
Package: covdepGE (via r-universe)
October 3, 2024

Title Covariate Dependent Graph Estimation

Version 1.0.1

Date 2022-09-16

Language en-US

BugReports https://github.com/JacobHelwig/covdepGE/issues

URL https://github.com/JacobHelwig/covdepGE

Description A covariate-dependent approach to Gaussian graphical
modeling as described in Dasgupta et al. (2022). Employs a
novel weighted pseudo-likelihood approach to model the
conditional dependence structure of data as a continuous
function of an extraneous covariate. The main function,
covdepGE::covdepGE(), estimates a graphical representation of
the conditional dependence structure via a block mean-field
variational approximation, while several auxiliary functions
(inclusionCurve(), matViz(), and plot.covdepGE()) are included
for visualizing the resulting estimates.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.1

LinkingTo Rcpp, RcppArmadillo

Imports doParallel, foreach, ggplot2, glmnet, latex2exp, MASS,
parallel, Rcpp, reshape2, stats

Suggests testthat (>= 3.0.0), covr, vdiffr

Config/testthat/edition 3

NeedsCompilation yes

Author Jacob Helwig [cre, aut], Sutanoy Dasgupta [aut], Peng Zhao
[aut], Bani Mallick [aut], Debdeep Pati [aut]

Maintainer Jacob Helwig <jacob.a.helwig@tamu.edu>

Repository CRAN

Date/Publication 2022-09-16 15:56:08 UTC

1

https://github.com/JacobHelwig/covdepGE/issues
https://github.com/JacobHelwig/covdepGE

2 covdepGE-package

Contents
covdepGE-package . 2
covdepGE . 3
generateData . 8
inclusionCurve . 11
matViz . 13
plot.covdepGE . 15

Index 17

covdepGE-package covdepGE: Covariate Dependent Graph Estimation

Description

A covariate-dependent approach to Gaussian graphical modeling as described in Dasgupta et al.
(2022). Employs a novel weighted pseudo-likelihood approach to model the conditional depen-
dence structure of data as a continuous function of an extraneous covariate. The main function,
covdepGE::covdepGE(), estimates a graphical representation of the conditional dependence struc-
ture via a block mean-field variational approximation, while several auxiliary functions (inclusion-
Curve(), matViz(), and plot.covdepGE()) are included for visualizing the resulting estimates.

Author(s)

Maintainer: Jacob Helwig <jacob.a.helwig@tamu.edu>

Authors:

• Sutanoy Dasgupta <sutanoy@stat.tamu.edu>

• Peng Zhao <pzhao@stat.tamu.edu>

• Bani Mallick <bmallick@stat.tamu.edu>

• Debdeep Pati <debdeep@stat.tamu.edu>

References

(1) Sutanoy Dasgupta, Peng Zhao, Prasenjit Ghosh, Debdeep Pati, and Bani Mallick. An approxi-
mate Bayesian approach to covariate-dependent graphical modeling. pages 1–59, 2022.

See Also

Useful links:

• https://github.com/JacobHelwig/covdepGE

• Report bugs at https://github.com/JacobHelwig/covdepGE/issues

https://github.com/JacobHelwig/covdepGE
https://github.com/JacobHelwig/covdepGE/issues

covdepGE 3

covdepGE Covariate Dependent Graph Estimation

Description

Model the conditional dependence structure of X as a function of Z as described in (1)

Usage

covdepGE(
X,
Z = NULL,
hp_method = "hybrid",
ssq = NULL,
sbsq = NULL,
pip = NULL,
nssq = 5,
nsbsq = 5,
npip = 5,
ssq_mult = 1.5,
ssq_lower = 1e-05,
snr_upper = 25,
sbsq_lower = 1e-05,
pip_lower = 1e-05,
pip_upper = NULL,
tau = NULL,
norm = 2,
center_X = TRUE,
scale_Z = TRUE,
alpha_tol = 1e-05,
max_iter_grid = 10,
max_iter = 100,
edge_threshold = 0.5,
sym_method = "mean",
parallel = FALSE,
num_workers = NULL,
prog_bar = TRUE

)

Arguments

X n× p numeric matrix; data matrix. For best results, n should be greater than p

Z NULL OR n× q numeric matrix; extraneous covariates. If NULL, Z will be treated
as constant for all observations, i.e.:

Z <- rep(0, nrow(X))

