
Package: costat (via r-universe)
October 10, 2024

Type Package

Title Time Series Costationarity Determination

Version 2.4.1

Date 2023-09-06

Depends R (>= 2.14), wavethresh (>= 4.6.1)

Suggests parallel

Description Contains functions that can determine whether a time
series is second-order stationary or not (and hence evidence
for locally stationarity). Given two non-stationary series
(i.e. locally stationary series) this package can then discover
time-varying linear combinations that are second-order
stationary. Cardinali, A. and Nason, G.P. (2013)
<doi:10.18637/jss.v055.i01>.

License GPL (>= 2)

NeedsCompilation no

Author Guy Nason [aut, cre], Alessandro Cardinali [aut, ctb]

Maintainer Guy Nason <g.nason@imperial.ac.uk>

Repository CRAN

Date/Publication 2023-09-06 21:32:33 UTC

Contents
costat-package . 2
AntiAR . 3
BootTOS . 5
COEFbothscale . 7
coeftofn . 9
EWSsmoothRM . 11
extractCS . 12
findstysols . 14
fret . 18
getpvals . 19

1

https://doi.org/10.18637/jss.v055.i01

2 costat-package

lacv . 21
LCTS . 23
LCTSres . 24
localvar . 27
mergexy . 28
plot.BootTOS . 30
plot.csBiFunction . 31
plot.csFSS . 32
plot.csFSSgr . 33
plot.lacv . 35
plotBS . 37
print.csBiFunction . 38
print.csFSS . 39
print.csFSSgr . 41
print.lacv . 42
prodcomb . 43
SP500FTSElr . 45
sret . 46
summary.csBiFunction . 46
summary.csFSS . 47
summary.csFSSgr . 48
summary.lacv . 49
TOSts . 50

Index 52

costat-package Computes localized autocovariance and searches for costationary so-
lutions to bivariate time series.

Description

Computes a time-varying autocovariance and associated plots for plotting this. Also can search for
costationary solutions between two time series.

Details

See findstysols for help page for main function.

Author(s)

Guy Nason, <g.nason@imperial.ac.uk>

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

AntiAR 3

See Also

findstysols, lacv

Examples

#
Compute localized acv
#
x <- c(rnorm(128, sd=1), rnorm(128, sd=3))
xlacv <- lacv(x, lag.max=30)
#
Plot the time-varying autocovariance at time t=100
#
Not run: plot(xlacv, type="acf", the.time=100, plotcor=FALSE)
#
Plot the time-varying autocovariance at time t=400
#
Not run: plot(xlacv, type="acf", the.time=400, plotcor=FALSE)
#
See examples for findstysols for other examples
#

AntiAR Undo autoreflection action for an EWS object (wd stationary)

Description

The BootTOS function has the ability to deal with boundary conditions by augmenting the right-hand
end of a time series by a reflected version of that series. So, the series doubles in length and the new
vector has periodic boundary conditions. One can then compute a local spectrum on this data which
returns an EWS in a wd object, usually with a type attribute of "station". This function can take
this wd object and properly can return the first half of it, which corresponds to the boundary-correct
spectrum of the original series.

Usage

AntiAR(S)

Arguments

S A wd class object of type "station". This corresponds to a EWS estimate on a
reflected time series.

Details

This function arises because using spectral estimation functions, like ewspec from the wavethresh
package doesn’t always work that well at the boundaries. This is because the wavelet functions in
wavethresh usually assume periodic boundary conditions and this is not appropriate for a discrete

4 AntiAR

time series where time 1 and time T are usually very different (and cannot be assumed to be the
same).

Hence, a previous function could generate a new time series by taking the original, e.g. x, reflecting
it with rev(x) and then sticking the reflected onto the right-hand end of the original. Spectral
estimation, (e.g. using ewspec) can then be applied to this new reflected/augmented series and the
boundaries are now roughly correct as the start and end of the series correspond to time 1.

The spectral estimate so obtained though is double the size of the the one that is needed, and contains
the spectrum of the reflected series. Hence, this function obtains the first half of the estimate and
returns it.

Not usually intended for the casual user

Value

A wd class object containing the boundary-corrected estimate of the spectrum for the original series.

Author(s)

G. P. Nason.

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

BootTOS

Examples

#
Generate example, temporary series
#
x <- rnorm(128)
#
Reflect it about its end point
#
x2 <- c(x, rev(x))
#
Compute EWS estimate
#
x2ews <- ewspec(x2)
#
Now get bit corresponding to x into object
#
xews <- AntiAR(x2ews$S)

BootTOS 5

BootTOS Perform bootstrap stationarity test for time series

Description

Given a time series this function runs a bootstrap hypothesis test to see whether it is stationary. The
null hypothesis is that the series is stationary, the alternative is that it is not - and hence possesses a
time-varying evolutionary wavelet spectrum if deemed non-stationary.

Usage

BootTOS(x, Bsims = 100, WPsmooth = TRUE, verbose = FALSE, plot.avspec = FALSE,
plot.avsim = FALSE, theTS = TOSts, AutoReflect=TRUE, lapplyfn=lapply)

Arguments

x Time series to test. Must have a power of two length

Bsims Number of bootstrap simulations to carry out

WPsmooth Whether or not to carry out wavelet periodogram smoothing

verbose If TRUE informative messages are printed

plot.avspec If TRUE then the ‘average’ evolutionary wavelet spectrum (EWS) is plotted. This
is called S̄j in the Cardinali and Nason paper.

plot.avsim If TRUE for each bootstrap simulation plot the time series of the simulated time
series from the average EWS (the one that might be plotted by plot.avspec=TRUE

theTS Specifies the particular test statistic to be used

AutoReflect If TRUE then the series is reflected and augmented by its end point on the
RH-side, and the spectral quantities are evaluated on that. Everything returned
though applies only to the original series, the reflection is merely to ensure that
the periodic wavelet algorithms can be used on non-periodic data

lapplyfn List processing function. Parallel processing of the bootstrap simulations can
be achieved by using the multicore package and the mclapply function. Se-
quential processing can be achieved using the standard lapply function. So,
if you can’t run multicore then you should use lapply, otherwise try and use
mclapply for faster execution times.

Details

The details of our testing methodology are set out in the Cardinali and Nason paper referenced
below.

Essentially, the testing process works as follows. First, one has to define a test statistic. Given a time
series this has return a statistic that measures ‘degree of nonstationarity’. For example, estimating
the EWS, and then computing the sum of the sample variances of each scale is such as measure
(and known as the TvS statistic). This statistic is zero for a constant spectrum and positive for
non-constant spectrum (and generally larger for larger variations of the spectrum).

6 BootTOS

Once a test statistic T is selected then a parametric Monte Carlo test can be used. First, T is
computed on the series itself. Then, for statistical assessment of the ‘significance’ of the test statistic
the following procedure is carried out. Assuming, for a moment that the time series is stationary, we
estimate its evolutionary wavelet spectrum (EWS) and then average this over time (S̄j). Then we
use the function LSWsim to simulate a time series whose EWS is the constant, stationary, spectral
estimate. Then we compute our test statistic, Tb, on this simulated series.

Then we calculate Tb for Bsim-1 simulations. The function then returns BSim numbers. The first is
the test statistic computed on the actual data. The remaining ones are the test statistic computed on
the simulated stationary series.

The idea being that if the time series is really stationary then the first value will be comparable to
the ones obtained by simulation. If the time series is not stationary then the first test statistic will be
much larger than the ones obtained by simulation (since the actual data T will have been computed
on a time series with varying spectrum, whereas the simulated ones are all computed on constant
spectra, and their variation is only due to sampling variation).

The test statistic supplied to this function (as argument theTS) should take an EWS object as an
argument. For example, the WaveThresh function ewspec produces a suitable spectral estimate in
its $S argument (both objects are actually examples of a non-decimated wavelet transform object,
class wd).

The function plotBS can be used the present the results of this function in an interpretable form and
calculate the p-value of the test, although you should use the generic plot function to call this.

Value

A vector of length Bsim. The first entry is the value of the test statistic computed on the data.
The remaining entries are boostrap values computed on the ‘averaged’ EWS estimate with constant
spectrum.

