Package: cvmaPLFAM (via r-universe)

September 10, 2024

Type Package Title Cross-Validation Model Averaging for Partial Linear Functional Additive Models Version 0.1.0 RoxygenNote 7.1.0 Imports fda, quadprog, mgcv, MASS, stats, utils NeedsCompilation no Author Shishi Liu [aut, cre], Jingxiao Zhang [aut] Maintainer Shishi Liu liushishi_644@163.com> Description Produce an averaging estimate/prediction by combining all candidate models for partial linear functional additive models, using multi-fold cross-validation criterion. More details can be referred to Shishi Liu and Jingxiao Zhang. (2021) <arXiv:2105.00966>. License GPL (>= 3) **Encoding** UTF-8

Repository CRAN

Date/Publication 2023-06-09 08:50:07 UTC

Contents

Index

cvfolds										 										2
cvmaPLFAM										 										2
data_gen						•	•			 										4
fpcscore						•	•			 										5
modelspec																				
predRisk			•							 	•								•	7
																				9

cvfolds

Description

Randomly split the data indexes into nfolds folds.

Usage

```
cvfolds(nfolds, datasize)
```

Arguments

nfolds	The number of folds used in cross-validation.
datasize	The sample size.

Value

A list. Each element contains the index vector of sample data included in this fold.

Examples

```
# Given sample size 20, generate 5 folds
set.seed(1212)
cvfolds(5, 20)
#[[1]]
# [1] 6 11 14 16
#[[2]]
# [1] 3 5 10 18
#[[3]]
# [1] 4 7 8 19
#[[4]]
# [1] 2 9 12 15
#[[5]]
# [1] 1 13 17 20
```

cvmaPLFAM

Cross-Validation Model Averaging (CVMA) for Partial Linear Functional Additive Models (PLFAMs)

Description

Summarize the estimate of weights for averaging across all candidate models for PLFAMs, using multi-fold cross-validation criterion, and the corresponding mean squared prediction error risk. Additionally, the results of AIC, BIC, SAIC and SBIC are delivered simultaneously.

cvmaPLFAM

Usage

```
cvmaPLFAM(
    Y,
    scalars,
    functional,
    Y.test = NULL,
    scalars.test = NULL,
    functional.test = NULL,
    tt,
    nump,
    numfpcs,
    nbasis,
    nfolds,
    ratio.train = NULL
)
```

Arguments

Υ	The vector of the scalar response variable.
scalars	The design matrix of scalar predictors.
functional	The matrix including records/measurements of the functional predictor.
Y.test	Test data: The vector of the scalar response variable.
scalars.test	Test data: The design matrix of scalar predictors.
functional.test	
	Test data: The matrix including records/measurements of the functional predic- tor.
tt	The vector of recording/measurement points for the functional predictor.
nump	The number of scalar predictors in candidate models.
numfpcs	The number of functional principal components (FPCs) for the functional pre- dictor in candidate models.
nbasis	The number of basis functions used for spline approximation.
nfolds	The number of folds used in cross-validation.
ratio.train	The ratio of data for training, if test data are NULL.

Value

A list of	
aic	Mean squared error risk in training data set, produced by AIC model selection method.
bic	Mean squared error risk in training data set, produced by BIC model selection method.
saic	Mean squared error risk in training data set, produced by SAIC model averaging method.

sbic	Mean squared error risk in training data set, produced by SBIC model averaging method.
cv	Mean squared error risk in training data set, produced by CVMA method.
waic	The selected candidate model by AIC model selection method.
wbic	The selected candidate model by BIC model selection method.
wsaic	The weights for each candidate model by SAIC model averaging method.
wsbic	The weights for each candidate model by SBIC model averaging method.
WCV	The weights for each candidate model by CVMA method.
predaic	Mean squared prediction error risk in test data set, produced by AIC model selection method.
predbic	Mean squared prediction error risk in test data set, produced by BIC model selection method.
predsaic	Mean squared prediction error risk in test data set, produced by SAIC model averaging method.
predsbic	Mean squared prediction error risk in test data set, produced by SBIC model averaging method.
predcv	Mean squared prediction error risk in test data set, produced by CVMA method.

Examples

data_gen

Simulated data

Description

Simulate sample data for illustration, including a M0-column design matrix of scalar predictors, a 100-column matrix of the functional predictor, a one-column vector of mu, a one-column vector of Y, and a one-column vector of testY.

fpcscore

Usage

data_gen(R, K, n, M0 = 50, typ, design)

Arguments

R	A scalar of value ranging from 0.1 to 0.9. The ratio of var(mu)/var(Y).
К	A scalar. The number of replications.
n	A scalar. The sample size of simulated data.
MØ	A scalar. True dimension of scalar predictors.
typ	A scalar of value 1 or 2. Type of the additive function for the functional predictor.
design	A scalar of value 1, 2, or 3. Designs 1, 2, 3 corresponding to simulation studies.

Value

A list of K simulated data sets. Each data set is of matrix type, whose first M0 columns corresponds to the design matrix of scalar predictors, followed by the recording/measurement matrix of the functional predictor, and vectors mu, Y, testY.

