"],frq="quarter")

Aggregate long format data.table

Description

Aggregate a data.table in long format to a specified frequency

Usage

agg_to_freq(
  dt_long,
  frq = c("month", "week", "quarter", "year"),
  date_name = "ref_date",
  id_name = "series_name",
  value_name = "value"
)

Arguments

dt_long

data.table in long format

frq

frequency for aggregation, one of '"month"', '"week"', '"quarter"', or '"year"'

date_name

name of date column

id_name

name of id column

value_name

name of value column

Value

Aggregated data at specified frequency in long format

Examples

out <- agg_to_freq(fred[series_name == "gdp constant prices"], frq = "year")

Aggregate data.table and return wide format

Description

Aggregate a data.table to a specified frequency and return wide format data

Usage

agg_to_freq_wide(
  dt,
  date_name = "ref_date",
  frq = c("month", "week", "quarter", "year"),
  id_name = "series_name",
  value_name = "value",
  dt_is_wide = FALSE
)

Arguments

dt

data.table in long format

date_name

name of date column

frq

frequency for aggregation, one of '"month"', '"week"', '"quarter"', or '"year"'

id_name

name of id column

value_name

name of value column

dt_is_wide

T/F, is input data 'dt' in wide format

Value

Aggregated data at specificed frequency in wide format

Examples

out <- agg_to_freq_wide(fred,frq="quarter")

Rows with only finite values

Description

Return indexes of rows with only finite values

Usage

all_finite(Y)

Arguments

Y

matrix like data object

Value

Indexes of rows with with only finite values

Examples

X <- matrix(1,10,2)
X[3,1] <- NA
all_finite(X)

Are all elements 'NA'?

Description

Return a logical indicating if all elements are 'NA'

Usage

allNA(x)

Arguments

x

data vector

Value

A logical variable indicating all elements are 'NA'

Examples

allNA(c(NA, NA, 1, NA)) ## FALSE

Rows with finite values

Description

Return indexes of rows with at least one finite value

Usage

any_finite(Y)

Arguments

Y

matrix like data object

Value

Indexes of rows with at least one finite value

Examples

X <- matrix(1,10,2)
X[3,] <- NA
any_finite(X)

Can data be seasonally adjusted?

Description

Return a logical indicating whether data at given dates can be seasonally adjusted using seas()

Usage

can_seasonal(dates)

Arguments

dates

dates

Value

A logical variable indicating whether data can be seasonally adjusted

Examples

can_seasonal(fred$ref_date[1:20]) ## TRUE

Convert columns to list

Description

Return 'Y' with each column as a list

Usage

col_to_list(Y)

Arguments

Y

matrix like data object

Value

Each column as a list

Examples

row_to_list(matrix(rnorm(20),10,2))

Companion Form

Description

Put the transition matrix 'B' into companion form

Usage

comp_form(B)

Arguments

B

Transition matrix from a VAR model

Value

Companion matrix of the input matrix

Examples

comp_form(matrix(c(1:4), nrow = 2, byrow = TRUE)) ## matrix(c(4,-2,-3,1), nrow = 2, byrow = TRUE)

Count observations

Description

Return the number of finite observations in 'x'

Usage

count_obs(x)

Arguments

x

data vector

Value

The Number of observations

Examples

count_obs(c(1,3,5,7,9,NA)) # 5

Return the day of a Date value

Description

Return the day of a Date value as an integer

Usage

day(date)

Arguments

date

date value formated as.Date()

Value

the day of the date (integer)

Examples

day(as.Date("2019-09-15")) ## 15

Difference data

Description

Wrapper for 'diff()' maintaining the same number of observations in 'x'

Usage

Diff(x, lag = 1)

Arguments

x

data

lag

number of lags to use

Value

Differenced data

Examples

Diff(c(100,50,100,20,100,110))

End of period date

Description

Return the date of the last day of the period (week, month, quarter, year). Weekly dates are indexed to Friday.

Usage

end_of_period(dates, period = c("month", "week", "quarter", "year"), shift = 0)

Arguments

dates

Date values formatted as.Date()

period

One of ''month'‘, '’week'‘, '’quarter'‘, '’year''.

shift

Integer, shift date forward (positive values) or backwards (negative values) by the number of periods.