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

TOSts, plotBS

Examples

#
Calculate test of stationarity on example we know to be stationary,
a series of iid values
#

COEFbothscale 7

plot(BootTOS(rnorm(64), Bsims=10), plot=FALSE)
#
The following text is what gets printed
#
#Realized Bootstrap is 0.04543729
#p-value is 0.93
#Series was stationary
#[1] 0.93
#
The realized bootstrap value is the value of the test statistic on the
actual data (0.0454 here).
#
The p-value is also printed (this is just the number of simulated series
test statistic values less than the actual test statistic) and returned.
#
The text "Series is stationary" just means that the empirical p-value
was greater than the nominal test size (alpha=0.05, by default).
#
Let's now try another example with the series sret: note that if you
have a slow single core machine, this can take a long time, so we don't
run it in the examples. However, on a fastish machine it is quick, on
a fast multicore machine it is really quick!
#
Not run: plot(BootTOS(sret))
#
#Realized Bootstrap is 2.662611e-09
#p-value is 0
#Series was NOT stationary
#[1] 0
#
In contrast to the previous example, the p-value is 0, hence indicative
of non-stationarity.
#

COEFbothscale Produces plots from output of findstysol that attempt to group different
solutions.

Description

Uses hierarchical clustering and multidimensional scaling to produce a plot of all the convergence
stationary solutions. These plots are designed to aid the user in identifying ‘unique’ sets of station-
ary solutions.

Usage

COEFbothscale(l, plotclustonly = FALSE, StyPval=0.05, ...)

8 COEFbothscale

Arguments

l An object returned by findstysols, of class csFSS, which contains the results
of an optimization to find solutions that correspond to stationary series which
are the time-varying linear combination of two locally stationary time series.

plotclustonly If TRUE then only produce the hierarchical clustering plot.

StyPval The p-value by which solutions are deemed to be stationary or not for inclusion
into plots. If the p-value for a particular solution is greater than StyPval then
the solution is deemed stationary and included.

... Additional arguments to the hierarchical clustering plot.

Details

The function findstysols uses numerical optimization to try and discover time-varying linear
combinations of two time series to find a combination which is stationary. Like many numerical
optimizations the optimizer is supplied with starting coordinates and proceeds through an optimiza-
tion routine to end coordinates which are located at the minimum (in this case). So, the user has a
choice over where to start each optimization.

A priori there is no recipe for knowing where to start the optimizer, so such situations are usually
handled by running the optimizer many time each time starting in a different position. The solution
here is to start from a set of different randomly chosen starting points. After the optimizer is run
from these different starting positions it ends up in the same number of potentially different ending
positions.

However, some of the ending solutions might be identical, some might be very close, some might
be reflections (e.g. the if the coefficients (a,b) result in a stationary solution then so does (-a, -b)).
Morally, though, all of these cases would reference the same solution.

Hence, we require some method for identifying the set of unique solutions. We can be considerably
aided in this task by multidimensional scaling (which uses inter-solution distances to produce a map
of how close solution sets really are) or hierarchical clustering (which can produce a nice picture to
indicate how the solutions might be related).

In other words, the solution vectors can be viewed as a multivariate data set where the cases corre-
spond to the results of different optimization runs and the variables correspond to the coefficients
of the time-varying linear combinations.

Both multidimensional scaling (cmdscale) and hiearchical clustering (hclust) are used to deter-
mine possible clusterings of solutions. Then, representative members from these clusters can be
further investigated with a function such as LCTSres

Value

An object of class csFSSgr is returned containing the following components: the results of the mul-
tidimensional scaling and hierarchical clustering are returned as list with two components epscale
and epclust respectively, and the input l object is returned as component x and the StyPval object
is returned as a component.

Author(s)

Guy Nason

coeftofn 9

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols, LCTSres

Examples

#
See example in findstysols
#

coeftofn Convert wavelet coefficients for two time-varying functions into two
functions with respect to time.

Description

In much of the costationarity code the combination functions are represented in terms of wavelet
coefficients. At certain points the actual combination functions themselves are required (in the
time domain) for purposes such as actually forming the linear combination. This function turns the
coefficients, for the two combination functions, into their time domain functional representation.

Usage

coeftofn(alpha, beta, n = 256, filter.number = 1,
family = c("DaubExPhase", "DaubLeAsymm"))

Arguments

alpha One set of coefficients for one of the combination functions
beta The other set of coefficients
n The length of resulting function that you require
filter.number The type of wavelet (the number of vanishing moments)
family The type of wavelet (the wavelet family)

Details

A degree of efficiency is built into the code. Typically, for forming stationary linear combinations
then only a few (or at least a medium number) of coarser scale coefficients need to be manipulated
(eg modified in the optimizer). However, the actual length of the function (time series length) is
typically much longer (e.g. n=256, n=512, or higher). So, this function pads out the small number
of coarse coefficients with zeros before forming the combination functions which end up at the
correct length, n.

10 coeftofn

Value

An object of class csBiFunction which is list containing two components:

alpha A vector, of length n, containing one of the time-varying combination functions

beta Same as alpha, but contains the other combination function.