4 covdepGE

If Z is constant, the estimated graph will be homogeneous throughout the data.
NULL by default

hp_method character in c("grid_search","model_average","hybrid"); method for
selecting hyperparameters from the the hyperparameter grid. The grid will be
generated as the Cartesian product of ssq, sbsq, and pip. Fix Xj , the j-th col-
umn of X, as the response; then, the hyperparameters will be selected as follows:

• If "grid_search", the point in the hyperparameter grid that maximizes the
total ELBO summed across all n regressions will be selected

• If "model_average", then all posterior quantities will be an average of
the variational estimates resulting from the model fit for each point in the
hyperparameter grid. The unnormalized averaging weights for each of the
n regressions are the exponentiated ELBO

• If "hybrid", then models will be averaged over pip as in "model_average",
with σ2 and σ2

β chosen for each π in pip by maximizing the total ELBO
over the grid defined by the Cartesian product of ssq and sbsq as in "grid_search"

"hybrid" by default

ssq NULL OR numeric vector with positive entries; candidate values of the hyper-
parameter σ2 (prior residual variance). If NULL, ssq will be generated for each
variable Xj fixed as the response as:

ssq <- seq(ssq_lower, ssq_upper, length.out = nssq)

NULL by default

sbsq NULL OR numeric vector with positive entries; candidate values of the hyper-
parameter σ2

β (prior slab variance). If NULL, sbsq will be generated for each
variable Xj fixed as the response as:

sbsq <- seq(sbsq_lower, sbsq_upper, length.out = nsbsq)

NULL by default

pip NULL OR numeric vector with entries in (0, 1); candidate values of the hyperpa-
rameter π (prior inclusion probability). If NULL, pip will be generated for each
variable Xj fixed as the response as:

pip <- seq(pip_lower, pi_upper, length.out = npip)

NULL by default

nssq positive integer; number of points to generate for ssq if ssq is NULL. 5 by default

nsbsq positive integer; number of points to generate for sbsq if sbsq is NULL. 5 by
default

npip positive integer; number of points to generate for pip if pip is NULL. 5 by default

ssq_mult positive numeric; if ssq is NULL, then for each variable Xj fixed as the response:

ssq_upper <- ssq_mult * stats::var(X_j)

Then, ssq_upper will be the greatest value in ssq for variable Xj . 1.5 by
default

covdepGE 5

ssq_lower positive numeric; if ssq is NULL, then ssq_lower will be the least value in ssq.
1e-5 by default

snr_upper positive numeric; upper bound on the signal-to-noise ratio. If sbsq is NULL, then
for each variable Xj fixed as the response:

s2_sum <- sum(apply(X, 2, stats::var))
sbsq_upper <- snr_upper / (pip_upper * s2_sum)

Then, sbsq_upper will be the greatest value in sbsq. 25 by default

sbsq_lower positive numeric; if sbsq is NULL, then sbsq_lower will be the least value in
sbsq. 1e-5 by default

pip_lower numeric in (0, 1); if pip is NULL, then pip_lower will be the least value in pip.
1e-5 by default

pip_upper NULL OR numeric in (0, 1); if pip is NULL, then pip_upper will be the greatest
value in pip. If sbsq is NULL, pip_upper will be used to calculate sbsq_upper.
If NULL, pip_upper will be calculated for each variable Xj fixed as the response
as:

lasso <- glmnet::cv.glmnet(X, X_j)
non0 <- sum(glmnet::coef.glmnet(lasso, s = "lambda.1se")[-1] != 0)
non0 <- min(max(non0, 1), p - 1)
pip_upper <- non0 / p

NULL by default

tau NULL OR positive numeric OR numeric vector of length n with positive entries;
bandwidth parameter. Greater values allow for more information to be shared
between observations. Allows for global or observation-specific specification. If
NULL, use 2-step KDE methodology as described in (2) to calculate observation-
specific bandwidths. NULL by default

norm numeric in [1,∞]; norm to use when calculating weights. Inf results in infinity
norm. 2 by default

center_X logical; if TRUE, center X column-wise to mean 0. TRUE by default

scale_Z logical; if TRUE, center and scale Z column-wise to mean 0, standard deviation 1
prior to calculating the weights. TRUE by default

alpha_tol positive numeric; end CAVI when the Frobenius norm of the change in the alpha
matrix is within alpha_tol. 1e-5 by default