Value

Last day of period in as.Date() format

Examples

end_of_period(as.Date("2019-09-15")) ## 2019-09-30

End of Year

Description

Find the end of year for a vector of dates

Usage

end_of_year(dates)

Arguments

dates

Transition matrix from a VAR model

Value

The last day of the year for the dates

Examples

end_of_year(as.Date("2019-09-15")) ## 2019-12-31

Extract characters

Description

Extract character values from x excluding space and underscore

Usage

extract_basic_character(x)

Arguments

x

object containing character (and other) values

Value

Character values without space and underscore

Examples

extract_basic_character(c("this_1one", "abc123"))  ## c("thisone", "abc123)

Extract character values

Description

Extract character values from x including space and underscore

Usage

extract_character(x)

Arguments

x

object containing character values

Value

Character valus from the object

Examples

extract_character(c("this_1one", "abc123")) ## c("this_one", "abc")

Extract numeric values

Description

Extract numeric values from x

Usage

extract_numeric(x)

Arguments

x

object containing numeric (and other) values

Value

Numeric values from the object

Examples

extract_numeric(c("7+5", "abc123")) ## c(75, 123)

Fill Forward

Description

Fill missing observations forward using the last finite observation

Usage

fill_forward(x)

Arguments

x

Transition matrix from a VAR model

Value

x with missing obs filled by forward value

Examples

fill_forward(c(1,2,NA,NA,3,NA,5)) ## 1 2 2 2 3 3 5

First of month

Description

Return the first day of the month for each date in 'dates'

Usage

first_of_month(dates)

Arguments

dates

A sequence of dates in 'as.Date()' format

Value

First day of the month

Examples

dates <- seq.Date(from = as.Date("2020-09-11"),
                  by = "day", length.out = 10)
first_of_month(dates)

First of Quarter

Description

Find the first date in the quarter for a vector of dates

Usage

first_of_quarter(dates)

Arguments

dates

Transition matrix from a VAR model

Value

The first day of the quarter for the dates

Examples

first_of_quarter(as.Date("2019-9-15")) ## 2019-07-01

First of previous quarter date

Description

Return the date of the first day of the previous quarter

Usage

first_previous_quarter(date)

Arguments

date

date value formated as.Date()

Value

The first day of the previous quarter of the date

Examples

first_previous_quarter(as.Date("2019-09-15")) ## 2019-04-01

Sample mixed frequency data from FRED

Description

Sample mixed frequency data from FRED

Author(s)

Seth Leonard [email protected]

References

https://fred.stlouisfed.org/


Library of metadata for mixed frequency dataset 'fred'

Description

Library of metadata for mixed frequency dataset 'fred'

Author(s)

Seth Leonard [email protected]

References

https://fred.stlouisfed.org/


Get frequency of data based on missing observations

Description

Guess the frequency of a data series based on the pattern of missing observations

Usage

get_data_frq(x = NULL, dates)

Arguments

x

data, potentially with missing observations

dates

corresponding dates in 'as.Date()' format

Value

The frequency of the data

Examples

dates <- as.Date(c("2020-1-1", "2020-1-15", "2020-2-1", 
                   "2020-2-15", "2020-3-1", "2020-3-15", "2020-4-1"))
get_data_frq(c(1,NA,2,NA,3,NA,4), dates) ## "month"

Get from list

Description

Retrieve object 'what' from 'lst'

Usage

get_from_list(lst, what)

Arguments

lst

list

what

object to retrieve (by name or index)

Value

Element of the list indicated

Examples

get_from_list(list("a" = "alpha", "b" = c(1,2,3)), "a") # "alpha"

Find the Friday in a given week

Description

Find the Friday in a given week from a sequence of Dates Vectors should be in as.Date() format

Usage

index_by_friday(dates)

Arguments

dates

vector of dates

Value

The date of the Friday in the week of the given date

Examples

dates <- seq.Date(from = as.Date("2020-09-21"),
                  by = "week", length.out = 10)
fridays <- index_by_friday(dates)
weekdays(fridays)

Find element of this_in that

Description

Find element of this_in that, ie 'this_in

Usage

is_in(that, this_in)

