Package 'dGAselID'

Title: Genetic Algorithm with Incomplete Dominance for Feature Selection
Description: Feature selection from high dimensional data using a diploid genetic algorithm with Incomplete Dominance for genotype to phenotype mapping and Random Assortment of chromosomes approach to recombination.
Authors: Nicolae Teodor Melita
Maintainer: Nicolae Teodor Melita <[email protected]>
License: MIT + file LICENSE
Version: 1.2
Built: 2024-11-21 06:54:58 UTC
Source: CRAN

Help Index


AnalyzeResults

Description

Ranks individuals according to their fitness and records the results.

Usage

AnalyzeResults(individuals, results, randomAssortment = TRUE, chrConf)

Arguments

individuals

Population of individuals with diploid genotypes.

results

Results returned by EvaluationFunction().

randomAssortment

Random Assortment of Chromosomes for recombinations. The default value is TRUE.

chrConf

Configuration of chromosomes returned by splitChromosomes().

Examples

## Not run: 
 library(genefilter)
 library(ALL)
 data(ALL)
 bALL = ALL[, substr(ALL$BT,1,1) == "B"]
 smallALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]
 smallALL$mol.biol = factor(smallALL$mol.biol)
 smallALL$BT = factor(smallALL$BT)
 f1 <- pOverA(0.25, log2(100))
 f2 <- function(x) (IQR(x) > 0.5)
 f3 <- ttest(smallALL$mol.biol, p=0.1)
 ff <- filterfun(f1, f2, f3)
 selectedsmallALL <- genefilter(exprs(smallALL), ff)
 smallALL = smallALL[selectedsmallALL, ]
 rm(f1)
 rm(f2)
 rm(f3)
 rm(ff)
 rm(bALL)
 sum(selectedsmallALL)
 set.seed(1357)

 population0<-InitialPopulation(smallALL, 14, 10, FALSE)
 individuals0<-Individuals(population0)
 results0<-EvaluationFunction(smallALL, individuals0, response="mol.biol",
             method=knn.cvI(k=3, l=2), trainTest="LOG")
 chrConf0<-splitChromosomes(smallALL)
 iterRes0<-AnalyzeResults(individuals0, results0, randomAssortment=TRUE, chrConf0)
 
## End(Not run)

Crossover

Description

Two-point crossover operator.

Usage

Crossover(c1, c2, chrConf)

Arguments

c1

Set of chromosomes.

c2

Set of chromosomes.

chrConf

Configuration of chromosomes returned by splitChromosomes().

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]
set.seed(1357)
population02<-InitialPopulation(demoALL, 2, 4, FALSE)
chrConf02<-splitChromosomes(demoALL, 2)
chrConf02
population02[1:2,]
Crossover(population02[1,], population02[2,], chrConf02)
 
## End(Not run)

dGAselID

Description

Initializes and starts the search with the genetic algorithm.

Usage

dGAselID(x, response, method = knn.cvI(k = 3, l = 2), trainTest = "LOG",
  startGenes, populationSize, iterations, noChr = 22, elitism = NA,
  ID = "ID1", pMutationChance = 0, nSMutationChance = 0,
  fSMutationChance = 0, lSDeletionChance = 0, wChrDeletionChance = 0,
  transposonChance = 0, randomAssortment = TRUE, embryonicSelection = NA,
  EveryGeneInInitialPopulation = TRUE, nnetSize = NA, nnetDecay = NA,
  rdaAlpha = NA, rdaDelta = NA, ...)

Arguments

x

Dataset in ExpressionSet format.

response

Response variable

method

Supervised classifier for fitness evaluation. Most of the supervised classifiers in MLInterfaces are acceptable. The default is knn.cvI(k=3, l=2).

trainTest

Cross-validation method. The default is "LOG".

startGenes

Genes in the genotypes at initialization.

populationSize

Number of genotypes in initial population.

iterations

Number of iterations.

noChr

Number of chromosomes. The default value is 22.

elitism

Elite population in percentages.

ID

Dominance. The default value is "ID1". Use "ID2" for Incomplete Dominance.

pMutationChance

Chance for a Point Mutation to occur. The default value is 0.

nSMutationChance

Chance for a Non-sense Mutation to occur. The default value is 0.

fSMutationChance

Chance for a Frameshift Mutation to occur. The default value is 0.

lSDeletionChance

Chance for a Large Segment Deletion to occur. The default value is 0.

wChrDeletionChance

Chance for a Whole Chromosome Deletion to occur. The default value is 0.

transposonChance

Chance for a Transposon Mutation to occur. The default value is 0.

randomAssortment

Random Assortment of Chromosomes for recombinations. The default value is TRUE.

embryonicSelection

Remove chromosomes with fitness < specified value. The default value is NA.