max_iter_grid positive integer; if tolerance criteria has not been met by max_iter_grid iter-
ations during grid search, end CAVI. After grid search has completed, CAVI is
performed with the final hyperparameters selected by grid search for at most
max_iter iterations. Does not apply to hp_method = "model_average". 10 by
default

max_iter positive integer; if tolerance criteria has not been met by max_iter iterations,
end CAVI. 100 by default

edge_threshold numeric in (0, 1); a graph for each observation will be constructed by includ-
ing an edge between variable i and variable j if, and only if, the (i, j) entry
of the symmetrized posterior inclusion probability matrix corresponding to the
observation is greater than edge_threshold. 0.5 by default

6 covdepGE

sym_method character in c("mean","max","min"); to symmetrize the posterior inclusion
probability matrix for each observation, the (i, j) and (j, i) entries will be post-
processed as sym_method applied to the (i, j) and (j, i) entries. "mean" by
default

parallel logical; if TRUE, hyperparameter selection and CAVI for each of the p variables
will be performed in parallel using foreach. Parallel backend may be registered
prior to making a call to covdepGE. If no active parallel backend can be detected,
then parallel backend will be automatically registered using:

doParallel::registerDoParallel(num_workers)

FALSE by default

num_workers NULL OR positive integer less than or equal to parallel::detectCores(); ar-
gument to doParallel::registerDoParallel if parallel = TRUE and no par-
allel backend is detected. If NULL, then:

num_workers <- floor(parallel::detectCores() / 2)

NULL by default

prog_bar logical; if TRUE, then a progress bar will be displayed denoting the number of
remaining variables to fix as the response and perform CAVI. If parallel, no
progress bar will be displayed. TRUE by default

Value

Returns object of class covdepGE with the following values:

graphs list with the following values:

• graphs: list of n numeric matrices of dimension p × p; the l-th matrix is
the adjacency matrix for the l-th observation

• unique_graphs: list; the l-th element is a list containing the l-th unique
graph and the indices of the observation(s) corresponding to this graph

• inclusion_probs_sym: list of n numeric matrices of dimension p× p; the
l-th matrix is the symmetrized posterior inclusion probability matrix for the
l-th observation

• inclusion_probs_asym: list of n numeric matrices of dimension p × p;
the l-th matrix is the posterior inclusion probability matrix for the l-th ob-
servation prior to symmetrization

variational_params

list with the following values:

• alpha: list of p numeric matrices of dimension n× (p− 1); the (i, j) entry
of the k-th matrix is the variational approximation to the posterior inclu-
sion probability of the j-th variable in a weighted regression with variable
k fixed as the response, where the weights are taken with respect to obser-
vation i

• mu: list of p numeric matrices of dimension n× (p− 1); the (i, j) entry of
the k-th matrix is the variational approximation to the posterior slab mean
for the j-th variable in a weighted regression with variable k fixed as the
response, where the weights are taken with respect to observation i

covdepGE 7

• ssq_var: list of p numeric matrices of dimension n × (p − 1); the (i, j)
entry of the k-th matrix is the variational approximation to the posterior slab
variance for the j-th variable in a weighted regression with variable k fixed
as the response, where the weights are taken with respect to observation i

hyperparameters

list of p lists; the j-th list has the following values for variable j fixed as the
response:

• grid: matrix of candidate hyperparameter values, corresponding ELBO,
and iterations to converge

• final: the final hyperparameters chosen by grid search and the ELBO and
iterations to converge for these hyperparameters

model_details list with the following values:

• elapsed: amount of time to fit the model
• n: number of observations
• p: number of variables
• ELBO: ELBO summed across all observations and variables. If hp_method

is "model_average" or "hybrid", this ELBO is averaged across the hy-
perparameter grid using the model averaging weights for each variable

• num_unique: number of unique graphs
• grid_size: number of points in the hyperparameter grid
• args: list containing all passed arguments of length 1

weights list with the following values:

• weights: n × n numeric matrix. The (i, j) entry is the similarity weight
of the i-th observation with respect to the j-th observation using the j-th
observation’s bandwidth

• bandwidths: numeric vector of length n. The i-th entry is the bandwidth
for the i-th observation

References

(1) Sutanoy Dasgupta, Peng Zhao, Prasenjit Ghosh, Debdeep Pati, and Bani Mallick. An approxi-
mate Bayesian approach to covariate-dependent graphical modeling. pages 1–59, 2022.

