Package: cosimmr (via r-universe)

September 29, 2024

Type Package Title Fast Fitting of Stable Isotope Mixing Models with Covariates **Version** 1.0.12 Date 2024-05-31 URL https://github.com/emmagovan/cosimmr, https://emmagovan.github.io/cosimmr/ Description Fast fitting of Stable Isotope Mixing Models in R. Allows for the inclusion of covariates. Also has built-in summary functions and plot functions which allow for the creation of isospace plots. Variational Bayes is used to fit these models, methods as described in: Tran et al., (2021) <doi:10.48550/arXiv.2103.01327>. License GPL (>= 2) **Imports** Rcpp (>= 1.0.10), R2jags, bayesplot, checkmate, ggplot2, viridis, reshape2, stats, ggnewscale LinkingTo Rcpp, RcppArmadillo, RcppDist Suggests testthat (>= 3.0.0), knitr, rmarkdown, readxl

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.3.1

Encoding UTF-8

Depends R (>= 3.5.0)

LazyData true

NeedsCompilation yes

Author Emma Govan [cre, aut], Andrew Parnell [aut], Ahmed Shalaby [ctb], Alan Inglis [ctb]

Maintainer Emma Govan <emmagovan@gmail.com>

Repository CRAN

Date/Publication 2024-05-31 13:50:23 UTC

Contents

alligator_data	2
cladocera_data	3
cosimmr	4
cosimmr_ffvb	4
cosimmr_load	6
geese_data	9
geese_data_day1	9
iso_data	
F	11
plot.cosimmr_output	
plot.cosimmr_pred_out	
posterior_predictive	
predict.cosimmr_output	
print.cosimmr_input	
print.cosimmr_output	
prior_viz	
simmr_data_1	
simmr_data_2	
square_data	
summary.cosimmr_output	
summary.cosimmr_pred_out	26
	29
	-

Index

alligator_data Alligator Data

Description

Dataset from Nifong et al 2015 which contains 2 food sources, 181 individuals and 2 isotopes. This dataset includes multiple covariates as well as TDF means and sds.

Usage

alligator_data

Format

A list with the following elements

mixtures A two column matrix containing delta 13C and delta 15N values respectively

ID A character vector of unique ID values

tag_ID A character vector of tag ID

lat A numeric vector of latitude

long A numeric vector of longitude

date A character vector of date
year A numeric vector of year
habitat A character vector of habitat
sex A character vector of sex
length A numeric vector of length in cm
s_class A character vector of size class
sex_sclass A character vector for sex times size class
source_names A character vector of source names
source_means A data frame of source means for same tracers as in Mixtures
n_sources A numeric vector of number of sources
TEF_means A data frame of means for TEFs for same tracers as in Mixtures
TEF sds A data frame of sds for TEFs for same tracers as in Mixtures

Source

<doi:10.1111/1365-2656.12306>

cladocera_data Cladocera data from Galloway et al 2015.

Description

Cladocera data from Galloway et al 2015. This dataset has 14 individuals on 7 food sources and 22 tracers. The id column can be used as a covariate. This dataset includes TDFs.

Usage

cladocera_data

Format

A list with the following elements

id numeric vector of ID number

group character vector of group ID

mixtures Data frame of tracer values. There are 22 fatty acids as tracers in this dataset.

tracer_names character vector of tracer names

source_means data frame of tracer means for each of the 7 food sources

source_sds data frame of tracer sds for each of the 7 food sources

n_sources numeric vector of the number of each food source collected

correction_means data frame with TDF means for each food source on each tracer

correction_sds data frame with TDF sds for each food source on each tracer

Source

<doi:10.1111/fwb.12394>

cosimmr

cosimmr: An R package for Stable Isotope Mixing Models

Description

cosimmr is a package that has been developed to allow for running of Stable Isotope Mixing Models in R. It allows for the inclusion of covariates and has been designed to be easy to use for non-expert users. cosimmr uses Fixed Form Variational Bayes to run SIMMs, instead of MCMC. This allows for faster running of models without any issues with convergence

Author(s)

Emma Govan <emmagovan@gmail.com>, Andrew Parnell

cosimmr_ffvb	Run a cosimmr_input object through the Fixed Form Variational
	Bayes(FFVB) function

Description

This is the main function of cosimmr. It takes a cosimmr_input object created via cosimmr_load, runs it in fixed form Variational Bayes to determine the dietary proportions, and then outputs a cosimmr_output object for further analysis and plotting via plot.cosimmr_output.