EveryGeneInInitialPopulation

Request for every gene to be present in the initial population. The default value is TRUE.

nnetSize

for nnetI. The default value is NA.

nnetDecay

for nnetI. The default value is NA.

rdaAlpha

for rdaI. The default value is NA.

rdaDelta

for rdaI. The default value is NA.

...

Additional arguments.

Value

The output is a list containing 5 named vectors, records of the evolution:

DGenes

The occurrences in selected genotypes for every gene,

dGenes

The occurrences in discarded genotypes for every gene,

MaximumAccuracy

Maximum accuracy in every generation,

MeanAccuracy

Average accuracy in every generation,

MinAccuracy

Minimum accuracy in every generation,

BestIndividuals

Best individual in every generation.

Examples

## Not run: 
 library(genefilter)
 library(ALL)
 data(ALL)
 bALL = ALL[, substr(ALL$BT,1,1) == "B"]
 smallALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]
 smallALL$mol.biol = factor(smallALL$mol.biol)
 smallALL$BT = factor(smallALL$BT)
 f1 <- pOverA(0.25, log2(100))
 f2 <- function(x) (IQR(x) > 0.5)
 f3 <- ttest(smallALL$mol.biol, p=0.1)
 ff <- filterfun(f1, f2, f3)
 selectedsmallALL <- genefilter(exprs(smallALL), ff)
 smallALL = smallALL[selectedsmallALL, ]
 rm(f1)
 rm(f2)
 rm(f3)
 rm(ff)
 rm(bALL)
 sum(selectedsmallALL)

 set.seed(149)
 res<-dGAselID(smallALL, "mol.biol", trainTest=1:79, startGenes=12, populationSize=200,
               iterations=150, noChr=5, pMutationChance=0.0075, elitism=4)
 
## End(Not run)

Elitism

Description

Operator for elitism.

Usage

Elitism(results, elitism, ID)

Arguments

results

Results returned by EvaluationFunction().

elitism

Elite population in percentages.

ID

Dominance. The default value is "ID1". Use "ID2" for Incomplete Dominance.

Examples

## Not run: 
 library(genefilter)
 library(ALL)
 data(ALL)
 bALL = ALL[, substr(ALL$BT,1,1) == "B"]
 smallALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]
 smallALL$mol.biol = factor(smallALL$mol.biol)
 smallALL$BT = factor(smallALL$BT)
 f1 <- pOverA(0.25, log2(100))
 f2 <- function(x) (IQR(x) > 0.5)
 f3 <- ttest(smallALL$mol.biol, p=0.1)
 ff <- filterfun(f1, f2, f3)
 selectedsmallALL <- genefilter(exprs(smallALL), ff)
 smallALL = smallALL[selectedsmallALL, ]
 rm(f1)
 rm(f2)
 rm(f3)
 rm(ff)
 rm(bALL)
 sum(selectedsmallALL)
 set.seed(1357)

 population0<-InitialPopulation(smallALL, 14, 8, FALSE)
 individuals0<-Individuals(population0)
 results0<-EvaluationFunction(smallALL, individuals0, response="mol.biol",
             method=knn.cvI(k=3, l=2), trainTest="LOG")
 Elitism(results0, 25, ID="ID1")
 Elitism(results0, 25, ID="ID2")
 
## End(Not run)

EmbryonicSelection

Description

Function for deleting individuals with a fitness below a specified threshold.

Usage

EmbryonicSelection(population, results, embryonicSelection)

Arguments

population

Population of individuals with diploid genotypes.

results

Results returned by EvaluationFunction().

embryonicSelection

Threshold value. The default value is NA.