(2) Sutanoy Dasgupta, Debdeep Pati, and Anuj Srivastava. A Two-Step Geometric Framework For
Density Modeling. Statistica Sinica, 30(4):2155–2177, 2020.

Examples

Not run:
library(ggplot2)

get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval

8 generateData

prec <- data$true_precision

get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

visualize the true precision matrices in each of the intervals

interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)

visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

End(Not run)

generateData Generate Covariate-Dependent Data

Description

Generate a 1-dimensional extraneous covariate and p-dimensional Gaussian data with a precision
matrix that varies as a continuous function of the extraneous covariate. This data is distributed
similar to that used in the simulation study from (1)

generateData 9

Usage

generateData(p = 5, n1 = 60, n2 = 60, n3 = 60, Z = NULL, true_precision = NULL)

Arguments

p positive integer; number of variables in the data matrix. 5 by default

n1 positive integer; number of observations in the first interval. 60 by default

n2 positive integer; number of observations in the second interval. 60 by default

n3 positive integer; number of observations in the third interval. 60 by default

Z NULL or numeric vector; extraneous covariate values for each observation. If
NULL, Z will be generated from a uniform distribution on each of the intervals

true_precision NULL OR list of matrices of dimension p × p; true precision matrix for each
observation. If NULL, the true precision matrices will be generated dependent on
Z. NULL by default

Value

Returns list with the following values:

X a (n1 + n2 + n3) ×p numeric matrix, where the i-th row is drawn from a p-
dimensional Gaussian with mean 0 and precision matrix true_precision[[i]]

Z a (n1 + n2 + n3) ×1 numeric matrix, where the i-th entry is the extraneous co-
variate zi for observation i

true_precision list of n1 + n2 + n3 matrices of dimension p× p; the i-th matrix is the precision
matrix for the i-th observation

interval vector of length n1 + n2 + n3; interval assignments for each of the observations,
where the i-th entry is the interval assignment for the i-th observation

Extraneous Covariate

If Z = NULL, then the generation of Z is as follows:

The first n1 observations have zi from from a uniform distribution on the interval (−3,−1) (the
first interval).

Observations n1 + 1 to n1 + n2 have zi from from a uniform distribution on the interval (−1, 1) (the
second interval).

Observations n1 + n2 + 1 to n1 + n2 + n3 have zi from a uniform distribution on the interval (1, 3)
(the third interval).

Precision Matrices

If true_precision = NULL, then the generation of the true precision matrices is as follows:

All precision matrices have 2 on the diagonal and 1 in the (2, 3)/(3, 2) positions.

Observations in the first interval have a 1 in the (1, 2)/(1, 2) positions, while observations in the
third interval have a 1 in the (1, 3)/(3, 1) positions.

10 generateData

Observations in the second interval have 2 entries that vary as a linear function of their extraneous
covariate. Let β = 1/2. Then, the (1, 2)/(2, 1) positions for the i-th observation in the second
interval are β · (1− zi), while the (1, 3)/(3, 1) entries are β · (1 + zi).

Thus, as zi approaches −1 from the right, the associated precision matrix becomes more similar
to the matrix for observations in the first interval. Similarly, as zi approaches 1 from the left, the
matrix becomes more similar to the matrix for observations in the third interval.

Examples

Not run:
library(ggplot2)

get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision

get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

visualize the true precision matrices in each of the intervals

interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)

inclusionCurve 11

visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

End(Not run)

inclusionCurve Plot PIP as a Function of Index

Description

Plot the posterior inclusion probability of an edge between two variables as a function of observation
index

Usage

inclusionCurve(
out,
col_idx1,
col_idx2,
line_type = "solid",
line_size = 0.5,
line_color = "black",
point_shape = 21,
point_size = 1.5,
point_color = "#500000",
point_fill = "white"

)

Arguments

out object of class covdepGE; return of covdepGE function

col_idx1 integer in [1, p]; column index of the first variable

col_idx2 integer in [1, p]; column index of the second variable

line_type linetype; ggplot2 line type to interpolate the probabilities. "solid" by default

line_size positive numeric; thickness of the interpolating line. 0.5 by default

line_color color; color of interpolating line. "black" by default

point_shape shape; shape of the points denoting observation-specific inclusion probabilities;
21 by default

point_size positive numeric; size of probability points. 1.5 by default

point_color color; color of probability points. "#500000" by default

point_fill color; fill of probability points. Only applies to select shapes. "white" by
default