Usage

```
cosimmr_ffvb(
  cosimmr_in,
  prior_control = list(mu_0 = rep(0, (cosimmr_in$n_sources * cosimmr_in$n_covariates)),
    mu_log_sig_sq_0 = rep(0, cosimmr_in$n_tracers), sigma_0 = 1, tau_shape = rep(1,
    cosimmr_in$n_tracers), tau_rate = rep(1, cosimmr_in$n_tracers)),
    ffvb_control = list(n_output = 3600, S = 500, P = 50, beta_1 = 0.75, beta_2 = 0.75, tau
        = 500, eps_0 = 0.0011, t_W = 500)
)
```

cosimmr_ffvb

Arguments

cosimmr_in	An object created via the function cosimmr_load
prior_control	A list of values including arguments named mu_0 (prior for mu), and sigma_0 (prior for sigma).
ffvb_control	A list of values including arguments named n_output (number of rows in theta output), S (number of samples taken at each iteration of the algorithm), P (patience parameter), beta_1 and beta_2 (adaptive learning weights), tau (threshold for exploring learning space), eps_0 (fixed learning rate), t_W (rolling window size)

Value

An object of class cosimmr_output with two named top-level components:

input	The cosimmr_input object given to the cosimmr_ffvb function
output	A set of outputs produced by the FFVB function. These can be analysed using the summary.cosimmr_output and plot.cosimmr_output functions.

Author(s)

Emma Govan <emmagovan@gmail.com>, Andrew Parnell

References

Andrew C. Parnell, Donald L. Phillips, Stuart Bearhop, Brice X. Semmens, Eric J. Ward, Jonathan W. Moore, Andrew L. Jackson, Jonathan Grey, David J. Kelly, and Richard Inger. Bayesian stable isotope mixing models. Environmetrics, 24(6):387–399, 2013.

Andrew C Parnell, Richard Inger, Stuart Bearhop, and Andrew L Jackson. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE, 5(3):5, 2010.

See Also

cosimmr_load for creating objects suitable for this function, plot.cosimmr_input for creating isospace plots, summary.cosimmr_output for summarising output, and plot.cosimmr_output for plotting output.

Examples

See the package vignette for a detailed run through of these examples

```
# Data set 1: 10 obs on 2 isos, 4 sources, with tefs and concdep
data(geese_data_day1)
x = c(1,2,3,2,1,3,2,1,2)
cosimmr_1 <- with(
  geese_data_day1,
  cosimmr_load(
    formula = mixtures ~ x,
    source_names = source_names,
    source_means = source_means,
```

```
source_sds = source_sds,
    correction_means = correction_means,
   correction_sds = correction_sds,
    concentration_means = concentration_means
 )
)
# Plot
plot(cosimmr_1)
# Print
cosimmr_1
# FFVB run
cosimmr_1_out <- cosimmr_ffvb(cosimmr_1)</pre>
# Print it
print(cosimmr_1_out)
# Summary
summary(cosimmr_1_out, type = "correlations")
summary(cosimmr_1_out, type = "statistics")
ans <- summary(cosimmr_1_out, type = c("quantiles", "statistics"))</pre>
# Plot
plot(cosimmr_1_out, type = "beta_boxplot", cov_name = "x")
plot(cosimmr_1_out, type = "beta_histogram", cov_name = "x")
```

cosimmr_load

Function to load in cosimmr data and check for errors

Description

This function takes in the mixture data, food source means and standard deviations, and (optionally) correction factor means and standard deviations, and concentration proportions. It performs some (non-exhaustive) checking of the data to make sure it will run through simmr. It outputs an object of class cosimmr_input.

Usage

```
cosimmr_load(
  formula,
  source_names,
  source_means,
  source_sds,
  correction_means = NULL,
  correction_sds = NULL,
```

```
concentration_means = NULL,
scale_x = TRUE
)
```

Arguments

formula	Formula giving in form $y \sim x$ where y is a vector or matrix of mixture values and x is a vector or matrix of covariates	
source_names	The names of the sources given as a character string	
source_means	The means of the source values, given as a matrix where the number of rows is the number of sources and the number of columns is the number of tracers	
source_sds	The standard deviations of the source values, given as a matrix where the number of rows is the number of sources and the number of columns is the number of tracers	
correction_mear	IS	
	The means of the correction values, given as a matrix where the number of rows is the number of sources and the number of columns is the number of tracers. If not provided these are set to 0.	
correction_sds	The standard deviations of the correction values, given as a matrix where the number of rows is the number of sources and the number of columns is the number of tracers. If not provided these are set to 0.	
concentration_means		
	The means of the concentration values, given as a matrix where the number of rows is the number of sources and the number of columns is the number of tracers. These should be between 0 and 1. If not provided these are all set to 1.	
scale_x	Whether or not you wish to scale the x values provided, or run the model using the original x values. Defaults to TRUE.	