Arguments

that

first object

this_in

second object

Value

Logical variables indicating whether the element exists in both objects

Examples

that <- seq.Date(from = as.Date("2020-09-15"), by = "day", length.out = 10)
this_in <- seq.Date(from = as.Date("2020-09-11"), by = "day", length.out = 10)
is_in(that, this_in)

Last date in the month

Description

Return the latest date in each month for the values in 'dates'

Usage

last_in_month(dates)

Arguments

dates

A sequence of dates in 'as.Date()' format

Value

Last day of each month

Examples

dates <- seq.Date(from = as.Date("2020-09-11"),
                  by = "day", length.out = 10)
last_in_month(dates)

Last date in the week

Description

Return the latest date in the quarter fop the values in 'dates'

Usage

last_in_quarter(dates)

Arguments

dates

A sequence of dates in 'as.Date()' format

Value

Last day of the quarter

Examples

dates <- seq.Date(from = as.Date("2020-09-11"),
                  by = "day", length.out = 10)
last_in_quarter(dates)

Last date in the week

Description

Return the latest date in each week for the values in 'dates'

Usage

last_in_week(dates)

Arguments

dates

A sequence of dates in 'as.Date()' format

Value

Last day of each week

Examples

dates <- seq.Date(from = as.Date("2020-09-21"),
                  by = "day", length.out = 10)
last_in_week(dates)

Last date in the year

Description

Return the latest date in each year for the values in 'dates'

Usage

last_in_year(dates)

Arguments

dates

A sequence of dates in 'as.Date()' format

Value

Last day of the year

Examples

dates <- seq.Date(from = as.Date("2020-09-11"),
                  by = "day", length.out = 10)
last_in_year(dates)

Last observation

Description

Return the last finite observation of 'x'

Usage

last_obs(x)

Arguments

x

data potentially with non-finite values

Value

The last finite observation

Examples

last_obs(c(NA,1,2,3,NA,5,NA,7,NA,NA)) ## 7

Limit Characters

Description

limit the number of characters in a string and remove spacial characters (will not drop numbers)

Usage

limit_character(x, limit = 100)

Arguments

x

object containing character values

limit

maximum number of characters to return

Value

Character values within the limit

Examples

limit_character("a%b+&cd!efghij",limit = 3)  ## "abc"

Long Run Variance of a VAR

Description

Find the long run variance of a VAR using the transition equation 'A' and shocks to observations 'Q'

Usage

long_run_var(A, Q, m, p)

Arguments

A

Transition matrix from a VAR model in companion form

Q

Covariance of shocks

m

Number of series in the VAR

p

Number of lags in the VAR

Value

The variance matrix

Examples

long_run_var(comp_form(matrix(c(.2,.1,.1,.2,0,0,0,0), 2, 4)),
             matrix(c(1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0),4,4),2, 2)

Match index values

Description

Match index values of this to that

Usage

match_index(this, that)

Arguments

this

first object

that

second object

Value

A list of indexes indicating the elements that are matched to each other

Examples

match_index(c(1,2,3),c(2,3,4)) ## $that_idx: 1 2; $this_idx: 2 3

Match dates between two timeseries

Description

Find values in 'new_ts' that correspond to dates in 'old_ts'

Usage

match_ts_dates(old_ts, new_ts)

Arguments

old_ts

timeseries data

new_ts

timeseries data

Value

Timeseries data in which 'new_ts' corresponds to 'old_ts'

Examples

old_ts <- ts(c(1,2,3,4), start=c(2020,1), end=c(2020,4), frequency=4) 
new_ts <- ts(c(5,6,3,4), start=c(2019,4), end=c(2020,3), frequency=4) 
match_ts_dates(old_ts, new_ts)

Return the mean

Description

Return the mean of 'x'. If no observations, return 'NA'. This is a workaround for the fact that in data.table, ':= mean(x, na.rm = TRUE)' will return 'NaN' where there are no observations

Usage

mean_na(x)

Arguments

x

data potentially with non-finite values

Value

Mean of the input

Examples

mean_na(c(1,2,3,7,9,NA)) ## 4.4

Number of days in a given month

Description

Get the number of days in a month given the year and month

Usage

month_days(year, month)

Arguments

year

integer year value

month

integer month value

Value

The number of days in the month (integer)

Examples

month_days(2021,9) ## 30

month_days(2020,2) ## 29

Number of finite values in a column

Description

Return the number of finite values in a column of Y

Usage

number_finite(Y)

