Title: | Efficient Estimation of Covariance and (Partial) Correlation |
---|---|
Description: | Implements a James-Stein-type shrinkage estimator for the covariance matrix, with separate shrinkage for variances and correlations. The details of the method are explained in Schafer and Strimmer (2005) <DOI:10.2202/1544-6115.1175> and Opgen-Rhein and Strimmer (2007) <DOI:10.2202/1544-6115.1252>. The approach is both computationally as well as statistically very efficient, it is applicable to "small n, large p" data, and always returns a positive definite and well-conditioned covariance matrix. In addition to inferring the covariance matrix the package also provides shrinkage estimators for partial correlations and partial variances. The inverse of the covariance and correlation matrix can be efficiently computed, as well as any arbitrary power of the shrinkage correlation matrix. Furthermore, functions are available for fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and positive definiteness of a matrix. |
Authors: | Juliane Schafer, Rainer Opgen-Rhein, Verena Zuber, Miika Ahdesmaki, A. Pedro Duarte Silva, and Korbinian Strimmer. |
Maintainer: | Korbinian Strimmer <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.6.10 |
Built: | 2024-11-13 06:22:58 UTC |
Source: | CRAN |
This package implements a James-Stein-type shrinkage estimator for the covariance matrix, with separate shrinkage for variances and correlations. The details of the method are explained in Sch\"afer and Strimmer (2005) <DOI:10.2202/1544-6115.1175> and Opgen-Rhein and Strimmer (2007) <DOI:10.2202/1544-6115.1252>. The approach is both computationally as well as statistically very efficient, it is applicable to “small n, large p” data, and always returns a positive definite and well-conditioned covariance matrix. In addition to inferring the covariance matrix the package also provides shrinkage estimators for partial correlations, partial variances, and regression coefficients. The inverse of the covariance and correlation matrix can be efficiently computed, and as well as any arbitrary power of the shrinkage correlation matrix. Furthermore, functions are available for fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and positive definiteness of a matrix.
The name of the package refers to correlations and partial correlations.
Juliane Sch\"afer, Rainer Opgen-Rhein, Verena Zuber, Miika Ahdesm\"aki, A. Pedro Duarte Silva, and Korbinian Strimmer (https://strimmerlab.github.io/)
See website: https://strimmerlab.github.io/software/corpcor/
cov.shrink, invcov.shrink, powcor.shrink, pcor.shrink,
fast.svd.
cor2pcor
computes the pairwise
partial correlation coefficients from either a correlation
or a covariance matrix.
pcor2cor
takes either a partial correlation matrix or
a partial covariance matrix as input,
and computes from it the corresponding correlation matrix.
cor2pcor(m, tol) pcor2cor(m, tol)
cor2pcor(m, tol) pcor2cor(m, tol)
m |
covariance matrix or (partial) correlation matrix |
tol |
tolerance - singular values larger than
tol are considered non-zero (default value:
|
The partial correlations are the negative standardized concentrations (which in turn are the off-diagonal elements of the inverse correlation or covariance matrix). In graphical Gaussian models the partial correlations represent the direct interactions between two variables, conditioned on all remaining variables.
In the above functions the pseudoinverse
is employed
for inversion - hence even singular covariances (with some
zero eigenvalues) may be used. However, a better option may be to
estimate a positive definite covariance matrix using
cov.shrink
.
Note that for efficient computation of partial correlation coefficients from
data x
it is advised to use pcor.shrink(x)
and not
cor2pcor(cor.shrink(x))
.
A matrix with the pairwise partial correlation coefficients
(cor2pcor
) or with pairwise
correlations (pcor2cor
).
Korbinian Strimmer (https://strimmerlab.github.io).
Whittaker J. 1990. Graphical Models in Applied Multivariate Statistics. John Wiley, Chichester.
decompose.invcov
, pcor.shrink
, pseudoinverse
.
# load corpcor library library("corpcor") # covariance matrix m.cov = rbind( c(3,1,1,0), c(1,3,0,1), c(1,0,2,0), c(0,1,0,2) ) m.cov # corresponding correlation matrix m.cor.1 = cov2cor(m.cov) m.cor.1 # compute partial correlations (from covariance matrix) m.pcor.1 = cor2pcor(m.cov) m.pcor.1 # compute partial correlations (from correlation matrix) m.pcor.2 = cor2pcor(m.cor.1) m.pcor.2 zapsmall( m.pcor.1 ) == zapsmall( m.pcor.2 ) # backtransformation m.cor.2 = pcor2cor(m.pcor.1) m.cor.2 zapsmall( m.cor.1 ) == zapsmall( m.cor.2 )
# load corpcor library library("corpcor") # covariance matrix m.cov = rbind( c(3,1,1,0), c(1,3,0,1), c(1,0,2,0), c(0,1,0,2) ) m.cov # corresponding correlation matrix m.cor.1 = cov2cor(m.cov) m.cor.1 # compute partial correlations (from covariance matrix) m.pcor.1 = cor2pcor(m.cov) m.pcor.1 # compute partial correlations (from correlation matrix) m.pcor.2 = cor2pcor(m.cor.1) m.pcor.2 zapsmall( m.pcor.1 ) == zapsmall( m.pcor.2 ) # backtransformation m.cor.2 = pcor2cor(m.pcor.1) m.cor.2 zapsmall( m.cor.1 ) == zapsmall( m.cor.2 )
The functions var.shrink
, cor.shrink
, and cov.shrink
compute
shrinkage estimates of variance, correlation, and covariance, respectively.