Details

For standard stable isotope mixture modelling, the mixture matrix will contain a row for each individual and a column for each isotopic value. cosimmr will allow for any number of isotopes and any number of observations, within computational limits. The source means/sds should be provided for each food source on each isotope. The correction means (usually trophic enrichment factors) can be set as zero if required, and should be of the same shape as the source values. The concentration dependence means should be estimated values of the proportion of each element in the food source in question and should be given in proportion format between 0 and 1. At present there is no means to include concentration standard deviations.

Value

An object of class cosimmr_input with the following elements:

mixtures	The mixture data
source_names	Source means
sources_sds	Source standard deviations

correction_means		
	Correction means	
correction_sds	Correction standard deviations	
concentration means		
	Concentration dependence means	
n_obs	The number of observations	
n_tracers	The number of tracers/isotopes	
n_sources	The number of sources	
n_groups	The number of groups	

Author(s)

Emma Govan <emmagovan@gmail.com>, Andrew Parnell

See Also

See cosimmr_ffvb for complete examples.

Examples

```
# A simple example with 10 observations, 2 tracers and 4 sources
data(geese_data_day1)
simmr_1 <- with(
  geese_data_day1,
  cosimmr_load(
    formula = mixtures ~ 1,
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
    correction_sds = correction_sds,
    concentration_means = concentration_means,
    scale_x = TRUE
  )
)
```

```
print(simmr_1)
```

geese_data

Description

A real Geese data set with 251 observations on 2 isotopes, with 4 sources, and with corrections/trophic enrichment factors (TEFs or TDFs), and concentration dependence means. Taken from Inger et al (2016). See link for paper

Usage

geese_data

Format

A list with the following elements

mixtures A two column matrix containing delta 13C and delta 15N values respectively

source_names A character vector of the food source names

tracer_names A character vector of the tracer names (d13C, d15N, d34S)

source_means A matrix of source mean values for the tracers in the same order as mixtures above

source_sds A matrix of source sd values for the tracers in the same order as mixtures above

- correction_means A matrix of TEFs mean values for the tracers in the same order as mixtures above
- correction_sds A matrix of TEFs sd values for the tracers in the same order as mixtures above

concentration_means A matrix of concentration dependence mean values for the tracers in the same order as mixtures above

Source

<doi:10.1111/j.1365-2656.2006.01142.x>

geese_data_day1 A smaller version of the Geese stable isotope mixing data set

Description

A real Geese data set with 9 observations on 2 isotopes, with 4 sources, and with corrections/trophic enrichment factors (TEFs or TDFs), and concentration dependence means. Taken from Inger et al (2016). See link for paper

Usage

geese_data_day1

Format

A list with the following elements

mixtures A two column matrix containing delta 13C and delta 15N values respectively

source_names A character vector of the food source names

tracer_names A character vector of the tracer names (d13C, d15N, d34S)

source_means A matrix of source mean values for the tracers in the same order as mixtures above

- source_sds A matrix of source sd values for the tracers in the same order as mixtures above
- correction_means A matrix of TEFs mean values for the tracers in the same order as mixtures above
- correction_sds A matrix of TEFs sd values for the tracers in the same order as mixtures above
- **concentration_means** A matrix of concentration dependence mean values for the tracers in the same order as mixtures above ...

Source

<doi:10.1111/j.1365-2656.2006.01142.x>

iso_data

Isopod Data

Description

Isopod data from Galloway et al 2014. This dataset has 8 tracers (fatty acids), 30 individuals and 3 food sources. This dataset includes TDFs.

Usage

iso_data

Format

A list with the following elements

site A character vector with name of site for each individual

mixtures Data frame with 8 tracer values for 30 individuals

tracer_names character vector of tracer names

source_names character vector of food source names

source_means Data frame of source means with values for each food source on each tracer

source_sds Data frame of source sds with values for each food source on each tracer

n_sources numeric vector of number of each source obtained

correction_means Data frame of TDF means for each food source on each tracer

correction_sds Data frame of TDF sds for each food source on each tracer

Source

<doi:10.3354/meps10860>

plot.cosimmr_input *Plot the* cosimmr_input *data created from* cosimmr_load

Description

This function creates iso-space (AKA tracer-space or delta-space) plots. They are vital in determining whether the data are suitable for running in a SIMM.

