Package: cope (via r-universe)

September 6, 2024

Type Package Title Coverage Probability Excursion (CoPE) Sets Version 0.2.3 Date 2017-02-13 Imports abind (>= 1.4-3), fields (>= 7.1), MASS (>= 7.3-34), Matrix (>= 1.2-3), mvtnorm (>= 1.0-0), nlme (>= 3.1-122) **Depends** maps (>= 2.3-7) Description Provides functions to compute and plot Coverage Probability Excursion (CoPE) sets for real valued functions on a 2-dimensional domain. CoPE sets are obtained from repeated noisy observations of the function on the entire domain. They are designed to bound the excursion set of the target function at a given level from above and below with a predefined probability. The target function can be a parameter in spatially-indexed linear regression. Support by NIH grant R01 CA157528 is gratefully acknowledged. License GPL-2 RoxygenNote 5.0.1 NeedsCompilation no Author Max Sommerfeld [aut, cre], Joshua French [aut], Armin Schwartzman [aut] Maintainer Max Sommerfeld <max.sommerfeld@mathematik.uni-goettingen.de> **Repository** CRAN

Date/Publication 2017-02-13 12:57:47

Contents

ARCoeffMap																													2
ComputeCope	•		•	•						•	•	•						•	•		•					•			3
cope	•	•	•	•	•		•			•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	4

ARCoeffMap

14

DrawContour	
ImageMap	
MBContour	
plot.cope	
PlotCope	
TaylorContour	
ToyNoise1	
ToyNoise1Presmooth	
ToyNoise2	
ToyNoise3	
ToyNoiseMap	
ToySignal	
ToySignalDC	
ToySlope	

Index

ARCoeffMap

Generate the AR coefficient map.

Description

Generate the AR coefficient map.

Usage

ARCoeffMap(Ns = 64)

Arguments

Ns

Number of pixels of the result in one direction. The resulting picture will have Ns x Ns pixels.

Value

A list containing x and y, the coordinates of the grid and z, a matrix of dimensions Ns x Ns giving the AR coefficients map.

ComputeCope

Description

Computes CoPE sets for the data Y using the algorithm from Sommerfeld, Sain and Schwartzman (2015).

Usage

```
ComputeCope(Z, level, X = NULL, w = NULL, correlation = NULL,
corpar = NULL, groups = NULL, V = NULL, alpha = 0.1, N = 1000,
mu = NULL, mask = NULL)
```

Arguments

Z	A list with components "x", "y" and "z". Here, x and y are the coordinates of the grid on which the data is observed and z is an array with dimensions $c(length(x), length(y), n)$, containing the data. n is the number of observations.
level	The level of interest.
Х	The design matrix of the linear model. If NULL, it is set to matrix(rep(1,dim(Y)[3]),ncol=1) corresponding to i.i.d. data.
W	A vector of length nrow(X) indicating the desired linear combination of coefficients to be used in inference, i.e., t(w) NULL, the default is c(1, rep(0, ncol(X) - 1)).
correlation	Type of correlation assumed for the spatially indexed indexed linear models. This is a string that is passed to the function gls from the nlme package. Defaults to NULL which corresponds to i.i.d. errors.
corpar	A list of parameters passed to the correlation function.
groups	A factor vector describing groups that are used in the correlation function. Should have the same length as X.
V	A 4-dimensional array containing the covariance matrix associated with each element of Z\$z. See Details.
alpha	The significance level. Inclusion for CoPE sets holds with probability 1-alpha.
Ν	The number of bootstrap realizations to generate for determining the threshold.
mu	The true parameter function. Use the default NULL if unknown.
mask	Pixels outside the mask (i.e. where mask is $==$ NA) are ignored.

Details

The V argument is a 4-dimensional array containing the covariance matrices associated with Zz. Specifically, V[i,j,] is the covariance matrix of the data in Zz[i,j,]. If V is specified, then the covariance matrix in each element of the array is used to transform X and the appropriate element of Zz before fitting the linear model. This is used in place of estimating the covariance matrix withing the nlme::gls function.

Value

An object of class cope. A list containing the following

- x, y: The grid coordinates from the input.
- mu, level, tau, X, N, alpha, mask: The corresponding values from the input.
- mu_hat, norm_est: The estimatot for mu and its normalized version.
- a_MB, a_MB_true, a_Tay, a_Tay_true: Thresholds for the CoPE sets determined using the multiplier bootstrap or Taylor's method and the estimated or the true contour, respectively.
- incl_MB, incl_MB_true, incl_Tay, incl_Tay_true: Booleans indicating whether inclusion of the excursion set in the upper CoPE set and inclusion of the lower CoPE set in the excursion set holds, when CoPE sets are determined by a_MB, a_MB_true, a_Tay or a_Tay_true, respectively. Only available if mu is given.