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

LCTS, LCTSres

Examples

#
Very artifical example
#
tmp.a <- c(1, -1)
tmp.b <- c(0.5, 0.5)
#
#
#
ans <- coeftofn(tmp.a, tmp.b)
#
Print it out
#
ans
#Class 'csBiFunction' : Contains two sampled functions:
~~~~ : List with 2 components with names
alpha beta
#
#
#summary(.):
#----------
#Length of functions is: 256

EWSsmoothRM 11

EWSsmoothRM Perform running mean smoothing of an EWS object

Description

Performs running mean smoothing of bandwidth s of an EWS, such as that returned by the ewspec
function of wavethresh.

Usage

EWSsmoothRM(S, s)

Arguments

S The spectrum to smooth

s The bandwidth (or number of ordinates to include in the running mean)

Details

Each level of the EWS is subject to a running mean smooth. After smoothing a level the resultant
smooth is shorter than the original level (due to the mean not being able to overlap the boundaries).
This deficit is made up by augmenting the start of the smooth with a right number of smoothed
values taken from the first smoothed value.

Value

A EWS object contained in a wd object of type "station" which contains the smoothed spectrum.

Author(s)

G.P. Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

lacv

12 extractCS

Examples

#
Make dummy time series
#
x <- rnorm(128)
#
Compute spectrum, but don't do smoothing
#
xews <- ewspec(x, WPsmooth=FALSE)$S
#
Now smooth the spectrum using running mean smoothing with bandwidth of 5
#
ans <- EWSsmoothRM(xews, s=5)

extractCS Extractor function for csFSS object.

Description

Get much information from the slots of a csFSS. Each slot can carry information from multiple
solutions per slot. This function permits an arbitrary selection of solutions for information from a
slot.

Usage

extractCS(object, slot=c("startpar", "endpar", "convergence",
"minvar", "pvals", "lcts"), coeftype=c("all", "alpha", "beta",
"alphafunc", "betafunc"), solno, ...)

Arguments

object The csFSS object that you want to extract information from.

slot The slot that you want to get information on. These are startpar: the starting
parameters for the optimization for each solution; endpar: the final parameters
calculated by the optimization for each solution; convergence: the status codes
returned by the optimization for each solution; minvar: the minimum variance
of the spectral estimate at the optimial solution, one for each solution; pvals:
the p-values for the test of stationarity for the final optimal parameter set; lcts:
the (time-varying) linear combination of the time series, one for each solution.
These are the Z_t time series, the combined series which are meant to be sta-
tionary.
The startpar, endpar and lcts slots return result in one vector for each so-
lution requested, organized as a matrix. Each row of the matrix corresponds to
one of the solutions requested. The remaining slots return numbers, one number
for each solution organized as a vector.

extractCS 13

coeftype For the slots that return coefficients, these can be returned in various ways. Each
coefficient vector (one per solution) actually stores two sets of coefficients: one
associated with the alpha_t linear combination and the other with the beta_t
linear combination. Setting coeftype to the following causes the following to
happen: all: the complete vector of coefficients is returned (these are actually
wavelet coefficients corresponding to the wavelet specification in the csFSS ob-
ject); alpha: only the alpha_t coefficients are returned; beta: only the beta_t
coefficients are returned; alphafunc: the alpha_t function (in the time domain)
is returned, ie as a function in time rather than a set of transform coefficients;
betafunc: as for alphafunc but for the beta_t function.

solno The indices of which solutions you want the information on

... Other arguments to coeftofn. For example, by default the length of the func-
tional representations of alpha_t and beta_t is 256 caused by the default n=256
of the coeftofn

argument.

Details

Extracts slot information from csFSS objects.

Value

Information from the relevant slot, as a number, vector or matrix depending on what it is that is
requested as described in the various arguments above.

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols, coeftofn

Examples

#
Create dummy data
#
x1 <- rnorm(32)
y1 <- rnorm(32)
#
Find stationary combinations

14 findstysols

Note: we don't run this example in installation/package formation as
it takes a long time. However, this precise command IS run in
the help to findstysols
#
Not run: ans <- findstysols(Nsims=100, tsx=x1, tsy=y1)
#
Get the optimal (endpar) alphas for the first 10 solutions
#
Not run: extractCS(ans, slot="endpar", coeftype="alpha", solno=1:10)
#
Plot the beta_t associate with the optimal solution for solution 29
#
Not run: ts.plot(extractCS(ans, slot="endpar", coeftype="betafunc",
solno=29))

End(Not run)
#
Get the p-value associated with solution 29
#
Not run: extractCS(ans, slot="pvals", solno=29)

findstysols Given two time series find some time-varying linear combinations that
are stationary.

Description

Find some time-varying linear combinations of two time series that are stationary. The complexity
of the time-varying combinations is restricted by the Ncoefs argument.

Usage

findstysols(Nsims = 100, Ncoefs = 3, tsx, tsy, sf=100, plot.it = FALSE,
print.it=FALSE, verbose = FALSE, lctsfn=LCTS, prodcomb.fn=prodcomb,
filter.number=1, family=c("DaubExPhase", "DaubLeAsymm"),

my.maxit=500, spec.filter.number=1,
spec.family=c("DaubExPhase","DaubLeAsymm"),

optim.control=list(maxit=my.maxit, reltol=1e-6),
irng=rnorm, lapplyfn=lapply, Bsims=200, ...)

Arguments

Nsims Number of searches attempted

Ncoefs Number of Haar wavelet coefficients to use. Must be >= 1. Should only increase
in steps of powers of two. E.g. can only supply the values 1, 3, 7, 15, etc. So,
"1" means only one coarse scale coefficient (corresponds to piecewise constant
with one centrally located jump), "3" means one coarse, and two next coarse
scale coefficients (corresponds to piecewise constant with 4 equally sized piece
with jumps at 1/4, 1/2 and 3/4), "7" means one coarse, two next coarse, four next
coarse, and so on.

findstysols 15

tsx One of the time series

tsy The other time series, values at the same time locations as tsx

sf A scale factor to multiply both time series by (not really of much use)

plot.it If TRUE then the plot.it argument passed to LCTS via optim is made TRUE.
This has the effect of plotting the results of every trial in the optimation (what
actually is plotted is described in the help to LCTS

print.it Not currently used in this function, reserved for future use

verbose If TRUE then helpful messages get printed.

lctsfn The function to compute the ‘linear combination test of stationarity’. I.e. it is the
function that combines the two series and returns the value of the test statistic
on the combination.

prodcomb.fn The function that can produce the linear combination of the two time series
and return the combination, and optionally vectors containing the combination
functions.

filter.number Gets passed to lctsfn and prodcomb.fn

family Gets passed to lctsfn and prodcomb.fn

my.maxit Maximum number of iterations in the optimization. May need to be increased
to, e.g. 1000 or 2000 for longer time series (e.g. T=2048)

spec.filter.number

Wavelet filter number. This argument gets passed to the lctsfn and is used for
the wavelet for all spectral smoothing.

spec.family Same as spec.filter.number but for the wavelet family.

optim.control Argument passed to the optim optimizer as its control argument. optim per-
forms optimization. See help page for optim.

irng Random number generator used to generate coefficients for starting parameters
for the linear combination of time series (actually wavelet coefficients of the
combination functions)

lapplyfn Function to use to process lists. If this argument is mclapply then the multicore
library function mclapply is used to parallel process the lists. If you don’t have
multicore then the lapply function can be used to process things sequentially.

Bsims The number of bootstrap simulations for the (single) test of stationarity BootTOS.

... Other arguments, passed to the optim call.

Details

The function searches for time-varying linear combinations of two time series, tsa and tsy, such
that the combination is stationary (according to the TOSts test statistic).

Each linear combination is parametrised by a coarse scale Haar wavelet decomposition (controlled
by Ncoefs). Initially, the Haar wavelet coefficients (up to a fixed finite scale, controlled by Ncoefs)
are randomly chosen. These coefficients are converted to functions αt, βt by the coeftofn function
and then a linear combination with the time series is formed out of those and the time series, i.e.
Zt = αtxt + βtyt The non-stationarity of Zt is measured using the TOSts test statistic and this
value is minimized over the coarse scale Haar wavelet coefficients.

16 findstysols

This optimization procedure is repeated Nsims times. If the lapplyfn is set to mclapply then this
function from the multicore package is used to process the lists in parallel.

This function can be called multiple times (e.g. on different processors in a multiprocessor environ-
ment. The result sets from different runs can be combined using the mergexy function.

The variance Ncoefs is very important, it controls the complexity of the linear combinations. If it
is too big the linear combinations themselves can be extremely oscillatory and stationarity is easy
to obtain. Small values of Ncoefs results in piecewise constant functions with fewer jumps.

The Ncoefs value must take the value of 2k−1. If this is the case the k is the number of scale levels
present in the Haar representation of the combining function αt, βt (excluding the scaling function
coefficient, just the wavelet coefficients from the coarsest scale).

The functions to compute the linear combination and also the test statistic on that combination, and
just to compute the combination and return also (optionally) the combination vectors are supplied
in lctsfn and prodcomb.fn. By default, these are just the LCTS and prodcomb functions. However,
it is possible to recode these to look at operating on combinations that operate on portfolios. I.e.
rather than look at linear combinations of log-returns (which if tsx and tsy were) one can look at
linear combinations of actual series (ie portfolios) and then look for stationarity of log-returns of
the portfolios. These functions will be made available in a later package.

Value

An object of class csFSS which is a list with the following components.

startpar A matrix with Nsims rows and 2*Ncoefs columns containing the initial random
coefficients of the linear combination functions, one row for each optimization
run. The first Ncoefs numbers on each row correspond to the αt coefficients,
the second Ncoefs numbers correspond to the βt coefficients.

endpar Same dimension as startpar except containing the final coefficients obtained
after running the optimizer. If, for a particuar run, the optimizer converged and
the p-value is less than 0.05 then one can say that this solution represents a valid
time-varying linear combination where the combination is stationary (coefficient
storage format as for startpar).

convergence A vector of length Nsims. Reports the convergence code from optim for each
optimization run. A value of 0 indicates successful convergence.

minvar A vector of length Nsims. Contains the minimum variance achieved on each
run.

pvals A vector of length Nsims. Contains the p-values achieved on each run.

tsx The tsx time series that was supplied to this function

tsy The tsy time series that was supplied to this function

tsxname The name of the tsx object that was supplied

tsyname The name of the tsy object that was supplied

filter.number The filter number that was used

family The wavelet family that was used
spec.filter.number

The filter number that was used

spec.family The wavelet family that was used

findstysols 17

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

LCTS, BootTOS,plotBS, prodcomb, COEFbothscale, LCTSres, print.csFSS, summary.csFSS, plot.csFSS

Examples

#
Find some stationary solutions with \code{Ncoefs=3}.
#
Note: this is a toy example
#
tsx1 <- rnorm(32) # A x time series
tsy1 <- rnorm(32) # A y time series
#
Find costationary solutions, but only from 2 random starts
#
Typically, the length of tsx and tsy would be bigger (eg sret, fret are
other examples you might use). Also, Nsims would be bigger, you need
to use many random starts to ensure good coverage of the solution
space, e.g. Nsims=100
#
Note: the following examples are not run so as to adhere to CRAN
requirements for package execution timings
#
Not run: ans <- findstysols(Nsims=3, tsx=tsx1, tsy=tsy1)
#
Print out a summary of the results
#
Not run: ans
#Class 'csFSS' : Stationary Solutions Object from costat:
~~~~~ : List with 13 components with names
startpar endpar convergence minvar pvals tsx tsy tsxname tsyname
filter.number family spec.filter.number spec.family
#
#
#summary(.):
#----------
#Name of X time series: tsx1
#Name of Y time series: tsy1
#Length of input series: 32
#There are 3 sets of solutions

