Package: crossurr (via r-universe)

September 13, 2024

Type Package

Title Cross-Fitting for Doubly Robust Evaluation of High-Dimensional Surrogate Markers

Version 1.1.1

Description Doubly robust methods for evaluating surrogate markers as outlined in: Agniel D, Hejblum BP, Thiebaut R & Parast L (2022). ``Doubly robust evaluation of high-dimensional surrogate markers", Biostatistics <doi:10.1093/biostatistics/kxac020>. You can use these methods to determine how much of the overall treatment effect is explained by a (possibly high-dimensional) set of surrogate markers.

License MIT + file LICENSE

Depends R (>= 3.6.0)

Imports dplyr, gbm, glmnet, glue, parallel, pbapply, purrr, ranger, RCAL, rlang, SIS, stats, SuperLearner, tibble, tidyr

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation no

Author Denis Agniel [aut, cre], Boris P. Hejblum [aut]

Maintainer Denis Agniel <dagniel@rand.org>

Repository CRAN

Date/Publication 2024-06-14 21:20:02 UTC

Contents

sim_data	
xfr_surrogate	
xf_surrogate	 4

7

Index

sim_data

Description

A simple function to simulate example data.

Usage

sim_data(n, p)

Arguments

n	number of simulated observations
р	number of simulated variables

Value

toy dataset used for demonstrating the methods with outcome y, treatment a, covariates x.1, x.2, and surrogates s.1, s.2, ...

xfr_surrogate	A function for estimating the proportion of treatment effect explained
	using repeated cross-fitting.

Description

A function for estimating the proportion of treatment effect explained using repeated cross-fitting.

Usage

```
xfr_surrogate(
    ds,
    x = NULL,
    s,
    y,
    a,
    splits = 50,
    K = 5,
    outcome_learners = NULL,
    ps_learners = NULL,
    interaction_model = TRUE,
    trim_at = 0.05,
    outcome_family = gaussian(),
    mthd = "superlearner",
```

xfr_surrogate

n_ptb = 0, ...

Arguments

)

ds	a data.frame.
x	names of all covariates in ds that should be included to control for confounding (eg. age, sex, etc). Default is NULL.
S	names of surrogates in ds.
У	name of the outcome in ds.
а	treatment variable name (eg. groups). Expect a binary variable made of 1s and 0s.
splits	number of data splits to perform.
К	number of folds for cross-fitting. Default is 5.
outcome_learner	S
	string vector indicating learners to be used for estimation of the outcome func- tion (e.g., "SL.ridge"). See the SuperLearner package for details.
ps_learners	string vector indicating learners to be used for estimation of the propensity score function (e.g., "SL.ridge"). See the SuperLearner package for details.
interaction_model	
	logical indicating whether outcome functions for treated and control should be estimated separately. Default is TRUE.
trim_at	threshold at which to trim propensity scores. Default is 0.05.
outcome_family	default is 'gaussian' for continuous outcomes. Other choice is 'binomial' for binary outcomes.
mthd	<pre>selected regression method. Default is 'superlearner', which uses the SuperLearner package for estimation. Other choices include 'lasso' (which uses glmnet), 'sis' (which uses SIS), 'cal' (which uses RCAL).</pre>
n_ptb	Number of perturbations. Default is 0 which means asymptotic standard errors are used.
	additional parameters (in particular for super_learner)

Value

a tibble with columns:

- Rm: estimate of the proportion of treatment effect explained, computed as the median over the repeated splits.
- R_se0 standard error for the PTE, accounting for the variability due to splitting.
- R_cil0 lower confidence interval value for the PTE.
- R_cih0 upper confidence interval value for the PTE.
- Dm: estimate of the overall treatment effect, computed as the median over the repeated splits.

- D_se0 standard error for the overall treatment effect, accounting for the variability due to splitting.
- D_cil0 lower confidence interval value for the overall treatment effect.
- D_cih0 upper confidence interval value for the overall treatment effect.
- Dsm: estimate of the residual treatment effect, computed as the median over the repeated splits.
- Ds_se0 standard error for the residual treatment effect, accounting for the variability due to splitting.
- Ds_cil0 lower confidence interval value for the residual treatment effect.
- Ds_cih0 upper confidence interval value for the residual treatment effect.