Usage

```
## S3 method for class 'cosimmr_input'
plot(
    x,
    tracers = c(1, 2),
    title = "Tracers plot",
    xlab = colnames(x$mixtures)[tracers[1]],
    ylab = colnames(x$mixtures)[tracers[2]],
    sigmas = 1,
    mix_name = "Mixtures",
    colour = TRUE,
    colour_by_cov = FALSE,
    cov_name = NULL,
    ggargs = NULL,
    ...
)
```

Arguments

x	An object created via the function cosimmr_load
tracers	The choice of tracers to plot. If there are more than two tracers, it is recom- mended to plot every pair of tracers to determine whether the mixtures lie in the mixing polygon defined by the sources
title	A title for the graph
xlab	The x-axis label. By default this is assumed to be delta-13C but can be made richer if required. See examples below.
ylab	The y-axis label. By default this is assumed to be delta-15N in per mil but can be changed as with the x-axis label
sigmas	The number of standard deviations to plot on the source values. Defaults to 1.
mix_name	A optional string containing the name of the mixture objects, e.g. Geese.
colour	If TRUE (default) creates a plot. If not, puts the plot in black and white

colour_by_cov	if TRUE this allows users to colour the mixtures on the isospace plot by a spec- ified covariate. Defaults to FALSE
cov_name	The name of the covariate the user wishes to colour the mixture points on the plot by
ggargs	Extra arguments to be included in the ggplot (e.g. axis limits)
	Not used

Details

It is desirable to have the vast majority of the mixture observations to be inside the convex hull defined by the food sources. When there are more than two tracers (as in one of the examples below) it is recommended to plot all the different pairs of the food sources. See the vignette for further details of richer plots.

Value

isospace plot

Author(s)

Emma Govan <emmagovan@gmail.com>, Andrew Parnell

See Also

See plot.cosimmr_output for plotting the output of a simmr run. See cosimmr_ffvb for running a cosimmr object once the iso-space is deemed acceptable.

Examples

```
# A simple example with 10 observations, 4 food sources and 2 tracers
data(geese_data_day1)
cosimmr_1 <- with(</pre>
  geese_data_day1,
  cosimmr_load(
    formula = mixtures \sim c(1,2,3,2,3,1,2,3,1),
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
    correction_sds = correction_sds,
    concentration_means = concentration_means
  )
)
# Plot
plot(cosimmr_1)
### A more complicated example with 30 obs, 3 tracers and 4 sources
data(simmr_data_2)
cosimmr_3 <- with(</pre>
```

```
simmr_data_2,
  cosimmr_load(
    formula = mixtures ~ 1,
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
   correction_sds = correction_sds,
    concentration_means = concentration_means
  )
)
# Plot 3 times - first default d13C vs d15N
plot(cosimmr_3)
# Now plot d15N vs d34S
plot(cosimmr_3, tracers = c(2, 3))
# and finally d13C vs d34S
plot(cosimmr_3, tracers = c(1, 3))
```

plot.cosimmr_output *Plot different features of an object created from* cosimmr_ffvb.

Description

This function allows for 4 different types of plots of the simmr output created from cosimmr_ffvb. The types are: plot of beta values

Usage

```
## S3 method for class 'cosimmr_output'
plot(
  х,
  type = c("isospace", "beta_histogram", "beta_boxplot", "prop_histogram",
    "prop_density", "covariates_plot"),
  obs = 1,
  cov_name = NULL,
  binwidth = 0.05,
  alpha = 0.5,
  title = NULL,
  n_output = 3600,
  source = NULL,
  one_plot = FALSE,
  n_{pred} = 1000,
  . . .
)
```

Arguments

x	An object of class cosimmr_output created via cosimmr_ffvb.
type	The type of plot required. Can be one or more of 'isospace', 'beta_histogram', 'beta_boxplot', 'prob_histogram', 'prob_density', 'covariates_plot'
obs	The observation number you wish to plot
cov_name	The name of the covariate you wish to plot (for beta and covariates plot)
binwidth	The width of the bins for the histogram. Defaults to 0.05
alpha	The degree of transparency of the plots. Not relevant for matrix plots
title	The title of the plot.
n_output	The number of theta samples you wish to plot with. Defaults to 3600
source	The number or name of the source you wish to plot over for 'covariates_plot', defaults to NULL which means all sources are used
one_plot	Whether to plot line covariates plot on one plot. Defaults to FALSE
n_pred	Number of points to use when plotting line covariates plot. Defaults to 1000.
	Currently not used

Details

The matrix plot should form a necessary part of any SIMM analysis since it allows the user to judge which sources are identifiable by the model. Further detail about these plots is provided in the vignette.

