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contoureR contoureR: Contouring of Non-Regular Three-Dimensional Data

Description

Create contour lines for a non regular series of points, potentially from a non-regular canvas.

Details

The contoureR package executes linear interpolation on a delaunay triangulated mesh strung be-
tween three-dimensional (3D) points supplied by the user. Contours are calculated across the sur-
face constrained by the convex hull of the supplied data.

Usually, the well known functions such as contourLines from the grDevices package, expect (or
rather, require) data to be regular, this means that a rectangular array or matrix of x and y coordinate
pairs, each with a corresponding z value is to be modelled – that is to say the cartesian product of a
numeric vector of x values of length n, with a numeric vector of y values having length m, used to
produce a set of (m x n) unique points that have been concurrently provided with exactly (m x n)
z values.

By restricting values to the above format, this in turn limits the region of analysis to square/rectangular
canvasses (ie plane defined by geometric and orthogonal vectors parallel to the x and y axes and
range bound by the [xmin,xmax] and [ymin,ymax] in the above x and y input numeric vectors, re-
spectively). This restriction, from time-to-time, can be very inconvenient, and is a primary objective
and purpose for the creation of this package.

As suggested in the previous paragraph, the contoureR package, on the other hand, has no such
orthogonality / regularity requirement and can therefore be applied over obscurely shaped regions
such as triangles, circles, polygons and the like. To demonstrate this, in the example provided on
the current page, an equation is contoured, where firstly the x and y data is randomly selected (non
regular), and then the set of values is subsequently constrained by a bounding (limiting) circle.

Note, for the moment, the only restriction is that for polygon-type regions to be modelled, then
these regions must not have holes, since these will be filled coarsely when the Deleaunaymesh
gets generated, however, in future revisions, this obstacle should be easily addressed via parameter
defining a manual exclusion list of points.

See Also

getContourLines, contourLinesR and contourWalker

Examples

# Contour Lines for a Function, Constrained to a limited domain
# Example of the provision of non-regular data
library(contoureR)
library(ggplot2)
a = -2; b = +2; n = 150
x = runif(n*n,a,b)
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y = runif(n*n,a,b)
df = data.frame(x,y)
df$z = with(df,-x*y*exp(-x^2-y^2))
df.sub = subset(df,x^2 + y^2 < 2)
df.cnt = getContourLines(df.sub,nlevels=20)
ggplot(data=df.cnt,aes(x,y,group=Group,colour=z)) + geom_path() + theme_bw()

contourLinesR Get Contour Lines (list)

Description

A wrapper to the getContourLines function, provided to ease the transition from the contourLines
function as part of grDevices

Usage

contourLinesR(x, y, z, nlevels = 10, levels = pretty(range(z, na.rm =
TRUE)), ...)

Arguments

x Numeric data for x and y coordinate, a single matrix or data-frame object can
be provided for x, which will be used in preference to the y and z arguments.
These do NOT need to be in any particular order nor do they need to be regular.

y Numeric data for x and y coordinate, a single matrix or data-frame object can
be provided for x, which will be used in preference to the y and z arguments.
These do NOT need to be in any particular order nor do they need to be regular.

z numeric Data for z coordinate (the coordinate to model)

nlevels An integer number of bins to split the data into iff levels or binwidth have not
been specified.

levels A numeric vector of the explicitly specified levels (z values) to contour, by spec-
ifying this argument, it will override nlevels and/or binwidth. If this argument
is provided, the stacking order of the contours will be preserved in the order of
first occurence within the supplied vector.

... any other parameters passed through to getContourLines

Details

This function returns data in the same format/structure as contourLines, ie, list of lists, which is
different from the (preferred) dataframe object returned by the getContourLines function as part
of the present work.
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Value

A list of contours is returned, Each contour is a list with the elements:

level The contour of the level

x The x-coordinates of the contour

y The y-coordinates of the contour

See Also

getContourLines

Examples

library(contoureR)
library(ggplot2)
x = runif(100)
y = runif(100)
df = expand.grid(x=x,y=y)
z = with(df,x+y)
result = contourLinesR(df$x,df$y,z)

contourWalker Contour Walker Function, Rcpp Interface to C++ Routine

Description

This function is the R interface to the C++ core contour-walker function, totally essential for this
package.

Arguments

dm the n x 3 matrix representing the indexes of the vertices of the triangles in the
delaunay mesh. No values should be greater than the number of rows in xyz.

xyz the m x 3 matrix of xyz coordinates for all the points in the data.

levels a numeric vector of levels to contour.
maximumPertubation

the maximum pertubation amount (positive or negative) as a percentage.

Details

The underlying C++ routine establishes a pointer-driven adjacency-network within each of the tri-
angles (Dels) in the supplied Delaunay mesh, that is to say that Two Del’s are deemed to be ’net-
worked’ with each other if they share adjacent edges (Edges), which are drawn between two points
(Nodes). Dels are deemed as ’fully-networked’ if they hold reciprocating pointers with exactly
three (3) other Dels. Dels can be partially networked if one or two of the available pointers remain
unassigned, which may be the case if the particular Del is a participating member of the convex
hull.
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Because C++ uses zero-based indexing, whilst R uses 1-based indexing, should the Delaunay Mesh
(dm) be provided where the minimum value is 1, then it will be deemed to be a 1-based set and
reduced accordingly.