Arguments

Y

matrix like data object

Value

The number of finite values per column

Examples

X <- matrix(1,10,2)
X[3,1] <- NA
number_finite(X)

Dummies for Numeric Data

Description

Create dummy variables for unique numeric values in 'x'

Usage

numdum(x)

Arguments

x

Numeric vector

Value

Dummy variables for each unique value in the data

Examples

numdum(c(3,3,5,3,4,3,5,4,4,5)) ## dummies for each of 3, 4, and 5

Percent change

Description

Calculate the percent change in 'y' from one period to the next

Usage

pct_chng(y, lag = 1)

Arguments

y

data

lag

number of periods for percent change

Value

The percentage change among the lag period

Examples

pct_chng(c(100,50,100,20,100,110))

Percent of responses at a given frequency

Description

Return the percent of responses to categorical answers at a specified frequency

Usage

pct_response(
  dt,
  col_name = NULL,
  by = c("month", "quarter", "week"),
  date_name = "ref_date"
)

Arguments

dt

data table of responses

col_name

name of column containing responses

by

frequency of response aggregation, one of '"month"', '"quarter"', '"week"'

date_name

name of column containing dates

Value

The percent of responses at the frequency

Examples

dt <- data.frame("ref_date" = seq.Date(as.Date("2000-01-01"), length.out = 100, by = "week"),
                 "response" = c(rep("yes", 20), rep("no",50),rep("yes",30)))
out <- pct_response(dt, col_name = "response")

Process Data

Description

Process data to ensure stationarity in long format for time series modeling

Usage

process(
  dt,
  lib,
  detrend = TRUE,
  center = TRUE,
  scale = TRUE,
  as_of = NULL,
  date_name = "ref_date",
  id_name = "series_name",
  value_name = "value",
  pub_date_name = NULL,
  ignore_numeric_names = TRUE,
  silent = FALSE
)

Arguments

dt

Data in long format.

lib

Library with instructions regarding how to process data; see details.

detrend

T/F should data be detrended (see details)?

center

T/F should data be centered (i.e. de-meaned)?

scale

T/F should data be scaled (i.e. variance 1)?

as_of

"As of" date at which to censor observations for backesting. This requires 'pub_date_name' is specified.

date_name

Name of data column in the data.

id_name

Name of ID column in the data.

value_name

Name of value column in the data

pub_date_name

Name of publication date column in the data; required if 'as_of' specified.

ignore_numeric_names

T/F ignore numeric values in matching series names in 'dt' to series names in 'lib'. This is required for data aggregated using 'process_MF()', as lags of LHS and RHS data are tagged 0 for contemporaneous data, 1 for one lag, 2 for 2 lags, etc. Ignoring these tags insures processing from 'lib' is correctly identified.

silent

T/F, supress warnings?

Details

Process data can be used to transform data to insure stationarity and to censor data for backtesting. Directions for processing each file come from the data.table 'lib'. This table must include the columns 'series_name', 'take_logs', and 'take_diffs'. Unique series may also be identified by a combination of 'country' and 'series_name'. Optional columns include 'needs_SA' for series that need seasonal adjustment, 'detrend' for removing low frequency trends (nowcasting only; detrend should not be used for long horizon forecasts), 'center' to de-mean the data, and 'scale' to scale the data. If the argument to 'process_wide()' of 'detrend', 'center', or 'scale' is 'FALSE', the operation will not be performed. If 'TRUE', the function will check for the column of the same name in 'lib'. If the column exists, T/F entries from this column are used to determine which series to transform. If the column does not exist, all series will be transformed.

Value

data.table of processed values in long format.

Examples

dt <- process(fred, fredlib)

LHS <- fred[series_name == "gdp constant prices"]
RHS <- fred[series_name != "gdp constant prices"]
dtQ <- process_MF(LHS, RHS)
dt_processed <- process(dtQ, fredlib)

Process mixed frequency

Description

Process mixed frequency data for nowcasting applications by identifying the missing observations in the contemporaneous data and replicating this pattern of missing observations in the historical data prior to aggregation. This allows the incorporation of all available information into the model while still using uniform frequency models to actually generate predictions, and can thus be applied to a wide array of econometrics and machine learning applications.