var.shrink(x, lambda.var, w, verbose=TRUE) cor.shrink(x, lambda, w, verbose=TRUE) cov.shrink(x, lambda, lambda.var, w, verbose=TRUE)
var.shrink(x, lambda.var, w, verbose=TRUE) cor.shrink(x, lambda, w, verbose=TRUE) cov.shrink(x, lambda, lambda.var, w, verbose=TRUE)
x |
a data matrix |
lambda |
the correlation shrinkage intensity (range 0-1).
If |
lambda.var |
the variance shrinkage intensity (range 0-1).
If |
w |
optional: weights for each data point - if not specified uniform weights are assumed
( |
verbose |
output some status messages while computing (default: TRUE) |
var.shrink
computes the empirical variance of each considered random variable,
and shrinks them towards their median. The shrinkage intensity is estimated using
estimate.lambda.var
(Opgen-Rhein and Strimmer 2007).
Similarly cor.shrink
computes a shrinkage estimate of the correlation matrix by
shrinking the empirical correlations towards the identity matrix.
In this case the shrinkage intensity is computed using estimate.lambda
(Sch\"afer and Strimmer 2005).
In comparison with the standard empirical estimates
(var
, cov
, and cor
) the shrinkage estimates exhibit
a number of favorable properties. For instance,
they are typically much more efficient, i.e. they show (sometimes dramatically) better mean squared error,
the estimated covariance and correlation matrices are always positive definite and well conditioned (so that there are no numerical problems when computing their inverse),
they are inexpensive to compute, and
they are fully automatic and do not require any tuning parameters (as the shrinkage intensity is analytically estimated from the data), and
they assume nothing about the underlying distributions, except for the existence of the first two moments.
These properties also carry over to derived quantities, such as partial variances and
partial correlations (pvar.shrink
and pcor.shrink
).
As an extra benefit, the shrinkage estimators have a form that can be very efficiently inverted,
especially if the number of variables is large and the sample size is small. Thus, instead of
inverting the matrix output by cov.shrink
and cor.shrink
please use the functions
invcov.shrink
and invcor.shrink
, respectively.
var.shrink
returns a vector with estimated variances.
cov.shrink
returns a covariance matrix.
cor.shrink
returns the corresponding correlation matrix.
Juliane Sch\"afer, Rainer Opgen-Rhein, and Korbinian Strimmer (https://strimmerlab.github.io).
Opgen-Rhein, R., and K. Strimmer. 2007. Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Statist. Appl. Genet. Mol. Biol. 6:9. <DOI:10.2202/1544-6115.1252>
Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-6115.1175>
invcov.shrink
, pcor.shrink
, cor2pcor
# load corpcor library library("corpcor") # small n, large p p = 100 n = 20 # generate random pxp covariance matrix sigma = matrix(rnorm(p*p),ncol=p) sigma = crossprod(sigma)+ diag(rep(0.1, p)) # simulate multinormal data of sample size n sigsvd = svd(sigma) Y = t(sigsvd$v %*% (t(sigsvd$u) * sqrt(sigsvd$d))) X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y # estimate covariance matrix s1 = cov(X) s2 = cov.shrink(X) # squared error sum((s1-sigma)^2) sum((s2-sigma)^2) # compare positive definiteness is.positive.definite(sigma) is.positive.definite(s1) is.positive.definite(s2) # compare ranks and condition rank.condition(sigma) rank.condition(s1) rank.condition(s2) # compare eigenvalues e0 = eigen(sigma, symmetric=TRUE)$values e1 = eigen(s1, symmetric=TRUE)$values e2 = eigen(s2, symmetric=TRUE)$values m = max(e0, e1, e2) yl = c(0, m) par(mfrow=c(1,3)) plot(e1, main="empirical") plot(e2, ylim=yl, main="full shrinkage") plot(e0, ylim=yl, main="true") par(mfrow=c(1,1))
# load corpcor library library("corpcor") # small n, large p p = 100 n = 20 # generate random pxp covariance matrix sigma = matrix(rnorm(p*p),ncol=p) sigma = crossprod(sigma)+ diag(rep(0.1, p)) # simulate multinormal data of sample size n sigsvd = svd(sigma) Y = t(sigsvd$v %*% (t(sigsvd$u) * sqrt(sigsvd$d))) X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y # estimate covariance matrix s1 = cov(X) s2 = cov.shrink(X) # squared error sum((s1-sigma)^2) sum((s2-sigma)^2) # compare positive definiteness is.positive.definite(sigma) is.positive.definite(s1) is.positive.definite(s2) # compare ranks and condition rank.condition(sigma) rank.condition(s1) rank.condition(s2) # compare eigenvalues e0 = eigen(sigma, symmetric=TRUE)$values e1 = eigen(s1, symmetric=TRUE)$values e2 = eigen(s2, symmetric=TRUE)$values m = max(e0, e1, e2) yl = c(0, m) par(mfrow=c(1,3)) plot(e1, main="empirical") plot(e2, ylim=yl, main="full shrinkage") plot(e0, ylim=yl, main="true") par(mfrow=c(1,1))
fast.svd
returns the singular value decomposition of
a rectangular real matrix
where and
are orthogonal matrices with
and
, and
is a diagonal matrix containing the
singular values (see
svd
).