References

M. Sommerfeld, S. Sain and A. Schwartzman. Confidence regions for excursion sets in asymptotically Gaussian random fields, with an application to climate. Preprint, 2015.

Examples

```
# An example using the ToyNoise and ToySignal of this package.
## Not run:
n = 30
Data = ToyNoise1(n = n)
Data$z = Data$z + rep(ToySignal()$z, n)
CopeSet = ComputeCope(Data,level=4/3, mu=ToySignal()$z)
PlotCope(CopeSet)
## End(Not run)
```

cope

Coverage Probability Excursion (CoPE) Sets

Description

The package cope computes and plots CoPE sets defined in Sommerfeld, Sain and Schwartzman (2015) for 2D functions. CoPE sets for a real-valued target function $\mu(s)$ on a two-dimensional domain are designed to bound the excursion set $\mu(s) \ge c$ from above and below with a predefined probability. The target function can be a parameter in spatially indexed linear regression $Y(s) = X * b(s) + \epsilon(s)$, where s is the spatial location, X is a known n by p design matrix, $\epsilon(s)$ is an error field and Y(s) is the observed data.

Major functions

- ComputeCope Computes CoPE sets for 2D data.
- PlotCope Plots CoPE sets.

DrawContour

Toy example functions

- ToySignal Generates a toy signal.
- ToyNoise1, ToyNoise2, ToyNoise3 Generates realizations of toy noise fields.

References

M. Sommerfeld, S. Sain and A. Schwartzman. Confidence regions for excursion sets in asymptotically Gaussian random fields, with an application to climate. Preprint, 2015.

Examples

```
# An example using the ToySignal and the Toy Noise1 of this package.
```

```
# Set sample size.
n = 30
# Generate n realizations of the toy noise field.
Data = ToyNoise1(n = n)
# Add the toy signal to the noise.
Data$z = Data$z + rep(ToySignal()$z, n)
# Compute the CoPE sets.
CopeSet = ComputeCope(Data,level=4/3, mu=ToySignal()$z)
# Plot the result.
PlotCope(CopeSet)
```

Description

Draws the contour f=c.

Usage

```
DrawContour(..., level, col, lty = 1)
```

Arguments

•••	An image. Either as a list with components x,y and z or as vectors x and y and a matrix z of dimensions c(length(x),length(y)).
level	The level of the contour.
col	Color of the contour.
lty	Line type for the contour.

ImageMap

Description

Plots an image on a map of the world.

Usage

```
ImageMap(lon, lat, img, mask = NULL, xlab = "Longitude",
    ylab = "Latitude", ...)
```

Arguments

lon	Longitude.
lat	Latitude.
img	The image to plot as a matrix of dimensions c(length(lon),length(lat)).
mask	Matrix of dimensions c(length(lon),length(lat)) defining a mask to cut out of the picture.
xlab	Label for the x-axis passed to fields::image.plot. Default is "Longitude".
ylab	Label for the y-axis passed to fields::image.plot. Default is "Latitude".
	Additional graphical parameters passed to fields::image.plot.

MBContour	Computes Multiplier	Bootstrap	realizations	of the	supremum	of a
	Gaussian field on a co	ontour.				

Description

Computes Multiplier Bootstrap realizations of the supremum of a Gaussian field on a contour.

Usage

MBContour(x, y, R, cont, N = 1000)

Arguments

x	x-Coordinates of the grid on which the data is observed.
У	y-Coordinates of the grid on which the data is observed.
R	An array of dimension $c(length(x), length(y), n)$ containing the realizations of the field.
cont	The contours of f at value level
Ν	The number of Bootstrap realizations to produce. Default is 1000.

plot.cope

Value

A vector of length N containing the Bootstrap realizations of the supremum.

plot.cope Plots CoPE sets.

Description

Plots CoPE sets.