Examples

```
library(MASS)
# Example: Design 1 in simulation study
data_gen(R = 0.6, K = 2, n = 10, typ = 1, design = 1)
# Example: Design 2 in simulation study
data_gen(R = 0.3, K = 3, n = 10, typ = 2, design = 2)
# Example: Design 3 in simulation study
data_gen(R = 0.9, K = 5, n = 20, typ = 1, design = 3)
```

fpcscore

Calculate functional principal component (fpc) scores

Description

Conduct functional principal component analysis (FPCA) on the observation matrix of the functional predictor.

Usage

fpcscore(Z, nbasis, tt)

modelspec

Arguments

Z	An n by nT matrix. The recording/measurement matrix of the functional predic-
	tor.
nbasis	The number of basis functions used for spline approximation.
tt	The vector of recording/measurement points for the functional predictor.

Value

A list of	
score	An n by nbasis matrix. The estimated functional principal component scores.
eigv	A vector of estimated eigen-values related to FPCA.
varp	A vector of percents of variance explained related to FPCA.

Examples

```
# Generate a recording/measurement matrix of the functional predictor
fddata = matrix(rnorm(1000), nrow = 10, ncol = 100)
tpoints = seq(0, 1, length.out = 100)
```

```
library(fda)
# Using 20 basis functions for spline approximation
fpcscore(fddata, nbasis = 20, tt = tpoints)
```

```
# Generate simulated data
simdata = data_gen(R = 0.7, K = 1, n = 20, M0 = 20, typ = 1, design = 1)
# Extract functional data from 'simdata', columns (M0+1):(M0+100)
simfd = simdata[[1]][,21:120]
# Calculate fpc scores
fpcres = fpcscore(simfd, nbasis = 50, tt = seq(0, 1, length.out = 100))
fpcres$score
fpcres$eigv
cumsum(fpcres$varp)
```

modelspec

Generate non-nested candidate models

Description

Specify non-nested candidate models, according to the prescribed number of scalar predictors and the number of functional principal components (FPCs). Each candidate model comprises at least one scalar predictor and one FPC, leading to a total number of candidate models $(2^n nump-1)*(2^n numq-1)$.

Usage

```
modelspec(nump, numq)
```

predRisk

Arguments

nump	The number of scalar predictors used in candidate models.
numq	The number of functional principal components (FPCs) used in candidate models.

Value

A list of

a1	The number of scalar predictors in each candidate model.
a2	The number of FPCs in each candidate model.
a3	The index for each component in each candidate model.

Examples

```
# Given nump = 2 and numq = 2, resulting in 9 candidate models
modelspec(2, 2)
#$a1
#[1] 2 2 2 1 1 1 1 1 1
#$a2
#[1] 2 1 1 2 1 1 2 1 1
#$a3
      [,1] [,2] [,3] [,4]
#
# [1,]
         1
              2
                   3
                       4
# [2,]
         1
              2
                   3
                       0
# [3,]
             2
                   0
                       4
         1
# [4,]
             0
                   3
                       4
         1
# [5,]
             0
                  3
                       0
         1
            0
                  0
# [6,]
         1
                       4
         0
            2
                  3
# [7,]
                       4
            2
# [8,]
         0
                   3
                       0
# [9,]
         0
              2
                   0
                        4
```

predRisk

Output the prediction risks of each method for partial linear functional additive models (PLFAMs)

Description

Calculate the estimated weights for averaging across all candidate models and the corresponding mean squared prediction error risk. The methods include AIC, BIC, SAIC, SBIC, and CVMA for PLFAMs.

Usage

```
predRisk(M, nump, numq, a2, a3, nfolds, XX.train, Y.train, XX.pred, Y.pred)
```

Arguments

М	The number of candidate models.
nump	The number of scalar predictors in candidate models.
numq	The number of funtional principal components (FPCs) in candidate models.
a2	The number of FPCs in each candidate model. See modelspec.
a3	The index for each component in each candidate model. See modelspec.
nfolds	The number of folds used in cross-validation.
XX.train	The training data of predictors processed.
Y.train	The training data of response variable.
XX.pred	The test data of predictors processed.
Y.pred	The test data of response variable.

Value

A list of	
aic	Mean squared error risk in training data set, produced by AIC model selection method.
bic	Mean squared error risk in training data set, produced by BIC model selection method.
saic	Mean squared error risk in training data set, produced by SAIC model averaging method.
sbic	Mean squared error risk in training data set, produced by SBIC model averaging method.
cv	Mean squared error risk in training data set, produced by CVMA method.
WS	A list of weights estimator for five methods.
predaic	Mean squared prediction error risk in test data set, produced by AIC model selection method.
predbic	Mean squared prediction error risk in test data set, produced by BIC model selection method.
predsaic	Mean squared prediction error risk in test data set, produced by SAIC model averaging method.
predsbic	Mean squared prediction error risk in test data set, produced by SBIC model averaging method.
predcv	Mean squared prediction error risk in test data set, produced by CVMA method.

Index

cvfolds, 2 cvmaPLFAM, 2 data_gen, 4 fpcscore, 5 modelspec, 6, 8 predRisk, 7