The main difference to the native version svd
is that
fast.svd
is substantially faster for "fat" (small n, large p)
and "thin" (large n, small p) matrices.
In this case the decomposition of can be
greatly sped up by first computing the SVD of either
(fat matrices) or
(thin matrices), rather than that of
.
A second difference to svd
is that fast.svd
only
returns the positive singular values (thus the dimension of
always equals the rank of
). Note that the singular
vectors computed by
fast.svd
may differ in sign from those computed
by svd
.
fast.svd(m, tol)
fast.svd(m, tol)
m |
matrix |
tol |
tolerance - singular values larger than
tol are considered non-zero (default value:
|
For "fat" (small n, large p) the SVD decomposition of
yields
As the matrix has dimension n x n only, this is faster to compute
than SVD of
. The
matrix is subsequently obtained by
Similarly, for "thin" (large n, small p), the decomposition of
yields
which is also quick to compute as has only dimension p x p. The
matrix is then computed via
A list with the following components:
d |
a vector containing the positive singular values |
u |
a matrix with the corresponding left singular vectors |
v |
a matrix with the corresponding right singular vectors |
Korbinian Strimmer (https://strimmerlab.github.io).
# load corpcor library library("corpcor") # generate a "fat" data matrix n = 50 p = 5000 X = matrix(rnorm(n*p), n, p) # compute SVD system.time( (s1 = svd(X)) ) system.time( (s2 = fast.svd(X)) ) eps = 1e-10 sum(abs(s1$d-s2$d) > eps) sum(abs(abs(s1$u)-abs(s2$u)) > eps) sum(abs(abs(s1$v)-abs(s2$v)) > eps)
# load corpcor library library("corpcor") # generate a "fat" data matrix n = 50 p = 5000 X = matrix(rnorm(n*p), n, p) # compute SVD system.time( (s1 = svd(X)) ) system.time( (s2 = fast.svd(X)) ) eps = 1e-10 sum(abs(s1$d-s2$d) > eps) sum(abs(abs(s1$u)-abs(s2$u)) > eps) sum(abs(abs(s1$v)-abs(s2$v)) > eps)
The functions invcov.shrink
and invcor.shrink
implement an
algorithm to efficiently compute
the inverses of shrinkage estimates of covariance (cov.shrink
)
and correlation (cor.shrink
).
invcov.shrink(x, lambda, lambda.var, w, verbose=TRUE) invcor.shrink(x, lambda, w, verbose=TRUE)
invcov.shrink(x, lambda, lambda.var, w, verbose=TRUE) invcor.shrink(x, lambda, w, verbose=TRUE)
x |
a data matrix |
lambda |
the correlation shrinkage intensity (range 0-1).
If |
lambda.var |
the variance shrinkage intensity (range 0-1).
If |
w |
optional: weights for each data point - if not specified uniform weights are assumed
( |
verbose |
output status while computing (default: TRUE) |
Both invcov.shrink
and invcor.shrink
rely on
powcor.shrink
. This allows to compute the inverses in
a very efficient fashion (much more efficient than directly inverting
the matrices - see the example).
invcov.shrink
returns the inverse of the output from cov.shrink
.
invcor.shrink
returns the inverse of the output from cor.shrink
.
Juliane Sch\"afer and Korbinian Strimmer (https://strimmerlab.github.io).
Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-6115.1175>
powcor.shrink
, cov.shrink
, pcor.shrink
, cor2pcor
# load corpcor library library("corpcor") # generate data matrix p = 500 n = 10 X = matrix(rnorm(n*p), nrow = n, ncol = p) lambda = 0.23 # some arbitrary lambda # slow system.time( (W1 = solve(cov.shrink(X, lambda))) ) # very fast system.time( (W2 = invcov.shrink(X, lambda)) ) # no difference sum((W1-W2)^2)
# load corpcor library library("corpcor") # generate data matrix p = 500 n = 10 X = matrix(rnorm(n*p), nrow = n, ncol = p) lambda = 0.23 # some arbitrary lambda # slow system.time( (W1 = solve(cov.shrink(X, lambda))) ) # very fast system.time( (W2 = invcov.shrink(X, lambda)) ) # no difference sum((W1-W2)^2)
mpower
computes , i.e.
the
alpha
-th power of the real symmetric
matrix m
.
mpower(m, alpha, pseudo=FALSE, tol)
mpower(m, alpha, pseudo=FALSE, tol)
m |
a real-valued symmetric matrix. |
alpha |
exponent. |
pseudo |
if |
tol |
tolerance - eigenvalues with absolute value smaller or equal
to |
The matrix power of m
is obtained by first computing the spectral
decomposition of m
, and subsequent modification of the resulting eigenvalues.
Note that m
is assumed to by symmetric, and only
its lower triangle (diagonal included) is used in eigen
.
For computing the matrix power of cor.shrink
use
the vastly more efficient function powcor.shrink
.
mpower
returns
a matrix of the same dimensions as m
.
Korbinian Strimmer (https://strimmerlab.github.io).
# load corpcor library library("corpcor") # generate symmetric matrix p = 10 n = 20 X = matrix(rnorm(n*p), nrow = n, ncol = p) m = cor(X) m %*% m mpower(m, 2) solve(m) mpower(m, -1) msq = mpower(m, 0.5) msq %*% msq m mpower(m, 1.234)
# load corpcor library library("corpcor") # generate symmetric matrix p = 10 n = 20 X = matrix(rnorm(n*p), nrow = n, ncol = p) m = cor(X) m %*% m mpower(m, 2) solve(m) mpower(m, -1) msq = mpower(m, 0.5) msq %*% msq m mpower(m, 1.234)
The functions pcor.shrink
and pvar.shrink
compute shrinkage estimates
of partial correlation and partial variance, respectively.
pcor.shrink(x, lambda, w, verbose=TRUE) pvar.shrink(x, lambda, lambda.var, w, verbose=TRUE)
pcor.shrink(x, lambda, w, verbose=TRUE) pvar.shrink(x, lambda, lambda.var, w, verbose=TRUE)
x |
a data matrix |
lambda |
the correlation shrinkage intensity (range 0-1).
If |
lambda.var |
the variance shrinkage intensity (range 0-1).
If |
w |
optional: weights for each data point - if not specified uniform weights
are assumed ( |
verbose |
report progress while computing (default: TRUE) |
The partial variance is the variance of
conditioned on the
remaining variables. It equals the inverse of the corresponding diagonal entry
of the precision matrix (see Whittaker 1990).
The partial correlations is the correlation between
and
conditioned on the remaining variables. It equals the sign-reversed
entries of the off-diagonal entries of the precision matrix, standardized
by the the squared root of the associated inverse partial variances.
Note that using pcor.shrink(x)
much faster than
cor2pcor(cor.shrink(x))
.
For details about the shrinkage procedure consult Sch\"afer and Strimmer (2005),
Opgen-Rhein and Strimmer (2007), and the help page of cov.shrink
.
pcor.shrink
returns the partial correlation matrix. Attached to this
matrix are the standardized partial variances (i.e. PVAR/VAR) that
can be retrieved using attr
under the attribute "spv".
pvar.shrink
returns the partial variances.
Juliane Sch\"afer and Korbinian Strimmer (https://strimmerlab.github.io).
Opgen-Rhein, R., and K. Strimmer. 2007. Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Statist. Appl. Genet. Mol. Biol. 6:9. <DOI:10.2202/1544-6115.1252>
Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-6115.1175>
Whittaker J. 1990. Graphical Models in Applied Multivariate Statistics. John Wiley, Chichester.
invcov.shrink
, cov.shrink
, cor2pcor
# load corpcor library library("corpcor") # generate data matrix p = 50 n = 10 X = matrix(rnorm(n*p), nrow = n, ncol = p) # partial variance pv = pvar.shrink(X) pv # partial correlations (fast and recommend way) pcr1 = pcor.shrink(X) # other possibilities to estimate partial correlations pcr2 = cor2pcor( cor.shrink(X) ) # all the same sum((pcr1 - pcr2)^2)
# load corpcor library library("corpcor") # generate data matrix p = 50 n = 10 X = matrix(rnorm(n*p), nrow = n, ncol = p) # partial variance pv = pvar.shrink(X) pv # partial correlations (fast and recommend way) pcr1 = pcor.shrink(X) # other possibilities to estimate partial correlations pcr2 = cor2pcor( cor.shrink(X) ) # all the same sum((pcr1 - pcr2)^2)
The function powcor.shrink
efficiently computes the alpha
-th power
of the shrinkage correlation matrix produced by cor.shrink
.
