Package 'daltoolboxdp'

Title: Data Pre-Processing Extensions
Description: An important aspect of data analytics is related to data management support for artificial intelligence. It is related to preparing data correctly. This package provides extensions to support data preparation in terms of both data sampling and data engineering. Overall, the package provides researchers with a comprehensive set of functionalities for data science based on experiment lines, promoting ease of use, extensibility, and integration with various tools and libraries. Information on Experiment Line is based on Ogasawara et al. (2009) <doi:10.1007/978-3-642-02279-1_20>.
Authors: Eduardo Ogasawara [aut, ths, cre] , Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ) [cph]
Maintainer: Eduardo Ogasawara <[email protected]>
License: MIT + file LICENSE
Version: 1.0.767
Built: 2024-11-23 06:36:12 UTC
Source: CRAN

Help Index


Oversampling

Description

Oversampling balances the class distribution of a dataset by increasing the representation of the minority class in the dataset. It wraps the smotefamily library.

Usage

bal_oversampling(attribute)

Arguments

attribute

The class attribute to target balancing using oversampling.

Value

A bal_oversampling object.

Examples

data(iris)
mod_iris <- iris[c(1:50,51:71,101:111),]

bal <- bal_oversampling('Species')
bal <- daltoolbox::fit(bal, mod_iris)
adjust_iris <- daltoolbox::transform(bal, mod_iris)
table(adjust_iris$Species)

Subsampling

Description

Subsampling balances the class distribution of a dataset by reducing the representation of the majority class in the dataset.

Usage

bal_subsampling(attribute)

Arguments

attribute

The class attribute to target balancing using subsampling

Value

A bal_subsampling object.

Examples

data(iris)
mod_iris <- iris[c(1:50,51:71,101:111),]

bal <- bal_subsampling('Species')
bal <- daltoolbox::fit(bal, mod_iris)
adjust_iris <- daltoolbox::transform(bal, mod_iris)
table(adjust_iris$Species)

Feature Selection

Description

Feature selection is a process of selecting a subset of relevant features from a larger set of features in a dataset for use in model training. The FeatureSelection class in R provides a framework for performing feature selection.

Usage

fs(attribute)

Arguments

attribute

The target variable.

Value

An instance of the FeatureSelection class.

Examples

#See ?fs_fss for an example of feature selection

Forward Stepwise Selection

Description

Forward stepwise selection is a technique for feature selection in which attributes are added to a model one at a time based on their ability to improve the model's performance. It stops adding once the candidate addition does not significantly improve model adjustment. It wraps the leaps library.

Usage

fs_fss(attribute)

Arguments

attribute

The target variable.

Value

A fs_fss object.

Examples

data(iris)
myfeature <- daltoolbox::fit(fs_fss("Species"), iris)
data <- daltoolbox::transform(myfeature, iris)
head(data)

Information Gain

Description

Information Gain is a feature selection technique based on information theory. It measures the information obtained for the target variable by knowing the presence or absence of a feature. It wraps the FSelector library.

Usage

fs_ig(attribute)

Arguments

attribute

The target variable.

Value

A fs_ig object.

Examples

data(iris)
myfeature <- daltoolbox::fit(fs_ig("Species"), iris)
data <- daltoolbox::transform(myfeature, iris)
head(data)

Feature Selection using Lasso

Description

Feature selection using Lasso regression is a technique for selecting a subset of relevant features. It wraps the glmnet library.

Usage

fs_lasso(attribute)

Arguments

attribute

The target variable.

Value

A fs_lasso object.

Examples

data(iris)
myfeature <- daltoolbox::fit(fs_lasso("Species"), iris)
data <- daltoolbox::transform(myfeature, iris)
head(data)

Relief

Description

Feature selection using Relief is a technique for selecting a subset of relevant features. It calculates the relevance of a feature by considering the difference in feature values between nearest neighbors of the same and different classes. It wraps the FSelector library.

Usage

fs_relief(attribute)

Arguments

attribute

The target variable.

Value

A fs_relief object.

Examples

data(iris)
myfeature <- daltoolbox::fit(fs_relief("Species"), iris)
data <- daltoolbox::transform(myfeature, iris)
head(data)