Examples

## Not run: 
 library(genefilter)
 library(ALL)
 data(ALL)
 bALL = ALL[, substr(ALL$BT,1,1) == "B"]
 smallALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]
 smallALL$mol.biol = factor(smallALL$mol.biol)
 smallALL$BT = factor(smallALL$BT)
 f1 <- pOverA(0.25, log2(100))
 f2 <- function(x) (IQR(x) > 0.5)
 f3 <- ttest(smallALL$mol.biol, p=0.1)
 ff <- filterfun(f1, f2, f3)
 selectedsmallALL <- genefilter(exprs(smallALL), ff)
 smallALL = smallALL[selectedsmallALL, ]
 rm(f1)
 rm(f2)
 rm(f3)
 rm(ff)
 rm(bALL)
 sum(selectedsmallALL)
 set.seed(1357)

 population0<-InitialPopulation(smallALL, 14, 8, FALSE)
 individuals0<-Individuals(population0)
 results0<-EvaluationFunction(smallALL, individuals0, response="mol.biol",
             method=knn.cvI(k=3, l=2), trainTest="LOG")
 EmbryonicSelection(individuals0, results0, 0.5)
 
## End(Not run)

EvaluationFunction

Description

Evaluates the individuals' fitnesses.

Usage

EvaluationFunction(x, individuals, response, method, trainTest, nnetSize = NA,
  nnetDecay = NA, rdaAlpha = NA, rdaDelta = NA, ...)

Arguments

x

Dataset in ExpressionSet format.

individuals

Population of individuals with diploid genotypes.

response

Response variable.

method

Supervised classifier for fitness evaluation. Most of the supervised classifiers in MLInterfaces are acceptable. The default is knn.cvI(k=3, l=2).

trainTest

Cross-validation method. The default is "LOG".

nnetSize

for nnetI. The default value is NA.

nnetDecay

for nnetI. The default value is NA.

rdaAlpha

for rdaI. The default value is NA.

rdaDelta

for rdaI. The default value is NA.

...

Additional arguments.

Examples

## Not run: 
 library(genefilter)
 library(ALL)
 data(ALL)
 bALL = ALL[, substr(ALL$BT,1,1) == "B"]
 smallALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]
 smallALL$mol.biol = factor(smallALL$mol.biol)
 smallALL$BT = factor(smallALL$BT)
 f1 <- pOverA(0.25, log2(100))
 f2 <- function(x) (IQR(x) > 0.5)
 f3 <- ttest(smallALL$mol.biol, p=0.1)
 ff <- filterfun(f1, f2, f3)
 selectedsmallALL <- genefilter(exprs(smallALL), ff)
 smallALL = smallALL[selectedsmallALL, ]
 rm(f1)
 rm(f2)
 rm(f3)
 rm(ff)
 rm(bALL)
 sum(selectedsmallALL)
 set.seed(1357)

 population0<-InitialPopulation(smallALL, 14, 8, FALSE)
 individuals0<-Individuals(population0)
 results<-EvaluationFunction(smallALL, individuals0, response="mol.biol",
             method=knn.cvI(k=3, l=2), trainTest="LOG")
 
## End(Not run)

frameShiftMutation

Description

Operator for the frameshift mutation.

Usage

frameShiftMutation(individuals, chrConf, mutationChance)

Arguments

individuals

dataset returned by Individuals().

chrConf

Configuration of chromosomes returned by splitChromosomes().

mutationChance

Chance for a frameshift mutation to occur.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

set.seed(1234)
population<-InitialPopulation(demoALL, 4, 9)
individuals<-Individuals(population)

chrConf<-splitChromosomes(demoALL, 2)
chrConf
individuals

set.seed(123)
frameShiftMutation(individuals, chrConf, 20)
 
## End(Not run)

Individuals

Description

Generates individuals with diploid genotypes.

Usage

Individuals(population)

Arguments

population

Population of haploid genotypes.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

population02<-InitialPopulation(demoALL, 20, 4, FALSE)
individuals02<-Individuals(population02)
 
## End(Not run)

InitialPopulation

Description

Generates an initial randomly generated population of haploid genotypes.

Usage

InitialPopulation(x, populationSize, startGenes,
  EveryGeneInInitialPopulation = TRUE)

Arguments

x

Dataset in ExpressionSet format.

populationSize

Number of genotypes in initial population.

startGenes

Genes in the genotypes at initialization.

EveryGeneInInitialPopulation

Request for every gene to be present in the initial population. The default value is TRUE.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

population01<-InitialPopulation(demoALL, 4, 4)
population02<-InitialPopulation(demoALL, 20, 4, FALSE)
 
## End(Not run)

largeSegmentDeletion

Description

Operator for the large segment deletion.