Value

one or more of 'isospace', 'beta_histogram', 'beta_boxplot', 'prop_histogram', 'prop_density', or 'covariates_plot'

Author(s)

Emma Govan <emmagovan@gmail.com>, Andrew Parnell

See Also

See cosimmr_ffvb for creating objects suitable for this function, and many more examples. See also cosimmr_load for creating simmr objects, plot.cosimmr_input for creating isospace plots.

Examples

```
# A simple example with 10 observations, 2 tracers and 4 sources
# The data
data(geese_data_day1)
# Load into simmr
simmr_1 <- with(</pre>
```

```
geese_data_day1,
  cosimmr_load(
   formula = mixtures ~ 1,
   source_names = source_names,
   source_means = source_means,
   source_sds = source_sds,
   correction_means = correction_means,
   correction_sds = correction_sds,
    concentration_means = concentration_means
  )
)
# Plot
plot(simmr_1)
# FFVB run
simmr_1_out <- cosimmr_ffvb(simmr_1)</pre>
plot(simmr_1_out, type = c("isospace", "beta_hist"))
```

plot.cosimmr_pred_out *Plot different features of an object created from* cosimmr_ffvb.

Description

This function allows for 4 different types of plots of the simmr output created from cosimmr_ffvb. The types are: plot of beta values

Usage

```
## S3 method for class 'cosimmr_pred_out'
plot(
    x,
    type = c("beta_histogram", "beta_boxplot", "prop_obs", "prop_density"),
    obs = 1,
    cov_name = NULL,
    binwidth = 0.05,
    alpha = 0.5,
    title = NULL,
    n_output = 3600,
    ...
)
```

Arguments

х	An object of class cosimmr_output created via cosimmr_ffvb.
type	The type of plot required. Can be one or more of 'isospace', 'beta_histogram',
	'beta_boxplot', 'prob_histogram', 'prob_density', 'covariates_plot'

obs	The observation you wish to plot
cov_name	The name of the covariate you wish to plot (for beta and covariate plots)
binwidth	The width of the bins for the histogram. Defaults to 0.05
alpha	The degree of transparency of the plots. Not relevant for matrix plots
title	The title of the plot.
n_output	The number of theta samples you wish to plot with. Defaults to 3600
	Currently not used

Details

The matrix plot should form a necessary part of any SIMM analysis since it allows the user to judge which sources are identifiable by the model. Further detail about these plots is provided in the vignette.

Value

one or more of 'isospace', 'beta_histogram', 'beta_boxplot', 'prop_histogram', 'prop_density', or 'covariates_plot'

Author(s)

Emma Govan <emmagovan@gmail.com», Andrew Parnell

See Also

See cosimmr_ffvb for creating objects suitable for this function, and many more examples. See also cosimmr_load for creating simmr objects, plot.cosimmr_input for creating isospace plots.

Examples

```
# A simple example with 10 observations, 2 tracers and 4 sources
# The data
data(geese_data_day1)
# Load into simmr
cosimmr_1 <- with(</pre>
 geese_data_day1,
 cosimmr_load(
   formula = mixtures ~ 1,
   source_names = source_names,
   source_means = source_means,
    source_sds = source_sds,
   correction_means = correction_means,
   correction_sds = correction_sds,
   concentration_means = concentration_means
 )
)
```

posterior_predictive

```
# Plot
plot(cosimmr_1)
# FFVB run
cosimmr_1_out <- cosimmr_ffvb(cosimmr_1)
plot(cosimmr_1_out, type = c("isospace", "beta_hist"))</pre>
```

posterior_predictive Plot the posterior predictive distribution for a cosimmr run

Description

This function takes the output from cosimmr_ffvb and plots the posterior predictive distribution to enable visualisation of model fit. The simulated posterior predicted values are returned as part of the object and can be saved for external use

Usage

```
posterior_predictive(
   cosimmr_out,
   prob = 0.5,
   plot_ppc = TRUE,
   n_samples = 3600,
   sort_data = TRUE
)
```

Arguments

cosimmr_out	A run of the cosimmr model from cosimmr_ffvb.
prob	The probability interval for the posterior predictives. The default is 0.5 (i.e. 50pc intervals)
plot_ppc	Whether to create a bayesplot of the posterior predictive or not.
n_samples	The number of samples you wish to generate for y_pred. Defaults to 3600.
sort_data	Whether to order the data from lowest to highest predicted mean or not. Defaults to TRUE.