Usage

process_MF(
  LHS,
  RHS,
  LHS_lags = 1,
  RHS_lags = 1,
  as_of = NULL,
  frq = c("auto", "week", "month", "quarter", "year"),
  date_name = "ref_date",
  id_name = "series_name",
  value_name = "value",
  pub_date_name = "pub_date",
  return_dt = TRUE
)

Arguments

LHS

Left hand side data in long format. May include multiple LHS variables, but LHS variance MUST have the same frequency.

RHS

Right hand side data in long format at any frequency.

LHS_lags

Number of lags of LHS variables to include in output.

RHS_lags

Number of lags of RHS variables to include in output (may be 0, indicating contemporaneous values only).

as_of

Backtesting the model "as of" this date; requires that 'pub_date' is specified in the data

frq

Frequency of LHS data, one of 'week', 'month', 'quarter', 'year'. If not specified, the function will attempt to automatically identify the frequency.

date_name

Name of date column in data.

id_name

Name of ID column in the data.

value_name

Name of value column in the data.

pub_date_name

Name of publication date in the data.

return_dt

T/F, should the function return a 'data.table'? IF FALSE the function will return matrix data.

Details

Right hand side data will always include observations contemporaneous with LHS data. Use 'RHS_lags' to add lags of RHS data to the output, and 'LHS_lags' to add lags of LHS data to the output. By default the function will return data in long format designed to be used with the 'dateutils' function 'process()'. Specifying 'return_dt = FALSE' will return LHS variables in the matrix 'Y', RHS variables in the matrix 'X', and corresponding dates (by index) in the date vector 'dates'.

Value

data.table in long format (unless ‘return_dt = FALSE'). Variables ending in ’0' are contemporaneous, ending in '1' are at one lag, '2' at two lags, etc.

Examples

LHS <- fred[series_name == "gdp constant prices"]
RHS <- fred[series_name != "gdp constant prices"]
dt <- process_MF(LHS, RHS)

Process Wide Format Data

Description

Process data in wide format for time series modeling

Usage

process_wide(
  dt_wide,
  lib,
  detrend = TRUE,
  center = TRUE,
  scale = TRUE,
  date_name = "ref_date",
  ignore_numeric_names = TRUE,
  silent = FALSE
)

Arguments

dt_wide

Data in wide format.

lib

Library with instructions regarding how to process data; see details.

detrend

T/F should data be detrended (see details)?

center

T/F should data be centered (i.e. de-meaned)?

scale

T/F should data be scaled (i.e. variance 1)?

date_name

Name of data column in the data.

ignore_numeric_names

T/F ignore numeric values in matching series names in 'dt' to series names in 'lib'. This is required for data aggregated using 'process_MF()', as lags of LHS and RHS data are tagged 0 for contemporaneous data, 1 for one lag, 2 for 2 lags, etc. Ignoring these tags insures processing from 'lib' is correctly identified.

silent

T/F, supress warnings?

Details

'process_wide()' can be used to transform wide data to insure stationarity. Censoring by pub_date requires long format. Directions for processing each file come from the data.table 'lib'. This table must include the columns 'series_name', 'take_logs', and 'take_diffs'. Unique series may also be identified by a combination of 'country' and 'series_name'. Optional columns include 'needs_SA' for series that need seasonal adjustment, 'detrend' for removing low frequency trends (nowcasting only; 'detrend' should not be used for long horizon forecasts), 'center' to de-mean the data, and 'scale' to scale the data. If the argument to 'process_wide()' of 'detrend', 'center', or 'scale' is 'FALSE', the operation will not be performed. If 'TRUE', the function will check for the column of the same name in 'lib'. If the column exists, T/F entries from this column are used to determine which series to transform. If the column does not exist, all series will be transformed.