For instance, this function may be used for fast computation of the (inverse) square root of the shrinkage correlation matrix (needed, e.g., for decorrelation).
crossprod.powcor.shrink
efficiently computes without
actually computing the full matrix
.
powcor.shrink(x, alpha, lambda, w, verbose=TRUE) crossprod.powcor.shrink(x, y, alpha, lambda, w, verbose=TRUE)
powcor.shrink(x, alpha, lambda, w, verbose=TRUE) crossprod.powcor.shrink(x, y, alpha, lambda, w, verbose=TRUE)
x |
a data matrix |
y |
a matrix, the number of rows of y must be the same as the number of columns of x |
alpha |
exponent |
lambda |
the correlation shrinkage intensity (range 0-1).
If |
w |
optional: weights for each data point - if not specified uniform weights are assumed
( |
verbose |
output status while computing (default: TRUE) |
This function employs a special matrix identity to speed up the computation of the matrix power of the shrinkage correlation matrix (see Zuber and Strimmer 2009 for details).
Apart from a scaling factor the shrinkage correlation matrix computed
by cor.shrink
takes
on the form
where V M V^T
is a multiple of the empirical correlation matrix.
Crucially, Z
is a matrix of size p
times p
whereas M
is a potentially much smaller matrix of size m
times m
,
where m
is the rank of the empirical correlation matrix.
In order to calculate the alpha
-th power of Z
the function uses the identity
requiring only the computation of the alpha
-th power of the m
by m
matrix
. This trick enables substantial computational savings especially when the number
of observations is much smaller than the number of variables.
Note that the above identity is related but not identical to the Woodbury matrix
identity for inversion of a matrix.
For the above identity reduces to
whereas the Woodbury matrix identity equals
powcor.shrink
returns a matrix of the same size as the correlation matrix R
crossprod.powcor.shrink
returns a matrix of the same size as R
y
.
Verena Zuber, A. Pedro Duarte Silva, and Korbinian Strimmer (https://strimmerlab.github.io).
Zuber, V., and K. Strimmer. 2009. Gene ranking and biomarker discovery under correlation. Bioinformatics 25:2700-2707. <DOI:10.1093/bioinformatics/btp460>
Zuber, V., A. P. Duarte Silva, and K. Strimmer. 2012. A novel algorithm for simultaneous SNP selection in high-dimensional genome-wide association studies. BMC Bioinformatics 13: 284 <DOI:10.1186/1471-2105-13-284>
invcor.shrink
, cor.shrink
, mpower
.
# load corpcor library library("corpcor") # generate data matrix p = 500 n = 10 X = matrix(rnorm(n*p), nrow = n, ncol = p) lambda = 0.23 # some arbitrary lambda ### computing the inverse ### # slow system.time( (W1 = solve(cor.shrink(X, lambda=lambda))) ) # very fast system.time( (W2 = powcor.shrink(X, alpha=-1, lambda=lambda)) ) # no difference sum((W1-W2)^2) ### computing the square root ### system.time( (W1 = mpower(cor.shrink(X, lambda=lambda), alpha=0.5)) ) # very fast system.time( (W2 = powcor.shrink(X, alpha=0.5, lambda=lambda)) ) # no difference sum((W1-W2)^2) ### computing an arbitrary power (alpha=1.23) ### system.time( (W1 = mpower(cor.shrink(X, lambda=lambda), alpha=1.23)) ) # very fast system.time( (W2 = powcor.shrink(X, alpha=1.23, lambda=lambda)) ) # no difference sum((W1-W2)^2) ### fast computation of cross product y = rnorm(p) system.time( (CP1 = crossprod(powcor.shrink(X, alpha=1.23, lambda=lambda), y)) ) system.time( (CP2 = crossprod.powcor.shrink(X, y, alpha=1.23, lambda=lambda)) ) # no difference sum((CP1-CP2)^2)
# load corpcor library library("corpcor") # generate data matrix p = 500 n = 10 X = matrix(rnorm(n*p), nrow = n, ncol = p) lambda = 0.23 # some arbitrary lambda ### computing the inverse ### # slow system.time( (W1 = solve(cor.shrink(X, lambda=lambda))) ) # very fast system.time( (W2 = powcor.shrink(X, alpha=-1, lambda=lambda)) ) # no difference sum((W1-W2)^2) ### computing the square root ### system.time( (W1 = mpower(cor.shrink(X, lambda=lambda), alpha=0.5)) ) # very fast system.time( (W2 = powcor.shrink(X, alpha=0.5, lambda=lambda)) ) # no difference sum((W1-W2)^2) ### computing an arbitrary power (alpha=1.23) ### system.time( (W1 = mpower(cor.shrink(X, lambda=lambda), alpha=1.23)) ) # very fast system.time( (W2 = powcor.shrink(X, alpha=1.23, lambda=lambda)) ) # no difference sum((W1-W2)^2) ### fast computation of cross product y = rnorm(p) system.time( (CP1 = crossprod(powcor.shrink(X, alpha=1.23, lambda=lambda), y)) ) system.time( (CP2 = crossprod.powcor.shrink(X, y, alpha=1.23, lambda=lambda)) ) # no difference sum((CP1-CP2)^2)
The standard definition for the inverse of a matrix fails if the matrix is not square or singular. However, one can generalize the inverse using singular value decomposition. Any rectangular real matrix M can be decomposed as
where U and V are orthogonal, V' means V transposed, and
D is a diagonal matrix containing only the positive singular values
(as determined by tol
, see also fast.svd
).