Value

plot of posterior predictives and simulated values

#' @author Emma Govan <emmagovan@gmail.com> Andrew Parnell

See Also

cosimmr_ffvb for creating objects suitable for this function

Examples

```
data(geese_data_day1)
cosimmr_1 <- with(</pre>
 geese_data_day1,
 cosimmr_load(
    formula = mixtures ~ c(1,2,3,2,1,2,3,2,1),
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
    correction_sds = correction_sds,
    concentration_means = concentration_means
 )
)
# Plot
plot(cosimmr_1)
# Print
cosimmr_1
# FFVB run
cosimmr_1_out <- cosimmr_ffvb(cosimmr_1)</pre>
# Prior predictive
post_pred <- posterior_predictive(cosimmr_1_out)</pre>
```

```
predict.cosimmr_output
```

Predicts proportion of each source in a mixture, based on values provided for covariates

Description

Predicts proportion of each source in a mixture, based on values provided for covariates

Usage

```
## S3 method for class 'cosimmr_output'
predict(object, x_pred, n_output = 3600, ...)
```

Arguments

- object An object of class cosimmr_output created via the function cosimmr_ffvb
- x_pred A data.frame of covariate values that the user wishes to predict source proportions for, provided in the same order that the original covariance matrix was. Important for this to be a data.frame otherwise numeric values can be set as characters and this causes incorrect calculations.

predict.cosimmr_output

n_output	the number of posterior samples to generate. Defaults to 3600.
	Other arguments (not used)

Value

object of class 'cosimmr_pred_out'

Author(s)

Emma Govan <emmagovan@gmail.com> Andrew Parnell

References

Andrew C. Parnell, Donald L. Phillips, Stuart Bearhop, Brice X. Semmens, Eric J. Ward, Jonathan W. Moore, Andrew L. Jackson, Jonathan Grey, David J. Kelly, and Richard Inger. Bayesian stable isotope mixing models. Environmetrics, 24(6):387–399, 2013.

See Also

cosimmr_load for creating objects suitable for this function, and plot.cosimmr_output for plotting output.

Examples

See the package vignette for a detailed run through of these 4 examples

```
# Data set 1: 10 obs on 2 isos, 4 sources, with tefs and concdep
data(geese_data_day1)
cov_1 = c(1,2,3,2,3,1,1,1,2)
simmr_1 <- with(</pre>
  geese_data_day1,
  cosimmr_load(
    formula = mixtures \sim cov_1,
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
    correction_sds = correction_sds,
    concentration_means = concentration_means
  )
)
# Plot
plot(simmr_1)
# Print
simmr_1
# FFVB run
simmr_1_out <- cosimmr_ffvb(simmr_1)</pre>
# Print it
```

```
print(simmr_1_out)
# Plot
plot(simmr_1_out, type = "isospace")
plot(simmr_1_out, type = "beta_histogram", cov_name = "cov_1")
x_pred = data.frame(cov_1 = c(1,5))
pred_array<-predict(simmr_1_out, x_pred)</pre>
```

print.cosimmr_input Print simmr input object

Description

Print simmr input object

Usage

```
## S3 method for class 'cosimmr_input'
print(x, ...)
```

Arguments

х	An object of class cosimmr_input
	Other arguments (not supported)
	#' @author Emma Govan <emmagovan@gmail.com> Andrew Parnell</emmagovan@gmail.com>

Value

A neat presentation of your simmr object.

See Also

cosimmr_load for creating objects suitable for this function

print.cosimmr_output Print a simmr output object

Description

Print a simmr output object

Usage

S3 method for class 'cosimmr_output'
print(x, ...)

Arguments

Х	An object of class cosimmr_output
• • •	Other arguments (not supported)

Value

Returns a neat summary of the object

See Also

cosimmr_ffvb for creating cosimmr_output objects

prior_viz

Plot the prior distribution for a cosimmr run

Description

This function takes the output from cosimmr_ffvb and plots the prior distribution to enable visual inspection. This can be used by itself or together with posterior_predictive to visually evaluate the influence of the prior on the posterior distribution.