Usage

```
## S3 method for class 'cope'
plot(x, ..., taylor = FALSE, use.true.function = FALSE,
    colc = "purple", lwdc = 3, ltyc = 1, colp = "darkred", lwdp = 3,
    ltyp = 1, colm = "darkgreen", lwdm = 3, ltym = 1,
    conlist = list(drawlabels = FALSE))
```

Arguments

х	An object of class cope to be plotted.					
	Additional graphical parameters passed to fields::image.plot.					
taylor	Boolean indicating whether the CoPE sets with the threshold obtained by Tay- lor's method should be plotted. Default is FALSE.					
use.true.functi	on					
	Boolean indicating whether the threshold obtained from the true function should be used. Default is FALSE.					
colc	Color of contour line for A_c .					
lwdc	Width of contour line for A_c .					
ltyc	Type of contour line for A_c .					
colp	Color of contour line for \hat{A}_c^+ .					
lwdp	Width of contour line for \hat{A}_c^+ .					
ltyp	Type of contour line for \hat{A}_c^+ .					
colm	Color of contour line for \hat{A}_c^- .					
lwdm	Width of contour line for \hat{A}_c^- .					
ltym	Type of contour line for \hat{A}_c^- .					
conlist	A list of additional arguments to pass to the contour function. By default, the contour labels are not shown.					

References

M. Sommerfeld, S. Sain and A. Schwartzman. Confidence regions for excursion sets in asymptotically Gaussian random fields, with an application to climate. Preprint, 2015.

Examples

```
# An example using the ToyNoise and ToySignal of this package.
## Not run:
n = 30
Data = ToyNoise1(n = n)
Data$z = Data$z + rep(ToySignal()$z, n)
CopeSet = ComputeCope(Data, level=4/3, mu=ToySignal()$z)
plot(CopeSet)
## End(Not run)
```

PlotCope

Plots CoPE sets.

Description

Plots CoPE sets.

Usage

```
PlotCope(cope, plot.taylor = FALSE, use.true.function = FALSE,
map = FALSE, ...)
```

Arguments

n object of class cope to be plotted.
oolean indicating whether the CoPE sets with the threshold obtained by Tay- r's method should be plotted. Default is FALSE.
oolean indicating whether the threshold obtained from the true function should e used. Default is FALSE.
TRUE plot the cope set on a map of the world. The coordinates in this case e interpreted as longitude and latitude.
dditional graphical parameters passed to fields::image.plot.

TaylorContour	Computes tail probabilities of a Gaussian field on a contour with Tay-
	lor's method.

Description

Computes tail probabilities of a Gaussian field on a contour with Taylor's method.

Usage

TaylorContour(x, y, cont, R)

8

ToyNoise1

Arguments

х	x-Coordinates of the grid on which the data is observed.
У	y-Coordinates of the grid on which the data is observed.
cont	The contour of f at value level
R	An array of dimension $c(length(x), length(y), n)$ containing the realizations of the field.

Value

A function g that computes for u>0 the probility that the supremum of the field exceeds u.

ToyNoise1

Generate a realization of the Toy Noise 1.

Description

Generate a realization of the Toy Noise 1.

Usage

```
ToyNoise1(n = 1, Ns = 64, model = list(), theta = 0.1, l1 = 1,
l2 = 4, tau = 12)
```

Arguments

n	The number of realizations to produce.
Ns	Number of pixels of the result in one direction. The resulting picture will have Ns x Ns pixels.
model	The correlation structure of the noise, as used by arima.sim. Default is list() which gives i.i.d. noise.
theta	Bandwidth of kernel used to smooth the noise.
11, 12	Pixel size of the noise blocks in either side of the domain. See main reference for details.
tau	Scaling factor with which noise is multiplied after generation.

Value

A list containing x and y, the coordinates of the grid and z and array of dimensions c(64,64,n) giving n reallizations of the Toy Noise 1.

ToyNoise1Presmooth Generate a realization of the Toy Noise 1 before smoothing.

Description

Generate a realization of the Toy Noise 1 before smoothing.

Usage

```
ToyNoise1Presmooth(n = 1, Ns = 64, model = list(), theta = 0.1,
l1 = 1, l2 = 4, tau = 12)
```

Arguments

n	The number of realizations to produce.
Ns	Number of pixels of the result in one direction. The resulting picture will have Ns x Ns pixels.
model	The correlation structure of the noise, as used by arima.sim. Default is list() which gives i.i.d. noise.
theta	Bandwidth of kernel used to smooth the noise.
11, 12	Pixel size of the noise blocks in either side of the domain. See main reference for details.
tau	Scaling factor with which noise is multiplied after generation.