The pseudoinverse, also known as Moore-Penrose or generalized inverse is then obtained as
pseudoinverse(m, tol)
pseudoinverse(m, tol)
m |
matrix |
tol |
tolerance - singular values larger than
tol are considered non-zero (default value:
|
The pseudoinverse has the property that the sum of the squares of all
the entries in iM %*% M - I
, where I is an appropriate
identity matrix, is minimized. For non-singular matrices the
pseudoinverse is equivalent to the standard inverse.
A matrix (the pseudoinverse of m).
Korbinian Strimmer (https://strimmerlab.github.io).
# load corpcor library library("corpcor") # a singular matrix m = rbind( c(1,2), c(1,2) ) # not possible to invert exactly try(solve(m)) # pseudoinverse p = pseudoinverse(m) p # characteristics of the pseudoinverse zapsmall( m %*% p %*% m ) == zapsmall( m ) zapsmall( p %*% m %*% p ) == zapsmall( p ) zapsmall( p %*% m ) == zapsmall( t(p %*% m ) ) zapsmall( m %*% p ) == zapsmall( t(m %*% p ) ) # example with an invertable matrix m2 = rbind( c(1,1), c(1,0) ) zapsmall( solve(m2) ) == zapsmall( pseudoinverse(m2) )
# load corpcor library library("corpcor") # a singular matrix m = rbind( c(1,2), c(1,2) ) # not possible to invert exactly try(solve(m)) # pseudoinverse p = pseudoinverse(m) p # characteristics of the pseudoinverse zapsmall( m %*% p %*% m ) == zapsmall( m ) zapsmall( p %*% m %*% p ) == zapsmall( p ) zapsmall( p %*% m ) == zapsmall( t(p %*% m ) ) zapsmall( m %*% p ) == zapsmall( t(m %*% p ) ) # example with an invertable matrix m2 = rbind( c(1,1), c(1,0) ) zapsmall( solve(m2) ) == zapsmall( pseudoinverse(m2) )
is.positive.definite
tests whether all eigenvalues of a symmetric matrix
are positive.
make.positive.definite
computes the nearest positive definite of a
real symmetric matrix, using the algorithm of NJ Higham (1988) <DOI:10.1016/0024-3795(88)90223-6>.
rank.condition
estimates the rank and the condition
of a matrix by
computing its singular values D[i] (using svd
).
The rank of the matrix is the number of singular values D[i] > tol
)
and the condition is the ratio of the largest and the smallest
singular value.
The definition tol= max(dim(m))*max(D)*.Machine$double.eps
is exactly compatible with the conventions used in "Octave" or "Matlab".
Also note that it is not checked whether the input matrix m is real and symmetric.
is.positive.definite(m, tol, method=c("eigen", "chol")) make.positive.definite(m, tol) rank.condition(m, tol)
is.positive.definite(m, tol, method=c("eigen", "chol")) make.positive.definite(m, tol) rank.condition(m, tol)
m |
a matrix (assumed to be real and symmetric) |
tol |
tolerance for singular values and for absolute eigenvalues
- only those with values larger than
tol are considered non-zero (default:
|
method |
Determines the method to check for positive definiteness:
eigenvalue computation ( |
is.positive.definite
returns
a logical value (TRUE
or FALSE
).
rank.condition
returns a list object with the following components:
rank |
Rank of the matrix. |
condition |
Condition number. |
tol |
Tolerance. |
make.positive.definite
returns a symmetric positive definite matrix.
Korbinian Strimmer (https://strimmerlab.github.io).