Usage

```
prior_viz(
  cosimmr_out,
  plot = TRUE,
  include_posterior = TRUE,
  n_sims = 10000,
  scales = "free"
)
```

Arguments

cosimmr_out	A run of the cosimmr model from cosimmr_ffvb
plot	Whether to create a density plot of the prior or not. The simulated prior values are returned as part of the object
include_posterior	
	Whether to include the posterior distribution on top of the priors. Defaults to TRUE. The posterior returned is of the mean value of covariates
n_sims	The number of simulations from the prior distribution
scales	The type of scale from facet_wrap allowing for fixed, free, free_x, free_y

Value

A list containing plot: the ggplot object (useful if requires customisation), and sim: the simulated prior values which can be compared with the posterior densities

#' @author Emma Govan <emmagovan@gmail.com> Andrew Parnell

See Also

cosimmr_ffvb for creating objects suitable for this function

Examples

```
data(geese_data_day1)
cosimmr_1 <- with(</pre>
  geese_data_day1,
  cosimmr_load(
    formula = mixtures \sim 1,
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
    correction_sds = correction_sds,
    concentration_means = concentration_means
 )
)
# Plot
plot(cosimmr_1)
# Print
cosimmr_1
# FFVB run
cosimmr_1_out <- cosimmr_ffvb(cosimmr_1)</pre>
# Prior predictive
prior <- prior_viz(cosimmr_1_out)</pre>
head(prior$p_prior_sim)
summary(prior$p_prior_sim)
```

simmr_data_1

Description

A simple fake data set with 10 observations on 2 isotopes, with 4 sources, and with corrections/trophic enrichment factors (TEFs or TDFs), and concentration dependence means

Usage

simmr_data_1

Format

A list with the following elements

mixtures A two column matrix containing delta 13C and delta 15N values respectively

source_names A character vector of the food source names

tracer_names A character vector of the tracer names (d13C and d15N)

source_means A matrix of source mean values for the tracers in the same order as mixtures above

source_sds A matrix of source sd values for the tracers in the same order as mixtures above

correction_means A matrix of TEFs mean values for the tracers in the same order as mixtures above

correction_sds A matrix of TEFs sd values for the tracers in the same order as mixtures above

concentration_means A matrix of concentration dependence mean values for the tracers in the same order as mixtures above

simmr_data_2 A 3-isotope fake stable isotope mixing data set

Description

A fake data set with 30 observations on 3 isotopes, with 4 sources, and with corrections/trophic enrichment factors (TEFs or TDFs), and concentration dependence means

Usage

simmr_data_2

Format

A list with the following elements

mixtures A three column matrix containing delta 13C, delta 15N, and delta 34S values respectively **source names** A character vector of the food source names

tracer_names A character vector of the tracer names (d13C, d15N, d34S)

source_means A matrix of source mean values for the tracers in the same order as mixtures above

source_sds A matrix of source sd values for the tracers in the same order as mixtures above

correction_means A matrix of TEFs mean values for the tracers in the same order as mixtures above

correction_sds A matrix of TEFs sd values for the tracers in the same order as mixtures above concentration_means A matrix of concentration dependence mean values for the tracers in the same order as mixtures above

square_data

An artificial data set used to indicate effect of priors

Description

A fake box data set identified by Fry (2014) as a failing of SIMMs See the link for more interpretation of these data and the output

Usage

square_data

Format

A list with the following elements

mixtures A two column matrix containing delta 13C and delta 15N values respectively

source_names A character vector of the food source names

tracer_names A character vector of the tracer names (d13C, d15N)

source_means A matrix of source mean values for the tracers in the same order as mixtures above

source_sds A matrix of source sd values for the tracers in the same order as mixtures above

- correction_means A matrix of TEFs mean values for the tracers in the same order as mixtures above
- correction_sds A matrix of TEFs sd values for the tracers in the same order as mixtures above

concentration_means A matrix of concentration dependence mean values for the tracers in the same order as mixtures above

Source

<doi:10.3354/meps10535>

summary.cosimmr_output

Summarises the output created with cosimmr_ffvb

Description

Produces textual summaries and convergence diagnostics for an object created with cosimmr_ffvb. The different options are: 'quantiles' which produces credible intervals for the parameters, 'statistics' which produces means and standard deviations, and 'correlations' which produces correlations between the parameters.

Usage

```
## S3 method for class 'cosimmr_output'
summary(
   object,
   type = c("quantiles", "statistics", "correlations"),
   obs = 1,
   ...
)
```

Arguments

object	An object of class cosimmr_output produced by the function cosimmr_ffvb
type	The type of output required. At least none of quantiles', 'statistics', or 'correla- tions'.
obs	The observation to generate a summary for. Defaults to 1.
	Not used

Details

The quantile output allows easy calculation of 95 per cent credible intervals of the posterior dietary proportions. The correlations allow the user to judge which sources are non-identifiable.

Value

A list containing the following components:

quantiles	The quantiles of each parameter from the posterior distribution
statistics	The means and standard deviations of each parameter
correlations	The posterior correlations between the parameters

Note that this object is reported silently so will be discarded unless the function is called with an object as in the example below.