Value

data.table of processed data

Examples

LHS <- fred[series_name == "gdp constant prices"]
RHS <- fred[series_name != "gdp constant prices"]
dtQ <- process_MF(LHS, RHS)
dt_wide <- data.table::dcast(dtQ, ref_date ~ series_name, value.var = "value")
dt_processed <- process_wide(dt_wide, fredlib)

Rolling Max

Description

Find the rolling maximum in 'x' with span 'n'

Usage

rollmax(x, n)

Arguments

x

Numeric vector

n

Integer span

Value

The maximum value of 'x' with span 'n'

Examples

rollmax(c(1,2,3), 2) ## c(2,3,3)

Rolling mean

Description

Take the rolling mean of 'x' over 'n' elements

Usage

rollmean(x, n)

Arguments

x

data vector

n

span of rolling mean

Value

Rolling mean of the input

Examples

rollmean(c(1,2,3),2) ## NA, 1.5, 2.5

Rolling Min

Description

Find the rolling minimum in 'x' with span 'n'

Usage

rollmin(x, n)

Arguments

x

Numeric vector

n

Integer span

Value

The minimum value of 'x' with span 'n'

Examples

rollmin(c(1,2,3),2) ## c(1,1,2)

Convert rows to list

Description

Return 'Y' with each row as a list

Usage

row_to_list(Y)

Arguments

Y

matrix like data object

Value

Each row as a list

Examples

row_to_list(matrix(rnorm(20),10,2))

Seasonally adjust data using seas()

Description

Seasonaly adjust monthly or quarterly data using X-13 SEATS via seas()

Usage

run_sa(x, dates, x11 = FALSE, transfunc = c("none", "auto", "log"))

Arguments

x

data

dates

dates corresponding to data 'x'

x11

T/F, use x11 as opposed to X-13 SEATS

transfunc

Data transformation, one of 'none' for no transformation, 'auto' for automatic detection, or 'log' for log transformation

Value

A list with 'adj_fact' containing seasonal factors and 'sa_final' containing seasonally adjusted data.

Examples

x <- fred[series_name == "gdp constant prices", value]
dates <- fred[series_name == "gdp constant prices", ref_date ]
run_sa(x, dates, transfunc = "log")

Return the standard deviation

Description

Return the standard deviation of 'x'. If no observations, return 'NA'. This is a workaround for the fact that in data.table, ':= sd(x, na.rm = TRUE)' will return 'NaN' where there are no observations

Usage

sd_na(x)

Arguments

x

data potentially with non-finite values

Value

Standard deviation of the input

Examples

sd_na(c(1,2,3,NA)) ## 1

Seasonally adjust long format data using seas()

Description

Seasonaly adjust multiple monthly or quarterly series in long format using X-13 SEATS via seas()

Usage

seas_df_long(
  df,
  sa_names,
  x11 = FALSE,
  transfunc = "none",
  series_names = "series_name",
  value_var = "value",
  date_var = "ref_date"
)

Arguments

df

long format dataframe

sa_names

names of series to seasonally adjust

x11

T/F, use x11 as opposed to X-13 SEATS

transfunc

Data transformation, one of 'none' for no transformation, 'auto' for automatic detection, or 'log' for log transformation

series_names

name of column containing series names

value_var

name of column containing values

date_var

name of column containing dates

Value

A list with data.frames 'sa_factors' containing seasonal factors and 'values_sa' containing seasonally adjusted data.

Examples

seas_df_long(fred[series_name == "gdp constant prices"], sa_names="value")

Seasonally adjust wide format data using seas()

Description

Seasonaly adjust multiple monthly or quarterly series in wide format using X-13 SEATS via seas()

Usage

seas_df_wide(df, sa_cols, x11 = FALSE, transfunc = "none")

Arguments

df

wide format dataframe

sa_cols

names or column indexes of series to seasonally adjust

x11

T/F, use x11 as opposed to X-13 SEATS

transfunc

Data transformation, one of 'none' for no transformation, 'auto' for automatic detection, or 'log' for log transformation

Value

A list with data.frames 'sa_factors' containing seasonal factors and 'values_sa' containing seasonally adjusted data.

Examples

seas_df_wide(fred[series_name == "gdp constant prices"], sa_cols="value")

Spline fill missing observations

Description

Spline fill missing observations from the first observation to the last, leaving NA observations in the head and tail

Usage

spline_fill(x)

Arguments

x

data with missing observations

Value

data with interpolated missing observations, except at head and tail, which remain NA

Examples

spline_fill_trend(c(NA,1,2,3,NA,5)) ## NA 1 2 3 4 5

Spline fill missing observations

Description

Spline fill missing observations, designed for filling low frequency trend estimates

Usage

spline_fill_trend(x)

Arguments

x

data with missing observations

Value

data with interpolated missing observations

Examples

spline_fill_trend(c(1,2,3,NA,5)) ## 1 2 3 4 5

Stack time series observations in VAR format

Description

Stack time series observations in VAR format over series for p lags

Usage

stack_obs(Dat, p)

Arguments

Dat

Data in a format convertable to a matrix

p

number of lags, integer value

Value

stacked time series obs with p lags

Examples

mat <- matrix(rnorm(100),50,2)
Z <- stack_obs(mat, 2) ## stack the dataset `mat` with two lags 
## Note: one "lag" will just return the original dataset.