18 fret

#Each solution vector is based on 3 coefficients
#Some solutions did not converge, check convergence component for more information.
#Zero indicates successful convergence, other values mean different things and
#you should consult the help page for `optim' to discover what they mean
#For size level: 0.05
0 solutions appear NOT to be stationary
3 solutions appear to be stationary
#Range of p-values: (0.93 , 0.995)
#
#Wavelet filter for combinations: 1 DaubExPhase
#Wavelet filter for spectrum: 1 DaubExPhase
#
#______________
#
Ok. The printout above suggests that some solutions did not converge.
Which ones?
#
Not run: ans$convergence
[1] 0 1 0
#
The second one did not converge, the others did. Good. The printout
above also indicates that all the resultant solutions were stationary
(this is not surprising for this example, as the inputs tsx1 and tsy1
are stationary, and indeed iid).
#
Let's see how the solutions compare. For example, let's plot the
hierarchical cluster analysis of the final solutions (those that
converged and are stationary)
#
Not run: plot(ans, ALLplotscale=FALSE)
#
My cluster shows that solution 1 and 3 are similar. Let's
view solution 3.
#
Not run: oldpar <- par(mfrow=c(2,2))
Not run: plot(ans, solno=3)
Not run: par(oldpar)

fret Particular section of FTSE log-return series.

Description

Observations 256:767 from the SP500 log-returns series stored in SP500FTSElr dataset.

Usage

data(fret)

getpvals 19

Format

A vector of 512 observations of the FTSE100 log-returns series

Details

Its just more convenient to refer to fret than to SP500FTSElr[256:767,3].

Source

Yahoo! Finance

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

Examples

Not run: ts.plot(fret)

getpvals Form a particular linear combination of two time series and assess the
combination’s stationarity p-value

Description

Given two time series, a set of combination coefficients, a function to combine them, this function
makes the combination, tests the combination for stationarity, and returns the pvalue. Effectively,
returns "how stationary" the combination is.

Usage

getpvals(par, prodcomb.fn, tsx, tsy, filter.number,
family=c("DaubExPhase", "DaubLeAsymm"),
verbose, tos = BootTOS, Bsims = 100, lapplyfn = lapply)

Arguments

par The coefficients used to make the combination via the prodcomb.fn function.

prodcomb.fn The function which computes the combination given the two time series and the
combination parameters.

tsx One of the time series.

tsy The other time series.

filter.number Wavelet smoothness to be used in the time series combination.

20 getpvals

family Wavelet family to be used in the time series combination.

verbose Supplied directly to the call to plotBS function.

tos The function the computes a test of stationarity

Bsims Number of bootstrap simulations the test uses (if it does)

lapplyfn The function used to process lists. Can be the regular lapply. If you have
multicore package then can be the mclapply parallel processing to process the
bootstraps in parallel.

Value

A single number between zero and one indicating the p-value from the hypothesis test of stationarity
of the combination.

Author(s)

G. P. Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols

Examples

#
Generate two toy time series data sets
#
x1 <- rnorm(32)
y1 <- rnorm(32)
#
Generate two toy sets of parameters (for combination)
#
tmp.a <- c(1,-1)
tmp.b <- c(0.5, 0.5)
#
Call the function and find out the degree of stationarity of this
combination
#
Not run: ans <- getpvals(c(tmp.a, tmp.b), prodcomb.fn=prodcomb, tsx=x1, tsy=y1,

filter.number=1, family="DaubExPhase")
End(Not run)
#
What is the p-value?
#

lacv 21

Not run: ans
[1] 0.53

lacv Computes localized (wavelet) autocovariance function

Description

Compute the LACV function for a locally stationary wavelet process.

Usage

lacv(x, filter.number = 10,
family = c("DaubExPhase", "DaubLeAsymm"), smooth.dev=var,
AutoReflect=TRUE, lag.max=NULL, smooth.RM=0, ...)

Arguments

x The time series you want to compute the LACV for

filter.number The wavelet that you wish to compute the LACV with respect to

family The wavelet family

smooth.dev The deviance used in smoothing if running mean smoothing is not used, ie in
the call to ewspec.

AutoReflect If TRUE then the spectrum is computed on a boundary-corrected series, over-
coming the lack of periodicity in the time series.

lag.max The maximum lag that the function computes. If this option is NULL then the
largest possible will be computed and used

smooth.RM If this is zero then regular wavelet smoothing of the periodogram will be used.
If not zero then running mean smoothing of the periodogram will be used with
a bandwidth given by this argument.

... Additional arguments to the spectrum computation contained within

Details

A locally stationary wavelet process is a particular kind of non-stationary time series constructed
out of wavelet atoms, with a time-varying spectrum (slowly varying). This kind of model is useful
for time series whose spectral properties change over time.

The time-varying spectrum can be computed from within the WaveThresh library by the ewspec
function. However, just as in the classical stationary case, where the spectrum and autocovariance
are a Fourier transform pair, the paper Nason, von Sachs, Kroisandt (2000) [NvSK2000] shows that
the evolutionary wavelet spectrum is paired to a localized autocovariance function using a wavelet-
like transform. This is expressed in formula (14) of the NvSK2000 paper.

This function computes the localized autocovariance by first computing the estimate of the evo-
lutionary spectrum, and then directly transforming it using formula (14) via the autocorrelation
wavelet transform.

22 lacv

Value

An object of class lacv. This is a list with the following components: lacv which is a matrix that
contains the localized autocovariance. If the original time series was of length T, then the number
of rows of the returned matrix is also T, one row for each time point. The columns of the array
correspond to the lag. The number of columns, 2K+1, depends both on the length of the time series
and also the order of the wavelet (smoother wavelets return lacv matrices with larger number of
lags). Lag 0 is always the centre column, with negative lags from -K to -1 are the leftmost columns,
lags from 1 to K are the rightmost columns; lacr: a matrix, with the same dimensions as lacv but
containing the local autocorrelations; date: the date this function was executed.

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

Nason, G.P., von Sachs, R. and Kroisandt, G. (2000) Wavelet processes and adaptive estimation of
the evolutionary wavelet spectrum. J. R. Statist. Soc. B, 62, 271-292.

See Also

ewspec, print.lacv, plot.lacv, summary.lacv

Examples

#
Generate an AR(1) time series
#
vsim <- arima.sim(model=list(ar=0.8), n=1024)
#
Compute the ACF of this stationary series
#
vsim.acf <- acf(vsim, plot=FALSE)
#
Compute the localized autocovariance. We'll use
a reasonably smooth wavelet.
#
vsim.lacv <- lacv(vsim, filter.number=4, lag.max=30)
#
Now plot the time-varying autocorrelations, only the first 5 lags
#
Not run: plot(vsim.lacv, lags=0:5)
#
Now plot the localized autocorrelation at time t=100, a plot similar
to the usual R acf plot.
#

LCTS 23

Not run: plot(vsim.lacv, type="acf", the.time=100)

LCTS Computes a Linear Combination Test Statistics

Description

Given a particular linear combination, specified in terms of coefficients, cfs, this functions forms
the linear combination of two time series, tsx, tsy and returns the result of a stationarity test statistic
on the combination.