Usage

largeSegmentDeletion(individuals, chrConf, mutationChance)

Arguments

individuals

dataset returned by Individuals().

chrConf

Configuration of chromosomes returned by splitChromosomes().

mutationChance

Chance for a large segment deletion mutation to occur.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

set.seed(1234)
population<-InitialPopulation(demoALL, 4, 9)
individuals<-Individuals(population)

chrConf<-splitChromosomes(demoALL, 2)
chrConf
individuals

set.seed(123)
largeSegmentDeletion(individuals, chrConf, 20)
 
## End(Not run)

nonSenseMutation

Description

Operator for the nonsense mutation.

Usage

nonSenseMutation(individuals, chrConf, mutationChance)

Arguments

individuals

dataset returned by Individuals().

chrConf

Configuration of chromosomes returned by splitChromosomes().

mutationChance

Chance for a nonsense mutation to occur.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

set.seed(1234)
population<-InitialPopulation(demoALL, 4, 9)
individuals<-Individuals(population)

chrConf<-splitChromosomes(demoALL, 2)
chrConf
individuals

set.seed(123)
nonSenseMutation(individuals, chrConf, 20)
 
## End(Not run)

PlotGenAlg

Description

Function for graphically representing the evolution.

Usage

PlotGenAlg(DGenes, dGenes, maxEval, meanEval)

Arguments

DGenes

Occurences of genes as dominant.

dGenes

Occurences of genes as recessive. For future developments.

maxEval

Maximum fitness.

meanEval

Average fitness.

Examples

## Not run: 
		#Graphical representation of the evolution after each generation.
		#Intended to be used by dGAselID() only.
		#Please refer to the example for dGAselID().
 
## End(Not run)

pointMutation

Description

Operator for the point mutation.

Usage

pointMutation(individuals, mutationChance)

Arguments

individuals

dataset returned by Individuals().

mutationChance

chance for a point mutation to occur.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

set.seed(1234)
population<-InitialPopulation(demoALL, 4, 9)
individuals<-Individuals(population)

individuals
set.seed(123)
pointMutation(individuals, 4)
 
## End(Not run)

RandomAssortment

Description

Random assortment of chromosomes operator.

Usage

RandomAssortment(newChrs, chrConf)

Arguments

newChrs

Set of chromosomes.

chrConf

Configuration of chromosomes returned by splitChromosomes().

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

population02<-InitialPopulation(demoALL, 2, 4, FALSE)
chrConf02<-splitChromosomes(demoALL, 4)

set.seed(1357)
cr1<-Crossover(population02[1,], population02[2,], chrConf02)
RandomAssortment(cr1, chrConf02)
cr1
chrConf02
 
## End(Not run)

RandomizePop

Description

Generates a random population for the next generation.

Usage

RandomizePop(population)

Arguments

population

Population of chromosome sets in current generation.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

population01<-InitialPopulation(demoALL, 4, 4)
population01
RandomizePop(population01)
 
## End(Not run)

splitChromosomes

Description

Divides the genotypes into sets with a desired number of chromosomes.

Usage

splitChromosomes(x, noChr = 22)

Arguments

x

Dataset in ExpressionSet format.

noChr

Desired number of chromosomes. The default value is 22.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

splitChromosomes(demoALL, 3)
splitChromosomes(demoALL)

 
## End(Not run)

transposon

Description

Operator for transposons.

Usage

transposon(individuals, chrConf, mutationChance)

Arguments

individuals

dataset returned by Individuals().

chrConf

Configuration of chromosomes returned by splitChromosomes().

mutationChance

Chance for a transposon mutation to occur.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

set.seed(1234)
population<-InitialPopulation(demoALL, 4, 9)
individuals<-Individuals(population)

chrConf<-splitChromosomes(demoALL, 2)
chrConf
individuals

set.seed(123)
transposon(individuals, chrConf, 20)
 
## End(Not run)

wholeChromosomeDeletion

Description

Operator for the deletion of a whole chromosome.

Usage

wholeChromosomeDeletion(individuals, chrConf, mutationChance)

Arguments

individuals

dataset returned by Individuals().

chrConf

Configuration of chromosomes returned by splitChromosomes().

mutationChance

Chance for a deletion of a whole chromosome mutation to occur.

Examples

## Not run: 
library(ALL)
data(ALL)

demoALL<-ALL[1:12,1:8]

set.seed(1234)
population<-InitialPopulation(demoALL, 4, 9)
individuals<-Individuals(population)

chrConf<-splitChromosomes(demoALL, 2)
chrConf
individuals

set.seed(123)
wholeChromosomeDeletion(individuals, chrConf, 20)
 
## End(Not run)