Return the sum

Description

Return the sum of 'x'. If no observations, return 'NA'. This is a workaround for the fact that in data.table, ':= sum()' will return 'NaN' where there are no observations

Usage

sum_na(x)

Arguments

x

data potentially with non-finite values

Value

Sum of the input

Examples

sum_na(c(1,2,3,NA)) # 6

Tabular data to ts() format

Description

transform data in 'x' corresponding to dates in 'dates' to ts() format

Usage

to_ts(x, dates)

Arguments

x

data

dates

dates

Value

data in ts() format

Examples

x <- c(1,2,3,4)
dates <- as.Date(c("2020-1-1","2020-2-1","2020-3-1","2020-4-1"))
to_ts(x, dates)

Number of of responses at a given frequency

Description

Return the total number of responses to categorical answers at a specified frequency

Usage

total_response(
  dt,
  col_name = NULL,
  by = c("month", "quarter", "week"),
  date_name = "ref_date"
)

Arguments

dt

data table of responses

col_name

name of column containing responses

by

frequency of response aggregation, one of '"month"', '"quarter"', '"week"'

date_name

name of column containing dates

Value

The number of responses at the frequency

Examples

dt <- data.frame("ref_date" = seq.Date(as.Date("2000-01-01"), length.out = 100, by = "week"),
                 "response" = c(rep("yes", 20), rep("no",50),rep("yes",30)))
out <- total_response(dt, col_name = "response")

Remove low frequency trends from data

Description

Estimate low frequency trends via loess regression and remove them. If the function errors, return x (i.e. no trend)

Usage

try_detrend(x, outlier_rm = TRUE, span = 0.6)

Arguments

x

data

outlier_rm

T/F, remove outliers to estimate trends?

span

span for the loess regression

Value

Data with trends removed

Examples

try_detrend(c(1,3,6,7,9,11,14,15,17,18))

Seasonally adjust data using seas()

Description

Seasonaly adjust monthly or quarterly data using X-13 SEATS via seas()

Usage

try_sa(x, dates, x11 = FALSE, transfunc = "none", series_name = NULL)

Arguments

x

data

dates

dates corresponding to data 'x'

x11

T/F, use x11 as opposed to X-13 SEATS

transfunc

Data transformation, one of 'none' for no transformation, 'auto' for automatic detection, or 'log' for log transformation

series_name

Include series name to print out if failure (for lapply() applications)

Value

A list with 'adj_fact' containing seasonal factors and 'sa_final' containing seasonally adjusted data. If seasonal adjsutment failed 'adj_fact' will contain zeros and 'sa_final' will contain the original data.

Examples

x <- fred[series_name == "gdp constant prices", value]
dates <- fred[series_name == "gdp constant prices", ref_date ]
try_sa(x, dates, transfunc = "log")

Estimate low frequnecy trends

Description

Estimate low frequency trends via loess regression. If the function errors, return zeros (i.e. no trend)

Usage

try_trend(x, outlier_rm = TRUE, span = 0.6)

Arguments

x

data

outlier_rm

T/F, remove outliers to estimate trends?

span

span for the loess regression

Value

Estimated trend in the data

Examples

try_trend(c(1,3,6,7,9,11,14,15,17,18))

ts() data to a dataframe

Description

Transform monthly or quarterly ts() data to a dataframe

Usage

ts_to_df(x, end_period = TRUE)

Arguments

x

ts() format data which is either monthly or quarterly

end_period

T/F, for monthly or quarterly data, should dates be indexed to the end of the period?

Value

Data in dataframe format

Examples

x <- ts(c(1,2,3,4), start=c(2020,1), end=c(2020,4), frequency=4) 
ts_to_df(x)