Value

A list containing x and y, the coordinates of the grid and z and array of dimensions c(64,64,n) giving n reallizations of the Toy Noise 1 before smoothing.

ToyNoise2

Generate a realization of the Toy Noise 2.

Description

Generate a realization of the Toy Noise 2.

Usage

```
ToyNoise2(n = 1, Ns = 64, model = list(), theta = 0.1, l1 = 1,
l2 = 4, tau = 40)
```

ToyNoise3

Arguments

n	The number of realizations to produce.
Ns	Number of pixels of the result in one direction. The resulting picture will have Ns x Ns pixels.
model	The correlation structure of the noise, as used by arima.sim. Default is list() which gives i.i.d. noise.
theta	Bandwidth of kernel used to smooth the noise.
11,12	Pixel size of the noise blocks in either side of the domain. See main reference for details.
tau	Scaling factor with which noise is multiplied after generation.

Value

A list containing x and y, the coordinates of the grid and z and array of dimensions c(64,64,n) giving n reallizations of the Toy Noise 2.

ToyNoise3

Generate a realization of the Toy Noise 3.

Description

Generate a realization of the Toy Noise 3.

Usage

ToyNoise3(n = 1, Ns = 64, model = list(), theta = 0.05, l1 = 1, l2 = 4, tau = 10)

Arguments

n	The number of realizations to produce.
Ns	Number of pixels of the result in one direction. The resulting picture will have Ns x Ns pixels.
model	The correlation structure of the noise, as used by arima.sim. Default is list() which gives i.i.d. noise.
theta	Bandwidth of kernel used to smooth the noise.
11,12	Pixel size of the noise blocks in either side of the domain. See main reference for details.
tau	Scaling factor with which noise is multiplied after generation.

Value

A list containing x and y, the coordinates of the grid and z and array of dimensions c(64,64,n) giving n reallizations of the Toy Noise 3.

ToyNoiseMap

Description

Generate an AR sequence with the ToyFUN as base noise and the AR coefficients given by the ARCoeffMap.

Usage

ToyNoiseMap(n = 1, ToyFUN, ...)

Arguments

n	Length of sequence.
ToyFUN	Base noise to build the sequence from.
	Additional parameters passed to ToyFUN.

Value

A list containing x and y, the coordinates of the grid and z and array of dimensions c(64,64,n) giving n realizations of the Toy Noise.

ToySignal	Return the Toy Signal.	
-----------	------------------------	--

Description

Return the Toy Signal.

Usage

```
ToySignal(ImRange = c(0, 1), NPixel = 64)
```

Arguments

ImRange	A vector with two components giving the range of the region on which the Toy
	Signal is to be computed.
NPixel	Number of pixels of the result in one direction. The resulting picture will have NPixel x NPixel pixels.

Value

A list with components "x", "y" and "z". Here, x and y are the coordinates of the grid and z is matrix of dimensions c(NPixel,NPixel) giving the Toy Signal.

ToySignalDC

Description

Return the Toy Signal with discontinuities.

Usage

```
ToySignalDC(ImRange = c(0, 1), NPixel = 64)
```

Arguments

ImRange	A vector with two components giving the range of the region on which the Toy Signal is to be computed.
NPixel	Number of pixels of the result in one direction. The resulting picture will have NPixel x NPixel pixels.

Value

A list with components "x", "y" and "z". Here, x and y are the coordinates of the grid and z is matrix of dimensions c(NPixel,NPixel) giving the Toy Signal.

ToySlope	The toy slope.	

Description

The toy slope.

Usage

ToySlope(ImRange = c(0, 1), NPixel = 64)

Arguments

ImRange	A vector with two components giving the range of the region on which the Toy Slope is to be computed.
NPixel	Number of pixels of the result in one direction. The resulting picture will have NPixel x NPixel pixels.

Value

A list with components "x", "y" and "z". Here, x and y are the coordinates of the grid and z is matrix of dimensions c(NPixel,NPixel) giving the Toy Signal.

Index

 ${\tt ARCoeffMap, 2}$

ComputeCope, 3, 4 cope, 4 cope-package (cope), 4

DrawContour, 5

ImageMap, 6

MBContour, 6

plot.cope,7
PlotCope,4,8

TaylorContour, 8 ToyNoise1, 5, 9 ToyNoise1Presmooth, 10 ToyNoise2, 5, 10 ToyNoise3, 5, 11 ToyNoiseMap, 12 ToySignal, 5, 12 ToySignalDC, 13 ToySlope, 13