12 inclusionCurve

Value

Returns ggplot2 visualization of inclusion probability curve

Examples

Not run:
library(ggplot2)

get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision

get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

visualize the true precision matrices in each of the intervals

interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)

visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

matViz 13

End(Not run)

matViz Visualize a matrix

Description

Create a visualization of a matrix

Usage

matViz(
x,
color1 = "white",
color2 = "#500000",
grid_color = "black",
incl_val = FALSE,
prec = 2,
font_size = 3,
font_color1 = "black",
font_color2 = "white",
font_thres = mean(x)

)

Arguments

x matrix; matrix to be visualized

color1 color; color for low entries. "white" by default

color2 color; color for high entries. "#500000" by default

grid_color color; color of grid lines. "black" by default

incl_val logical; if TRUE, the value for each entry will be displayed. FALSE by default

prec positive integer; number of decimal places to round entries to if incl_val is
TRUE. 2 by default

font_size positive numeric; size of font if incl_val is TRUE. 3 by default

font_color1 color; color of font for low entries if incl_val is TRUE. "black" by default

font_color2 color; color of font for high entries if incl_val is TRUE. "white" by default

font_thres numeric; values less than font_thres will be displayed in font_color1 if
incl_val is TRUE. mean(x) by default

Value

Returns ggplot2 visualization of matrix

14 matViz

Examples

Not run:
library(ggplot2)

get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision

get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

visualize the true precision matrices in each of the intervals

interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)

visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

End(Not run)

plot.covdepGE 15

plot.covdepGE Plot the Graphs Estimated by covdepGE

Description

Create a list of the unique graphs estimated by covdepGE

Usage

S3 method for class 'covdepGE'
plot(x, graph_colors = NULL, title_sum = TRUE, ...)

Arguments

x object of class covdepGE; return of covdepGE function

graph_colors NULL OR vector; the j-th element is the color for the j-th graph. If NULL, all
graphs will be colored with "#500000". NULL by default

title_sum logical; if TRUE the indices of the observations corresponding to the graph will
be included in the title. TRUE by default

... additional arguments will be ignored

Value

Returns list of ggplot2 visualizations of unique graphs estimated by covdepGE

Examples

Not run:
library(ggplot2)

get the data
set.seed(12)
data <- generateData()
X <- data$X
Z <- data$Z
interval <- data$interval
prec <- data$true_precision

get overall and within interval sample sizes
n <- nrow(X)
n1 <- sum(interval == 1)
n2 <- sum(interval == 2)
n3 <- sum(interval == 3)

visualize the distribution of the extraneous covariate
ggplot(data.frame(Z = Z, interval = as.factor(interval))) +

geom_histogram(aes(Z, fill = interval), color = "black", bins = n %/% 5)

16 plot.covdepGE

visualize the true precision matrices in each of the intervals

interval 1
matViz(prec[[1]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 1, observations 1,...,", n1))

interval 2 (varies continuously with Z)
cat("\nInterval 2, observations ", n1 + 1, ",...,", n1 + n2, sep = "")
int2_mats <- prec[interval == 2]
int2_inds <- c(5, n2 %/% 2, n2 - 5)
lapply(int2_inds, function(j) matViz(int2_mats[[j]], incl_val = TRUE) +

ggtitle(paste("True precision matrix, interval 2, observation", j + n1)))

interval 3
matViz(prec[[length(prec)]], incl_val = TRUE) +

ggtitle(paste0("True precision matrix, interval 3, observations ",
n1 + n2 + 1, ",...,", n1 + n2 + n3))

fit the model and visualize the estimated graphs
(out <- covdepGE(X, Z))
plot(out)

visualize the posterior inclusion probabilities for variables (1, 3) and (1, 2)
inclusionCurve(out, 1, 2)
inclusionCurve(out, 1, 3)

End(Not run)

Index

_PACKAGE (covdepGE-package), 2

covdepGE, 3
covdepGE-method (covdepGE), 3
covdepGE-package, 2

generateData, 8

inclusionCurve, 11

matViz, 13

plot.covdepGE, 15

17

	covdepGE-package
	covdepGE
	generateData
	inclusionCurve
	matViz
	plot.covdepGE
	Index