# load corpcor library library("corpcor") # Hilbert matrix hilbert = function(n) { i = 1:n; 1 / outer(i - 1, i, "+") } # positive definite ? m = hilbert(8) is.positive.definite(m) # numerically ill-conditioned m = hilbert(15) rank.condition(m) # make positive definite m2 = make.positive.definite(m) is.positive.definite(m2) rank.condition(m2) m2 - m
# load corpcor library library("corpcor") # Hilbert matrix hilbert = function(n) { i = 1:n; 1 / outer(i - 1, i, "+") } # positive definite ? m = hilbert(8) is.positive.definite(m) # numerically ill-conditioned m = hilbert(15) rank.condition(m) # make positive definite m2 = make.positive.definite(m) is.positive.definite(m2) rank.condition(m2) m2 - m
rebuild.cov
takes a correlation matrix and a vector with variances
and reconstructs the corresponding covariance matrix.
Conversely, decompose.cov
decomposes
a covariance matrix into correlations and variances.
decompose.invcov
decomposes a concentration matrix (=inverse covariance
matrix) into partial correlations and partial variances.
rebuild.invcov
takes a partial correlation matrix and a vector
with partial variances and reconstructs the corresponding concentration matrix.
rebuild.cov(r, v) rebuild.invcov(pr, pv) decompose.cov(m) decompose.invcov(m)
rebuild.cov(r, v) rebuild.invcov(pr, pv) decompose.cov(m) decompose.invcov(m)
r |
correlation matrix |
v |
variance vector |
pr |
partial correlation matrix |
pv |
partial variance vector |
m |
a covariance or a concentration matrix |
The diagonal elements of the concentration matrix (=inverse covariance matrix) are the precisions, and the off-diagonal elements are the concentrations. Thus, the partial variances correspond to the inverse precisions, and the partial correlations to the negative standardized concentrations.
rebuild.cov
and rebuild.invcov
return a matrix.
decompose.cov
and decompose.invcov
return a list containing
a matrix and a vector.
Korbinian Strimmer (https://strimmerlab.github.io).
# load corpcor library library("corpcor") # a correlation matrix and some variances r = matrix(c(1, 1/2, 1/2, 1), nrow = 2, ncol=2) r v = c(2, 3) # construct the associated covariance matrix c = rebuild.cov(r, v) c # decompose into correlations and variances decompose.cov(c) # the corresponding concentration matrix conc = pseudoinverse(c) conc # decompose into partial correlation matrix and partial variances tmp = decompose.invcov(conc) tmp # note: because this is an example with two variables, # the partial and standard correlations are identical! # reconstruct the concentration matrix from partial correlations and # partial variances rebuild.invcov(tmp$pr, tmp$pv)
# load corpcor library library("corpcor") # a correlation matrix and some variances r = matrix(c(1, 1/2, 1/2, 1), nrow = 2, ncol=2) r v = c(2, 3) # construct the associated covariance matrix c = rebuild.cov(r, v) c # decompose into correlations and variances decompose.cov(c) # the corresponding concentration matrix conc = pseudoinverse(c) conc # decompose into partial correlation matrix and partial variances tmp = decompose.invcov(conc) tmp # note: because this is an example with two variables, # the partial and standard correlations are identical! # reconstruct the concentration matrix from partial correlations and # partial variances rebuild.invcov(tmp$pr, tmp$pv)
The functions estimate.lambda
and estimate.lambda.var
shrinkage intensities used for correlations and variances used
in cor.shrink
and var.shrink
, respectively.
estimate.lambda(x, w, verbose=TRUE) estimate.lambda.var(x, w, verbose=TRUE)
estimate.lambda(x, w, verbose=TRUE) estimate.lambda.var(x, w, verbose=TRUE)
x |
a data matrix |
w |
optional: weights for each data point - if not specified uniform weights are assumed
( |
verbose |
report shrinkage intensities (default: TRUE) |
var.shrink
computes the empirical variance of each considered random variable,
and shrinks them towards their median. The corresponding
shrinkage intensity lambda.var
is estimated using
where denotes the median of the empirical variances (see Opgen-Rhein and Strimmer 2007).
Similarly, cor.shrink
computes a shrinkage estimate of the correlation matrix by
shrinking the empirical correlations towards the identity matrix.
In this case the shrinkage intensity lambda
equals
(Sch\"afer and Strimmer 2005).
Ahdesm\"aki suggested (2012) a computationally highly efficient algorithm to compute the shrinkage intensity estimate for the correlation matrix (see the R code for the implementation).
estimate.lambda
and estimate.lambda.var
returns a number between 0 and 1.
Juliane Sch\"afer, Rainer Opgen-Rhein, Miika Ahdesm\"aki and Korbinian Strimmer (https://strimmerlab.github.io).