Usage

LCTS(cfs, tsx, tsy, filter.number = 1,
family = c("DaubExPhase", "DaubLeAsymm"), plot.it = FALSE,

spec.filter.number = 1,
spec.family = c("DaubExPhase", "DaubLeAsymm"))

Arguments

cfs Coefficients describing the linear combination vectors. The first half correspond
to the first vector (alpha) the second half to the beta vector. Hence this vector
must have an even length, and each half has a length a power of two minus one.

tsx The x time series

tsy The y time series

filter.number This function turns the coefficients into a linear combination function (e.g. al-
pha). This argument specifies the filter.number of the inverse wavelet transform
that turns coefficients into a lc function.

family Same as filter.number but for the wavelet family

plot.it If TRUE then various things are plotted: both of the linear combination vec-
tors/time series, the combined time series and its EWS estimate

spec.filter.number

The wavelet filter used to compute the EWS estimate

spec.family The wavelet family used to compute the EWS estimate

Details

This function forms a time-varying linear combination of two times series to form a third time
series. Then a ‘stationarity test’ test statistic is applied to the third time series to compute how
stationary (or non-stationary it is). This function is called by findstysols and actually does the
work of forming the lc of two time series and gauging the stationarity

Value

A single number which is the value of the test of stationarity for the combined time series. This is
the result of TOSts but normalized for the squared coefficient norm

24 LCTSres

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols, TOSts, coeftofn

Examples

#
Apply this function to random combination coefficients.
#
The combination coefficients: comprised of two vectors each of length 3
Note that 3 = 2^2 - 1, vectors need to be of length a power two minus 1
#
sret, fret are two time series in the package
#
data(sret)
data(fret)
LCTS(c(rnorm(3), rnorm(3)), sret, fret)
#[1] 1.571728e-13
#
The value of the test statistic is 1.57e-13

LCTSres Plots solutions that are identified by findstysols

Description

Plots lots of useful information concerning solutions identified using findstysols. It only plots those
where the optimizer converged. Can additionally return the time-varying linear combination asso-
ciated with any solution if plots are turned off.

Usage

LCTSres(res, tsx, tsy, inc = 0, solno = 1:nrow(res$endpar), filter.number = 1,
family = c("DaubExPhase", "DaubLeAsymm"), plot.it = FALSE,
spec.filter.number = 1,
spec.family = c("DaubExPhase", "DaubLeAsymm"), plotcoef = FALSE,
sameplot = TRUE, norm = FALSE, plotstystat = FALSE,
plotsolinfo = TRUE, onlyacfs = FALSE,
acfdatatrans = I, xlab = "Time", ...)

LCTSres 25

Arguments

res Solution set returned by findstysols

tsx The x time series

tsy The y time series

inc Adds an increment to the x-axis values.

solno Which solution number to look at. This can be a vector of solution numbers.
The default is to look at all solutions (which can be a lot, depending on how
many you’ve got)

filter.number The wavelet filter number to use in reconstructing the linear combination func-
tion

family The wavelet family to use in reconstructing the linear combination function.

plot.it Currently unused in this function
spec.filter.number

This function computes the linear combination time series and also then com-
putes its EWS. The wavelet (spec.filter.number is the filter number of this
wavelet) used to compute the EWS can be different to the one used to compute
the linear combination, as the latter is only a means to an end - e.g. in principle,
other basis functions could be use in the linear combination. Also the spectrum
computed is only used to assess its constancy, so could be a locally stationary
Fourier one.

spec.family The family of the wavelet used to compute the spectrum

plotcoef If TRUE then only the linear combination functions are plotted. If FALSE then
a (set of potentially multiple) composite plot(s) are produced. These composite
plots are what are usually most useful.

sameplot If TRUE then the linear combination functions are plotted on the same plot.

norm If TRUE then the linear combination functions are normalized before plotting
if sameplot is TRUE. This is so as to be able to compare the patterns in each
function without regard to their overall size.

plotstystat If TRUE (and if plotcoef=FALSE) this option causes the function to plot statis-
tics associated with the stationary solution, Zt. The acf and partial acf are always
plotted. The time series plot of Zt and its spectrum are optionally plotted too if
onlyacfs=FALSE.

plotsolinfo If TRUE (and if plotsolinfo=FALSE) this option plots the αt linear combina-
tion function, the βt one (ie both of them), the stationary linear combination Zt,
and an estimate of the EWS of Zt computed using the spec.filter.number
and spec.family wavelet. The variance associated with Zt (the minimizing
variance from the optimizer in findstysols and the p-value associated with
the solution are displayed as plot titles.

onlyacfs Only plot the two acfs if plotstystat=TRUE

acfdatatrans A function (e.g. log) to transform the series before taking and displaying the
acf functions.

xlab An x label for the time series plots, and spectral plots

... Extra arguments for the acf plots.

26 LCTSres

Details

The function findstysols takes two time series and attempts to find time-varying linear combina-
tions of the two that are stationary. If one is found, we call it Zt. However, findstysols works by
numerical optimization, typically from random starts, and, generally, there is no unique stationary
solution.

This function takes the results obtained by findstysols in an object called res and then for a set of
solutions already identifed by the user, and supplied to this function via solno, this function takes
each identified solution in turn and produces a set of plots.

Determining which solutions are interesting is another problem. The COEFbothscale is a useful
function which can analyze all solution sets simultaneously and, usually, arrange them into groups
which are mutually similar. Then representative members from each group can be further analyzed
by LCTSres.

Probably the most useful set of options is plotcoef=FALSE and to issue a par(mfrow=c(2,2))
command prior to running LCTSres. This produces the plots, four to a page, and enables interesting
features to be compared from plot to plot.

The plotcoef=FALSE option causes four plots to be produced (on the same page if mfrow is set as
the previous paragraph suggests). The first two are the (potentially) time-varying linear combination
functions, the next is the stationary linear combination, Zt, itself and the final plot is an estimate
of the Zt’s evolutionary wavelet spectrum. The titles of the latter two plots display the process
variance of Zt (the global unconditional variance, because Zt is assumed to be stationary) and the
p-value associated the the hypothesis test of stationarity of Zt. The spectral estimate show exhibit
near constancy because of the stationarity (as assessed by hypothesis test) of Zt.

If plotstystat=TRUE then further plots are produced of the results of various classical time series
analyses of Zt. If onlyacfs=TRUE then only the acf and partial acf of Zt are plotted, otherwise Zt

and its classical spectrum are also plotted (remember, Zt, has tested to be stationary and so these
classical methods are valid).

If more than one solution is to be plotted, then the scan() function is employed to pause the plots
between plots.

Value

The stationary solution, Zt, associated with the last solution to be plotted is returned. Of course,
if there is only one solution to be plotted then it is the only possibility. Hence, if all the plot
arguments are FALSE then no plots are produced and the stationary linear combination of the (last)
solution number is returned.

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

localvar 27

See Also

findstysols

Examples

#
See examples in findstysols (the plot method for the results of
findstysols make use of LCTSres)

localvar Compute the time-localized (unconditional) variance for a time series

Description

Compute the time localized variance from an evolutionary wavelet spectrum of a time series

Usage

localvar(spec)

Arguments

spec An evolutionary wavelet spectrum, such as that computed by ewspec in WaveThresh.

Details

One can compute the local variance of a time series by first computing its evolutionary wavelet
spectrum, e.g., by using ewspec, and then applying localvar on the S component of that returned
by ewspec.

Value

A vector representing the local variance estimate at successive times.

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

ewspec

28 mergexy

Examples

#
Let's look at a iid standard normal sequence, variance should be 1, always
for all times.
#
zsim <- rnorm(64)
#
Note, in the following I use var as the method of deviance estimation,
as described in the help there it can be more accurate when transformations
are not used.
#
z.ews <- ewspec(zsim, smooth.dev=var)$S
#
Compute the local variance
#
z.lv <- localvar(z.ews)
#
Plot the local variance against time
#
Not run: ts.plot(z.lv)
#
Should be around 1. Note, the vertical scale of the plot might be
deceptive, as R plots expand the function to the maximum available
space. If you look again it should be quite close to 1 (e.g. on the
example I am looking at now the variance is within +/- 0.15 of 1.
#
However, it might not be close to 1 because the sample size is quite small,
only 64, so repeat the above analysis with a larger sample size, e.g. 1024.
#

mergexy Concatenate a set of solution results into one set

Description

Merges several sets of optimization results from multiple calls to findstysols into a single object
for further analysis

Usage

mergexy(...)

Arguments

... An unspecified number of arguments of class csFSS. (usually a set of objects
containing a set of optimization solutions, such as that returned by findstysols)

mergexy 29

Details

The return object from an invocation of the findstysols is a list containing a number of interesting
components containing information about the starting parameters, the (hopefully optimal) ending
parameters, convergence status, minimum variance achieved and p-value associated with the final
test of stationarity after an optimization.