Examples

```
n <- 100
p <- 20
q <- 2
wds <- sim_data(n = n, p = p)
if(interactive()){
lasso_est <- xfr_surrogate(ds = wds,</pre>
   x = paste('x.', 1:q, sep =''),
   s = paste('s.', 1:p, sep =''),
   a = 'a',
   y = 'y',
   splits = 2,
   K = 2,
   trim_at = 0.01,
   mthd = 'lasso',
   ncores = 1)
}
```

xf_surrogate	A function for estimating the proportion of treatment effect explained
	using cross-fitting.

Description

A function for estimating the proportion of treatment effect explained using cross-fitting.

Usage

```
xf_surrogate(
  ds,
  x = NULL,
  s,
  y,
  a,
```

xf_surrogate

```
K = 5,
outcome_learners = NULL,
ps_learners = outcome_learners,
interaction_model = TRUE,
trim_at = 0.05,
outcome_family = gaussian(),
mthd = "superlearner",
n_ptb = 0,
ncores = parallel::detectCores() - 1,
...
```

Arguments

ds	a data.frame.	
x	names of all covariates in ds that should be included to control for confounding (eg. age, sex, etc). Default is NULL.	
S	names of surrogates in ds.	
У	name of the outcome in ds.	
a	treatment variable name (eg. groups). Expect a binary variable made of 1s and 0s.	
К	number of folds for cross-fitting. Default is 5.	
outcome_learner	S	
	string vector indicating learners to be used for estimation of the outcome func- tion (e.g., "SL.ridge"). See the SuperLearner package for details.	
ps_learners	string vector indicating learners to be used for estimation of the propensity score function (e.g., "SL.ridge"). See the SuperLearner package for details.	
interaction_model		
	logical indicating whether outcome functions for treated and control should be estimated separately. Default is TRUE.	
trim_at	threshold at which to trim propensity scores. Default is 0.05.	
outcome_family	default is 'gaussian' for continuous outcomes. Other choice is 'binomial' for binary outcomes.	
mthd	<pre>selected regression method. Default is 'superlearner', which uses the SuperLearner package for estimation. Other choices include 'lasso' (which uses glmnet), 'sis' (which uses SIS), 'cal' (which uses RCAL).</pre>	
n_ptb	Number of perturbations. Default is 0 which means asymptotic standard errors are used.	
ncores	number of cpus used for parallel computations. Default is parallel::detectCores()-1	
	additional parameters (in particular for super_learner)	

Value

a tibble with columns:

- R: estimate of the proportion of treatment effect explained, equal to 1 deltahat_s/deltahat.
- R_se standard error for the PTE.
- deltahat_s: residual treatment effect estimate.
- deltahat_s_se: standard error for the residual treatment effect.
- pi_o: estimate of the proportion of overlap.
- R_o: PTE only in the overlap region.
- R_o_se: the standard error for R_o.
- deltahat_s_o: residual treatment effect in overlap region,
- deltahat_s_se_o: standard error for deltahat_s_o.
- deltahat: overall treatment effect estimate.
- deltahat_se: standard error for overall treatment effect estimate.
- delta_diff: difference between the treatment effects, equal to the numerator of PTE.
- dd_se: standard error for delta_diff

Examples

```
n <- 300
p <- 50
q <- 2
wds <- sim_data(n = n, p = p)</pre>
if(interactive()){
 sl_est <- xf_surrogate(ds = wds,</pre>
   x = paste('x.', 1:q, sep =''),
   s = paste('s.', 1:p, sep =''),
   a = 'a',
   y = 'y',
   K = 4,
   trim_{at} = 0.01,
   mthd = 'superlearner',
   outcome_learners = c("SL.mean", "SL.lm", "SL.svm", "SL.ridge"),
   ps_learners = c("SL.mean", "SL.glm", "SL.svm", "SL.lda"),
   ncores = 1)
 lasso_est <- xf_surrogate(ds = wds,</pre>
   x = paste('x.', 1:q, sep =''),
   s = paste('s.', 1:p, sep =''),
   a = 'a',
   y = 'y',
   K = 4,
   trim_at = 0.01,
   mthd = 'lasso',
   ncores = 1)
}
```

Index

 $\texttt{sim_data, 2}$

xf_surrogate, 4
xfr_surrogate, 2