Opgen-Rhein, R., and K. Strimmer. 2007. Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Statist. Appl. Genet. Mol. Biol. 6:9. <DOI:10.2202/1544-6115.1252>
Sch\"afer, J., and K. Strimmer. 2005. A shrinkage approach to large-scale covariance estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. <DOI:10.2202/1544-6115.1175>
# load corpcor library library("corpcor") # small n, large p p = 100 n = 20 # generate random pxp covariance matrix sigma = matrix(rnorm(p*p),ncol=p) sigma = crossprod(sigma)+ diag(rep(0.1, p)) # simulate multinormal data of sample size n sigsvd = svd(sigma) Y = t(sigsvd$v %*% (t(sigsvd$u) * sqrt(sigsvd$d))) X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y # correlation shrinkage intensity estimate.lambda(X) c = cor.shrink(X) attr(c, "lambda") # variance shrinkage intensity estimate.lambda.var(X) v = var.shrink(X) attr(v, "lambda.var")
# load corpcor library library("corpcor") # small n, large p p = 100 n = 20 # generate random pxp covariance matrix sigma = matrix(rnorm(p*p),ncol=p) sigma = crossprod(sigma)+ diag(rep(0.1, p)) # simulate multinormal data of sample size n sigsvd = svd(sigma) Y = t(sigsvd$v %*% (t(sigsvd$u) * sqrt(sigsvd$d))) X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y # correlation shrinkage intensity estimate.lambda(X) c = cor.shrink(X) attr(c, "lambda") # variance shrinkage intensity estimate.lambda.var(X) v = var.shrink(X) attr(v, "lambda.var")
sm2vec
takes a symmetric matrix and puts
the lower triagonal entries into a vector (cf. lower.tri
).
sm.index
lists the corresponding x-y-indices for each entry
in the vector produced by sm2vec
.
vec2sm
reverses the operation by sm2vec
and converts the
vector back to a symmetric matrix. If diag=FALSE
the
diagonal of the resulting matrix will consist of NAs. If order
is supplied then the input vector vec
will first be rearranged accordingly.
sm2vec(m, diag = FALSE) sm.index(m, diag = FALSE) vec2sm(vec, diag = FALSE, order = NULL)
sm2vec(m, diag = FALSE) sm.index(m, diag = FALSE) vec2sm(vec, diag = FALSE, order = NULL)
m |
symmetric matrix |
diag |
logical. Should the diagonal be included in the conversion to and from a vector? |
vec |
vector of unique elements from a symmetric matrix |
order |
order of the entries in |
A vector (sm2vec
), a two-column matrix with indices (sm.index
),
or a symmetric matrix (vec2sm
).
Korbinian Strimmer (https://strimmerlab.github.io/).
# load corpcor library library("corpcor") # a symmetric matrix m = rbind( c(3,1,1,0), c(1,3,0,1), c(1,0,2,0), c(0,1,0,2) ) m # convert into vector (including the diagonals) v = sm2vec(m, diag=TRUE) v.idx = sm.index(m, diag=TRUE) v v.idx # put back to symmetric matrix vec2sm(v, diag=TRUE) # convert from vector with specified order of the elements sv = sort(v) sv ov = order(v) ov vec2sm(sv, diag=TRUE, order=ov)
# load corpcor library library("corpcor") # a symmetric matrix m = rbind( c(3,1,1,0), c(1,3,0,1), c(1,0,2,0), c(0,1,0,2) ) m # convert into vector (including the diagonals) v = sm2vec(m, diag=TRUE) v.idx = sm.index(m, diag=TRUE) v v.idx # put back to symmetric matrix vec2sm(v, diag=TRUE) # convert from vector with specified order of the elements sv = sort(v) sv ov = order(v) ov vec2sm(sv, diag=TRUE, order=ov)
wt.var
estimate the unbiased variance taking into account
data weights.
wt.moments
produces the weighted mean and weighted variance
for each column of a matrix.
wt.scale
centers and standardized a matrix using
the weighted means and variances.
wt.var(xvec, w) wt.moments(x, w) wt.scale(x, w, center=TRUE, scale=TRUE)
wt.var(xvec, w) wt.moments(x, w) wt.scale(x, w, center=TRUE, scale=TRUE)
xvec |
a vector |
x |
a matrix |
w |
data weights |
center |
logical value |
scale |
logical value |
A rescaled matrix (wt.scale
), a list containing the column means and
variances (wt.moments
), or single number (wt.var
)
Korbinian Strimmer (https://strimmerlab.github.io).
# load corpcor library library("corpcor") # generate some data p = 5 n = 5 X = matrix(rnorm(n*p), nrow = n, ncol = p) w = c(1,1,1,3,3)/9 # standardize matrix scale(X) wt.scale(X) wt.scale(X, w) # take into account data weights
# load corpcor library library("corpcor") # generate some data p = 5 n = 5 X = matrix(rnorm(n*p), nrow = n, ncol = p) w = c(1,1,1,3,3)/9 # standardize matrix scale(X) wt.scale(X) wt.scale(X, w) # take into account data weights