It is possible to ask findstysols to execute multiple optimization runs in the same function, by
choice of the Nsims parameter. However, for truly large runs, it can be convenient to run multi-
ple copies of findstysols, for example on multiple processors simultaneously (a coarse grained
parallelism).

In particular, for large time series, it can be useful to run findstysols for one optimization run
(as running more than one for a very large series can cause the software to fail as R can run out of
memory. Actually, for very very large series even one optmization run can fail for memory reasons).

In this way multiple optimization runs can be executed with each one producing its own set of
results. This function (mergexy) takes a list of object names of all of the results, and merges the
results into one object as if a single call to findstysols had been executed. Such a single set of
results can then be passed on to further analysis routines, such as COEFbothscale or LCTSres.

Value

A set of optimization solutions in the same format as those returned by findstysols

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols, LCTSres, COEFbothscale

Examples

#
Generate two dummy time series
#
x1 <- rnorm(32)
y1 <- rnorm(32)
#
Run two optimizations
#
Not run: solnset1 <- findstysols(Nsims=1, tsx=x1, tsy=y1)
Not run: solnset2 <- findstysols(Nsims=1, tsx=x1, tsy=y1)
#

30 plot.BootTOS

Merge them
#
Not run: solnset <- mergexy(solnset1, solnset2)

plot.BootTOS Plots results of a Bootstrap Test of Stationarity

Description

Produces Bootstrap simulation result as a histogram with a vertical line indicating the test statistic
computed on the actual data.

Usage

S3 method for class 'BootTOS'
plot(x, ...)

Arguments

x The object you wish to get a plot on.

... Other arguments to plot.

Details

Produces a histogram of all the bootstrap statistics and the test statistic computed on the true data.
Also produces a vertical line indicating the position of the true statistic.

Value

None.

Author(s)

G.P. Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using co-
stat. Journal of Statistical Software, 55, Issue 1. Cardinali, A. and Nason, G.P. (2010) Costationarity
of locally stationary time series. J. Time Series Econometrics, 2, Issue 2, Article 1.

See Also

BootTOS

plot.csBiFunction 31

Examples

#
v <- rnorm(512)
Not run: v.BootTOS <- BootTOS(v)
Not run: plot(v.BootTOS)

plot.csBiFunction Plot a csBiFunction object

Description

A csBiFunction object contains representations of two functions. This function plots the two
functions superimposed.

Usage

S3 method for class 'csBiFunction'
plot(x, ...)

Arguments

x An object of class csBiFunction

... Other arguments to plot call

Value

None

Author(s)

G.P. Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

coeftofn, print.csBiFunction, summary.csBiFunction

Examples

Not run: plot(coeftofn(c(1,-1), c(0.5, 0.5)))

32 plot.csFSS

plot.csFSS Plot a csFSS object.

Description

Produces two types of plot from the information in a csFSS object, such as that returned by
findstysols.

Usage

S3 method for class 'csFSS'
plot(x, solno = NULL, ALLplotclust = TRUE, ALLplotscale = TRUE, sollabels=TRUE,

SNinc = 0, ...)

Arguments

x The csFSS object you wish to produce plots for.

solno If missing then the plot produces plots that show information on all solutions
at once, first in a scatter plot, then in a dendrogram. If provided then the plot
produces information on that specific solution.

ALLplotclust If TRUE then the dendrogram is plotted, if FALSE it is not.

ALLplotscale If TRUE then the two-dimensional scaling solution is plotted. If FALSE, it is
not.

sollabels If TRUE then solution numbers are plotted on the scaling plot, if produced.

SNinc An argument passed to the LCTSres function if called. When plotting add an
increment on where to start looking at the time series/solutions from.

... Other arguments passed to plot.

Details

This function can produce either a scatterplot, which indicates the two-dimensional scaling picture
of the optimization solution sets, or a dendrogram showing putative clustering of solutions. In both
cases it is a plot considering ALL solutions at once. These plots are delegated to the plot.csFSSgr
function.

If the argument solno is provided then plots are produced which show information on a single
solution. This plot is delegated to the LCTSres function.

Value

None.

Author(s)

G.P.Nason

plot.csFSSgr 33

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols, LCTSres, plot.csFSSgr, print.csFSS, summary.csFSS

Examples

#
Create dummy data
#
x1 <- rnorm(32)
y1 <- rnorm(32)
#
Find stationary combinations
Note: we don't run this example in installation/package formation as
it takes a long time. However, this precise command IS run in
the help to findstysols
#
Not run: ans <- findstysols(Nsims=100, tsx=x1, tsy=y1)
#
Produce dendrogram
#
Not run: plot(ans)
#
Produce four pictures relating to solution 3 (can also do
par(mfrow=c(2,2)) to make a nice 4 plot on one page.)
#
Not run: plot(ans, solno=3)
#solno is 3
#3
#1:

plot.csFSSgr Produce plots from a csFSSgr object.

Description

A csFSS object contains a set of solutions obtained from a series of optimizations. Each solution
corresponds to a time-varying linear combination of two time series (or rather the wavelet coeffi-
cients of such combinations) where the combination has found to be stationary and the optimizer
that got there converged. Often one wishes to interrogate the results, such as seeing how the so-
lutions cluster, or what their low-dimensional scaling solution projection looks like, such analyses
are produced by the COEFbothscale function and the whole plot is marshalled by the plot.csFSS
function.

34 plot.csFSSgr

Usage

S3 method for class 'csFSSgr'
plot(x, plotclust = TRUE, plotscale = TRUE, sollabels=FALSE, ...)

Arguments

x The csFSSgr object to be plotted.

plotclust If TRUE then the dendrogram clustering is plotted, if FALSE it is not.

plotscale If TRUE then the scaling solution picture is plotted, if FALSE it is not.

sollabels If TRUE then solution numbers are plotted on the scaling plot, if produced.

... Other arguments to plot.

Value

None.

Author(s)

G.P. Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

plot.csFSS

Examples

#
This function is a helper function for plot.csFSS so see the example there.
#

plot.lacv 35

plot.lacv Plot localized autocovariance (lacv) object.

Description

Produces various ways of looking at a localized autocovariance (lacv) object.

Usage

S3 method for class 'lacv'
plot(x, plotcor = TRUE, type = "line",

lags = 0:min(as.integer(10 * log10(nrow(x$lacv))), ncol(x$lacv) - 1),
tcex = 1, lcol = 1, llty = 1, the.time = NULL, ...)

Arguments

x The localized autocovariance object you want to plot (lacv)

plotcor If TRUE then plot autocorrelations, otherwise plot autocovariances.

type The lacv objects are fairly complex and so there are different ways you can plot
them. The types are line, persp or acf, see the details for description. Note
that the line plot only works with correlations currently.

lags The lags that you wish included in the plot. The default is all the lags from 0
up to the maximum that is used in the R acf plot

tcex In the line plot lines are plotted that indicate the time-varying correlation. Each
lag gets a different line and the lines are differentiated by the lag id being placed
at intervals along the line. This argument changes the size of those ids (num-
bers).

lcol Controls the colours of the lines in the line plot.

llty Controls the line types of the lines in the line plot.

the.time If the acf plot is chosen then you have to specify a time point about which to
plot the acf. I.e. in general this funcion’s lacv argument is a 2D function: c(t, τ),
the acf plot produces a plot like the regular acf function and so you have to turn
the 2D c(t, τ) into a 1D function c(t0, τ) by specifying a fixed time point t0.

... Other arguments to plot.

Details

This function produces pictures of the two-dimensional time-varying autocovariance or autocorre-
lation, c(t, τ), of a locally stationary time series. There are three types of plot depending on the
argument to the type argument.

The line plot draws the autocorrelations as a series of lines, one for each lag, as lines over time.
E.g. a sequence #of lines c(t, τi) is drawn, one for each τi. The zeroth lag line is the autocorrelation
at lag 0 which is always 1. By default all the lags are drawn which can result in a confusing picture.
Often, one is only interested in the low level lags, so only these can be plotted by changing the lags

36 plot.lacv

argument and any selection of lags can be plotted. The colour and line type of the plotted lines can
be changed with the lcol and the llty arguments.

