--- title: "Quick start using cosimmr" author: "Emma Govan and Andrew Parnell" date: "`r Sys.Date()`" output: rmarkdown::html_vignette: toc: true vignette: > %\VignetteIndexEntry{Quick start using cosimmr} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ## Step 1: install `cosimmr` Use: ```{r, eval = FALSE} install.packages("cosimmr") ``` then ```{r, message=FALSE} library(cosimmr) ``` ## Step 2: load in the data Some geese isotope data is included with this package. Find where it is with: ```{r, eval = FALSE} system.file("extdata", "geese_data_small.xls", package = "cosimmr") ``` Load into R with: ```{r, echo = FALSE, eval = FALSE} if (!requireNamespace("readxl", quietly = TRUE)) { stop("readxl needed for this vignette to work. Please install it.", call. = FALSE ) } ``` ```{r, eval = FALSE} library(readxl) path <- system.file("extdata", "geese_data_small.xls", package = "cosimmr") geese_data <- lapply(excel_sheets(path), read_excel, path = path) ``` If you want to see what the original Excel sheet looks like you can run `system(paste('open',path))`. We can now separate out the data into parts ```{r, eval = FALSE} targets <- geese_data[[1]] sources <- geese_data[[2]] TEFs <- geese_data[[3]] concdep <- geese_data[[4]] ``` Note that if you don't have TEFs or concentration dependence you can just leave them blank in the step below. ## Step 3: load the data into `cosimmr` Here we are using Weight as a covariate. data are inputted as matrices ```{r, eval = FALSE} Weight <- targets$`Net Wt` geese_cosimmr <- cosimmr_load( formula = as.matrix(targets[, 1:2]) ~ Weight, source_names = sources$Sources, source_means = as.matrix(sources[, 2:3]), source_sds = as.matrix(sources[, 4:5]), correction_means = as.matrix(TEFs[, 2:3]), correction_sds = as.matrix(TEFs[, 4:5]), concentration_means = as.matrix(concdep[, 2:3]) ) ``` ## Step 4: plot the data ```{r,fig.align = 'center',fig.width = 7,fig.height = 5, eval = FALSE} plot(geese_cosimmr, colour_by_cov = TRUE, cov_name = "Weight") ``` ##Step 5: Run through cosimmr ```{r, results = 'hide', message = FALSE, eval = FALSE} geese_out = cosimmr_ffvb(geese_cosimmr) ``` ##Step 5: Look at the output Look at the influence of the prior: ```{r,fig.align = 'center',fig.width = 7,fig.height = 5, eval = FALSE} prior_viz(geese_out) ``` Look at the histogram of the dietary proportions for observations 1 and 2: ```{r,fig.align = 'center',fig.width = 7,fig.height = 5, eval = FALSE} plot(geese_out, type = "prop_hist", obs = c(1,2)) ``` For the many more options available to run and analyse output, see the main vignette via `vignette('cosimmr')`