Author(s)

Emma Govan <emmagovan@gmail.com> Andrew Parnell

See Also

See cosimmr_ffvbfor creating objects suitable for this function, and many more examples. See also cosimmr_load for creating cosimmr objects, plot.cosimmr_input for creating isospace plots, plot.cosimmr_output for plotting output.

Examples

```
\ensuremath{\texttt{\#}}\xspace A simple example with 10 observations, 2 tracers and 4 sources
```

```
# The data
data(geese_data_day1)
cosimmr_1 <- with(</pre>
  geese_data_day1,
  cosimmr_load(
    formula = mixtures \sim 1,
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
    correction_sds = correction_sds,
    concentration_means = concentration_means
  )
)
# Plot
plot(cosimmr_1)
# FFVB run
cosimmr_1_out <- cosimmr_ffvb(cosimmr_1)</pre>
# Summarise
summary(cosimmr_1_out) # This outputs all the summaries
summary(cosimmr_1_out, type = "quantiles") # Just the diagnostics
# Store the output in an
ans <- summary(cosimmr_1_out,</pre>
  type = c("quantiles", "statistics")
)
```

summary.cosimmr_pred_out

Summarises the output created with cosimmr_ffvb

Description

Produces textual summaries and convergence diagnostics for an object created with cosimmr_ffvb. The different options are: 'quantiles' which produces credible intervals for the parameters, 'statistics' which produces means and standard deviations, and 'correlations' which produces correlations between the parameters.

Usage

```
## S3 method for class 'cosimmr_pred_out'
summary(
   object,
   type = c("quantiles", "statistics", "correlations"),
   obs = 1,
   ...
)
```

Arguments

object	An object of class $cosimmr_pred_output$ produced by the function $predict.cosimmr_output$
type	The type of output required. At least none of quantiles', 'statistics', or 'correla- tions'.
obs	The observation to generate a summary for. Defaults to 1.
	Not used

Details

The quantile output allows easy calculation of 95 per cent credible intervals of the posterior dietary proportions. The correlations allow the user to judge which sources are non-identifiable.

Value

A list containing the following components:

quantiles	The quantiles of each parameter from the posterior distribution
statistics	The means and standard deviations of each parameter
correlations	The posterior correlations between the parameters

Note that this object is reported silently so will be discarded unless the function is called with an object as in the example below.

Author(s)

Emma Govan <emmagovan@gmail.com> Andrew Parnell

See Also

See cosimmr_ffvbfor creating objects suitable for this function, and many more examples. See also cosimmr_load for creating cosimmr objects, plot.cosimmr_input for creating isospace plots, plot.cosimmr_output for plotting output.

Examples

```
# A simple example with 10 observations, 2 tracers and 4 sources
# The data
data(geese_data_day1)
cosimmr_1 <- with(</pre>
  geese_data_day1,
  cosimmr_load(
    formula = mixtures ~ c(1,2,3,3,2,3,1,2,1),
    source_names = source_names,
    source_means = source_means,
    source_sds = source_sds,
    correction_means = correction_means,
    correction_sds = correction_sds,
    concentration_means = concentration_means
  )
)
# Plot
plot(cosimmr_1)
# FFVB run
cosimmr_1_out <- cosimmr_ffvb(cosimmr_1)</pre>
# Summarise
summary(cosimmr_1_out) # This outputs all the summaries
summary(cosimmr_1_out, type = "quantiles") # Just the diagnostics
# Store the output in ans
ans <- summary(cosimmr_1_out,</pre>
  type = c("quantiles", "statistics")
)
```

Index

```
* datasets
    alligator_data, 2
    cladocera_data, 3
    geese_data, 9
    geese_data_day1, 9
    iso_data, 10
    simmr_data_1, 23
    simmr_data_2, 23
    square_data, 24
alligator_data, 2
cladocera_data, 3
cosimmr, 4
cosimmr-package (cosimmr), 4
cosimmr_ffvb, 4, 8, 12-18, 21, 22, 25-27
cosimmr_load, 4, 5, 6, 11, 14, 16, 19, 20, 26,
        27
geese_data, 9
geese_data_day1,9
iso_data, 10
plot.cosimmr_input, 5, 11, 14, 16, 26, 27
plot.cosimmr_output, 4, 5, 12, 13, 19, 26, 27
plot.cosimmr_pred_out, 15
posterior_predictive, 17, 21
predict.cosimmr_output, 18, 27
print.cosimmr_input, 20
print.cosimmr_output, 21
prior_viz, 21
simmr_data_1, 23
simmr_data_2, 23
square_data, 24
summary.cosimmr_output, 5, 25
summary.cosimmr_pred_out, 26
```