The acf plot produces pictures similar to the standard R acf() function plot. However, the regular
acf is a 1D function, since it is defined to be constant over all time. The time-varying acf supplied
to this function is not constant over all time (except for stationary processes, theoretically). So, this
type of plot requires the user to specify a fixed time at which to produce the plot, and this is supplied
by the the.time argument.

The persp plot plots the 2D function c(t, τ) as a perspective plot.

Value

For the acf type plot the acf values are returned invisibly. For the other types nothing is returned.

Author(s)

G.P. Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

lacv

Examples

#
Make some dummy data, e.g. white noise
#
v <- rnorm(256)
#
Compute the localized autocovariance (ok, the input is stationary
but this is just an example. More interesting things could be achieved
by putting the results of simulating from a LSW process, or piecewise
stationary by concatenating different stationary realizations, etc.
#
vlacv <- lacv(v, lag.max=30)
#
Now let's do some plotting of the localized autocovariance
#
Not run: plot(vlacv, lags=0:6)
#
Should get a plot where lag 0 is all up at value 1, and all other
autocorrelations are near zero (since its white noise).
#
#

plotBS 37

How about just looking at lags 0, 2 and 4, and some different colours.
#
Not run: plot(vlacv, lags=c(0,2,4), lcol=c(1,2,3))
#
O.k. Let's concentrate on time t=200, let's look at a standard acf
plot near there.
#
Not run: plot(vlacv, type="acf", the.time=200)
#
Now plot the autocovariance, rather than the autocorrelation.
#
Not run: plot(vlacv, type="acf", the.time=200, plotcor=FALSE)
#
Actually, the plot doesn't look a lot different as the series is white
noise, but it is different if you look closely.

plotBS Compute p-value for parametric Monte Carlo test and optionally plot
test statistic values

Description

Computes and returns a p-value for the result of a parametric Monte Carlo test. Optionally, plots a
histogram of the test statistics (on the original data, and using test statistics resulting from simula-
tions from the null hypothesis distribution).

Usage

plotBS(BS, alpha = 0.05, plot = TRUE, verbose = FALSE, main = "Bootstrap Histogram",
xlab = "Test Statistic Values", ylab = "Frequency")

Arguments

BS The results from a Monte Carlo test. This should be a vector of arbitrary length.
The first value must be the value of the test statistic computed on the data. The
remaining values are the test statistics computed on simulations constructed un-
der the null hypothesis.

alpha A nominal size for the test. This only effects the reporting. If the computed
p-value is less than alpha then the function prints out that the series is not sta-
tionary.

plot If TRUE then a histogram of all the test statistics is produced, with a vertical
line showing the position of the test statistic computed on the actual data. If the
vertical line is much larger than all the histogram values then this is indicative
of stationarity. If the vertical line is well within the histogram values then this is
indicative of no evidence against stationarity.

verbose If TRUE then the p-value is printed and a sentence declaring "stationary" or "not
stationary" is printed (relative to the nominal p-value)

38 print.csBiFunction

main A main label for the plot, if produced

xlab An xlab x axis label for the plot, if produced

ylab An ylab y axis label for the plot, if produced

Value

The p-value computed from the Monte Carlo test results is returned

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

getpvals,BootTOS

Examples

#
See example in \code{\link{BootTOS}}.
#

print.csBiFunction Print a csBiFunction object.

Description

A csBiFunction object contains representations of two functions. This function prints information
about the object

Usage

S3 method for class 'csBiFunction'
print(x, ...)

Arguments

x The object you want printed.

... Other arguments

print.csFSS 39

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

plot.csBiFunction, summary.csBiFunction

Examples

print(coeftofn(c(1,-1), c(0.5, 0.5)))
#Class 'csBiFunction' : Contains two sampled functions:
~~~~ : List with 2 components with names
alpha beta
#
#
#summary(.):
#----------
#Length of functions is: 256

print.csFSS Print acsFSS object.

Description

Print information about a csFSS object.

Usage

S3 method for class 'csFSS'
print(x, ...)

Arguments

x The csFSS object you want printed.

... Other arguments.

40 print.csFSS

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols, plot.csFSS, summary.csFSS

Examples

#
Create dummy data
#
x1 <- rnorm(32)
y1 <- rnorm(32)
#
Find stationary combinations. Note: normally Nsims would be much bigger
#
Not run: ans <- findstysols(Nsims=100, tsx=x1, tsy=y1)
#
Print this csFSS object
#
Not run: print(ans)
#Class 'csFSS' : Stationary Solutions Object from costat:
~~~~~ : List with 13 components with names
startpar endpar convergence minvar pvals tsx tsy tsxname tsyname filter.number
family spec.filter.number spec.family
#
#
#summary(.):
#----------
#Name of X time series: x1
#Name of Y time series: y1
#Length of input series: 32
#There are 100 sets of solutions
#Each solution vector is based on 3 coefficients
#Some solutions did not converge, check convergence component for more information.
#Zero indicates successful convergence, other values mean different things and
#you should consult the help page for `optim' to discover what they mean
#For size level: 0.05
0 solutions appear NOT to be stationary

print.csFSSgr 41

97 solutions appear to be stationary
#Range of p-values: (0.885 , 0.975)
#
#Wavelet filter for combinations: 1 DaubExPhase
#Wavelet filter for spectrum: 1 DaubExPhase

print.csFSSgr Print csFSSgr object.

Description

Prints out information on a csFSSgr object.

Usage

S3 method for class 'csFSSgr'
print(x, ...)

Arguments

x The csFSSgr object you wish to print.

... Other arguments.

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

plot.csFSSgr, summary.csFSSgr

Examples

#
The user should normally never need to use this function as the
csFSSgr object is only ever internally produced and used.
#

42 print.lacv

print.lacv Print lacv class object

Description

Prints information about lacv class object.

Usage

S3 method for class 'lacv'
print(x, ...)

Arguments

x The lacv class object you want to print

... Other arguments

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

lacv, plot.lacv, summary.lacv

Examples

#
Make some dummy data, e.g. white noise
#
v <- rnorm(256)
#
Compute the localized autocovariance (ok, the input is stationary
but this is just an example. More interesting things could be achieved
by putting the results of simulating from a LSW process, or piecewise
stationary by concatenating different stationary realizations, etc.
#

prodcomb 43

vlacv <- lacv(v, lag.max=30)
#
Now let's print the lacv object
#
print(vlacv)
#Class 'lacv' : Localized Autocovariance/correlation Object:
~~~~ : List with 3 components with names
lacv lacr date
#
#
#summary(.):
#----------
#Name of originating time series:
#Date produced: Thu Oct 25 12:11:29 2012
#Number of times: 256
#Number of lags: 30

prodcomb Combine two time series using a time-varying linear combination.

Description

This function takes the cfs vector and splits it into two halves. The first half contains the wavelet
coefficients for the alpha linear combination function, and the second half for the beta one. Then
the functions themselves are generated by using the coeftofn function. Then, the coefficient func-
tions are multiplied by the respective time series (tsx by alpha and tsy by beta) and the result
returned.

Usage

prodcomb(cfs, tsx, tsy, filter.number = 1,
family = c("DaubExPhase", "DaubLeAsymm"), all = FALSE)

Arguments

cfs Wavelet coefficients of the two combination functions. The coefficients for al-
pha/beta combination functions are stored in the first/last half of the vector.

tsx The x time series to combine

tsy The y time series to combine

filter.number The wavelet filter to use to obtain functions from coefficients

family The wavelet family to do the same.

all If TRUE then a list containing the combined series in the component lcts and
the combination functions in components alpha and beta. Although the com-
bined series is the thing that is usually later tested for stationarity, it is often
useful to see, at some stage, what the combination functions are, as these pro-
vide interpretation as to what the combination might mean. If FALSE then just
the combined series is returned.

44 prodcomb

Details

This function is called by findstysols and makes use of coeftofn to turn coefficients into a
function used in the combination.

Value

If all=TRUE then a list with the following components:

lcts The combined series, αtXt + βtYt

alpha The αt combination function.

beta The βt combination function.

If all=FALSE then only lcts is returned.

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols, coeftofn

Examples

#
Toy example
#
tmp.a <- c(1, -1)
tmp.b <- c(0.5, 0.5)
#
Generate toy time series
#
xxx <- rnorm(256)
yyy <- rnorm(256)
#
Combine xxx and yyy using the functions produced by inverse wavelet
transform of tmp.a and tmp.b
#
Not run: tmp <- prodcomb(c(tmp.a, tmp.b), tsx=xxx, tsy=yyy)
#
E.g. plot combination
#
Not run: ts.plot(tmp)

SP500FTSElr 45

#
Potentially test its stationarity.... etc
#

SP500FTSElr Log-returns time series of the SP500 and FTSE100 indices

Description

Log-returns of the SP500 and FTSE indices between 21th June 1995 until 2nd October 2002. Only
trading days where both indices were recorded are stored. There are 2048 observations.

Usage

data(SP500FTSElr)

Format

A data frame with 2048 observations on the following 3 variables.

Date The trading day that the index was recorded.

SP500lr The log-return for SP500

FTSElr The log-return for FTSE100

Source

Downloaded from Yahoo! Finance

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

Examples

#
Plot the log-returns for the SP500
#
Not run: ts.plot(SP500FTSElr[,2])

46 summary.csBiFunction

sret Particular section of SP500 log-returns series.

Description

Observations 256:767 from the SP500 log-return series stored in SP500FTSElr dataset.

Usage

data(sret)

Format

A vector of 512 observations of the SP500 log-returns series.

Details

Its just more convenient to refer to sret than to SP500FTSElr[256:767,2].

Source

Yahoo! Finance

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

Examples

Not run: ts.plot(sret)

summary.csBiFunction Summarize a csBiFunction object.

Description

Summarize a csBiFunction object.

Usage

S3 method for class 'csBiFunction'
summary(object, ...)

summary.csFSS 47

Arguments

object The object to summarize
... Other arguments

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

plot.csBiFunction, print.csBiFunction

Examples

#
See example to print.csBiFunction, as this calls summary(.)
#

summary.csFSS Summarize a csFSS object.

Description

Summarizes a csFSS object.

Usage

S3 method for class 'csFSS'
summary(object, size = 0.05, ...)

Arguments

object Object you wish to summarize.
size A hypothesis test size. The csFSS object contains a number of p-values, this

argument controls what is considered significant (but not corrected for multiple
tests)

... Other arguments

48 summary.csFSSgr

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

findstysols,plot.csFSS, print.csFSS

Examples

#
See example to print.csFSS which calls summary(.)
#

summary.csFSSgr Summarize a csFSSgr object.

Description

Summarizes a csFSSgr object.

Usage

S3 method for class 'csFSSgr'
summary(object, ...)

Arguments

object The csFSSgr object you wish to summarize.

... Other arguments

Value

None

Author(s)

Guy Nason

summary.lacv 49

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

plot.csFSSgr, print.csFSSgr

Examples

#
See example for print.csFSSgr which calls summary(.)

summary.lacv Summarizes a lacv object

Description

Summarizes a lacv object

Usage

S3 method for class 'lacv'
summary(object, ...)

Arguments

object The lacv object you wish summarized.

... Other arguments

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

50 TOSts

See Also

lacv, plot.lacv, print.lacv

Examples

#
Make some dummy data, e.g. white noise
#
v <- rnorm(256)
#
Compute the localized autocovariance (ok, the input is stationary
but this is just an example. More interesting things could be achieved
by putting the results of simulating from a LSW process, or piecewise
stationary by concatenating different stationary realizations, etc.
#
vlacv <- lacv(v, lag.max=20)
#
Now let's summarize the lacv object
#
summary(vlacv)
#Name of originating time series:
#Date produced: Thu Oct 25 12:11:29 2012
#Number of times: 256
#Number of lags: 20

TOSts A test statistic for stationarity

Description

The TvS test statistic from the Cardinali and Nason article. Measures the degree of non-stationarity
using the estimated evolutionary wavelet spectrum (EWS)

Usage

TOSts(spec)

Arguments

spec An EWS estimate, e.g. from the $S component from ewspec

Details

Given an EWS estimate. This computes the sample variance of the estimate for each scale level and
then returns the sum of these variances.

Value

A single number which is the sum of the sample variances of each scale level from an EWS estimate.
If the EWS estimate is constant for each scale then the return value is zero.

TOSts 51

Author(s)

Guy Nason

References

Cardinali, A. and Nason, Guy P. (2013) Costationarity of Locally Stationary Time Series Using
costat. Journal of Statistical Software, 55, Issue 1.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

See Also

BootTOS

Examples

#
Compute a spectral estimate on an sample time series (just use iid data)
#
xsim <- rnorm(128)
xews <- ewspec(xsim, smooth.dev=var)$S
#
You could plot this spectral estimate if you liked
#
Not run: plot(xews)
#
Compute test statistic
#
TOSts(xews)
#[1] 0.1199351
#
Although the time series x here is a realization from a stationary process
the test statistic is not zero (this is because of the estimation error
inherent in this small sample).
#
This is why the bootstrap test, \code{\link{BootTOS}} is required to
assess the significance of the test statistic value.

Index

∗ datasets
fret, 18
SP500FTSElr, 45
sret, 46

∗ math
AntiAR, 3

∗ smooth
AntiAR, 3
EWSsmoothRM, 11

∗ ts
BootTOS, 5
COEFbothscale, 7
coeftofn, 9
costat-package, 2
EWSsmoothRM, 11
extractCS, 12
findstysols, 14
getpvals, 19
lacv, 21
LCTS, 23
LCTSres, 24
localvar, 27
mergexy, 28
plot.BootTOS, 30
plot.csBiFunction, 31
plot.csFSS, 32
plot.csFSSgr, 33
plot.lacv, 35
plotBS, 37
print.csBiFunction, 38
print.csFSS, 39
print.csFSSgr, 41
print.lacv, 42
prodcomb, 43
summary.csBiFunction, 46
summary.csFSS, 47
summary.csFSSgr, 48
summary.lacv, 49
TOSts, 50

AntiAR, 3

BootTOS, 3, 4, 5, 15, 17, 30, 38, 51

COEFbothscale, 7, 17, 26, 29, 33
coeftofn, 9, 13, 15, 24, 31, 44
costat (costat-package), 2
costat-package, 2

EWSsmoothRM, 11
extractCS, 12

findstysols, 2, 3, 8, 9, 13, 14, 20, 23–29, 32,
33, 40, 44, 48

fret, 18

getpvals, 19, 38

lacv, 3, 11, 21, 36, 42, 50
LCTS, 10, 15, 17, 23
LCTSres, 8–10, 17, 24, 29, 32, 33
localvar, 27

mergexy, 16, 28

plot.BootTOS, 30
plot.csBiFunction, 31, 39, 47
plot.csFSS, 17, 32, 33, 34, 40, 48
plot.csFSSgr, 32, 33, 33, 41, 49
plot.lacv, 22, 35, 42, 50
plotBS, 6, 17, 37
print.csBiFunction, 31, 38, 47
print.csFSS, 17, 33, 39, 48
print.csFSSgr, 41, 49
print.lacv, 22, 42, 50
prodcomb, 17, 43

SP500FTSElr, 18, 45, 46
sret, 46
summary.csBiFunction, 31, 39, 46
summary.csFSS, 17, 33, 40, 47

52

INDEX 53

summary.csFSSgr, 41, 48
summary.lacv, 22, 42, 49

TOSts, 6, 15, 23, 24, 50

	costat-package
	AntiAR
	BootTOS
	COEFbothscale
	coeftofn
	EWSsmoothRM
	extractCS
	findstysols
	fret
	getpvals
	lacv
	LCTS
	LCTSres
	localvar
	mergexy
	plot.BootTOS
	plot.csBiFunction
	plot.csFSS
	plot.csFSSgr
	plot.lacv
	plotBS
	print.csBiFunction
	print.csFSS
	print.csFSSgr
	print.lacv
	prodcomb
	SP500FTSElr
	sret
	summary.csBiFunction
	summary.csFSS
	summary.csFSSgr
	summary.lacv
	TOSts
	Index