Prior to traversing the mesh, in order to prevent degeneracies, should any Dels in the mesh have
vertices which are of the same z value, and/or equal to one of the intended contouring levels, then
these nodes will be pertubated (along the z direction) by an infitesimally small amount. The conse-
quences of this approach is that when interpolating along the edges of the Del, the path will always
leave at some point (if even trivially small) inbetween two (2) nodes – the path will NEVER leave
directly through a node, which would otherwise lead to potential confusion as to the appropriate
recipient of the path under such circumstance.

This function is not particularly convenient, and a more convenient wrapper has been produced,
with all the usual checks and balances, for further information, see the getContourLines function.

Value

matrix with 6 columns: LevelID, GroupID, PathID, x, y and z

See Also

getContourLines

Examples

n = 100
x = runif(n)
y = runif(n)
df = expand.grid(x,y);
colnames(df) = c("x","y")
df$z = df$x^2 + df$y^2
dm = getDelaunayMesh(df$x,df$y)
res = contourWalker(dm,as.matrix(df),levels=pretty(df$z,n=20))
res = data.frame(res); colnames(res) = c('LID','GID','PID','x','y','z')
res$Group = interaction(res$LID,res$GID)
library(ggplot2)
ggplot(res,aes(x,y,group=Group,colour=z)) + geom_path()

convexHullAM Convex Hull via Andrews Monotone, Rcpp Interface to C++ Routine

Description

This function is the R interface to the C++ implementation of Andrews Monotone, a well known
algorithm for solving the convex hull in O(nlogn) time complexity.

Usage

convexHullAM_Indexes(x, y, includeColinear=FALSE,zeroBased = TRUE)
convexHullAM_Points(x, y,includeColinear=FALSE)
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Arguments

x NumericVector of x values

y NumericVector of y values
includeColinear

whether to inlude points that line ON the hull, by default this is set to FALSE,
as this is the true definition of the convex hull.

zeroBased Whether the return indexes should be zero based (true, for use in C++), or One-
Based (false, for use in R).

Value

convexHullAM_Indexes returns an integer vector of the indexes of the points, whilst convexHullAM_Points
returns an n x 2 matrix of the points themselves.

Examples

library(contoureR)
library(ggplot2)
set.seed(1)
x = runif(100)
y = runif(100)
ch = convexHullAM_Indexes(x,y,includeColinear=FALSE,zeroBased = FALSE)
ggplot(data.frame(x,y),aes(x,y)) +
geom_point() +
geom_path(data=data.frame(x,y)[ch,],colour="red")

getContourLines Get Contour Lines (data.frame)

Description

The following routine produces contour lines for a set of non-regular x,y and z values. via utilizing
a Deleaunay Mesh strung between the supplied x,y coordinates in order to produce iso-contour
data representing the third variable, z. To this end, by using a Deleaunay mesh, this routine does
not require regular x and y data, although it can be expected to yield ’better’ result, with regular /
fine-grained data.

Usage

getContourLines(x, y, z, nlevels = 10, binwidth, levels, criticalRatio = 5)

Arguments

x, y Numeric data for x and y coordinate, a single matrix or data-frame object can
be provided for x, which will be used in preference to the y and z arguments.
These do NOT need to be in any particular order nor do they need to be regular.

z numeric Data for z coordinate (the coordinate to model)
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nlevels An integer number of bins to split the data into iff levels or binwidth have not
been specified.

binwidth The desired width of the bins, if specified, will override nlevels.

levels A numeric vector of the explicitly specified levels (z values) to contour, by spec-
ifying this argument, it will override nlevels and/or binwidth. If this argument
is provided, the stacking order of the contours will be preserved in the order of
first occurence within the supplied vector.

criticalRatio When producing the Delaunay Mesh, the quality of the mesh can be poor in
the proximity to the convex hull, Del’s that have an aspect ratio greater than this
value are not considered when producing the contours. In this context, the aspect
ratio is defined as the circumradius to twice its inradius, equilateral triangles
have an aspect ratio of 1, everything else is larger

Value

For the function getContourLines(...), the return object is a data.frame obect representing the
contours, assembled in such way to permit easy use within the ggplot2 paradigm. Such data frame
contains seven (7) columns:

LID A number representing the level

GID Within each level, a number representing the contour group

PID Within each group, a number representing the path/segment

x The x-coordinates of the contour

y The y-coordinates of the contour

z The z-coordinates of the contour (ie value of the level)

Group The unique identifyer for each independent contour path, calculated as being the
interaction between LID and GID

See Also

contourLinesR, getDelaunayMesh and getConvexHull This is a wrapper to the C++ interface
function, contourWalker.

Examples

# Contour Lines for Volcano Data
library(ggplot2)
data(volcano)
x = 1:nrow(volcano)
y = 1:ncol(volcano)
z = expand.grid(x=x,y=y); z$z = apply(z,1,function(xx){ volcano[ xx[1],xx[2] ]} )
df = getContourLines(z)
ggplot(df,aes(x,y,group=Group,colour=z)) + geom_path()

# Contour Lines for a Function
library(ggplot2)
a = -2; b = 2; n = 75
x = y = seq(a,b,by=diff(c(a,b))/(n+1))
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df = expand.grid(x=x,y=y)
df$z = with(df,-x*y*exp(-x^2-y^2))
df.cnt = getContourLines(df)
ggplot(data=df.cnt,aes(x,y,group=Group,colour=z)) + geom_path()

getConvexHull Get Convex Hull of Points

Description

Returns the sequence of indexes within the supplied numeric vectors x and y, that describe the con-
vex hull containing those points. This is a (slightly modified) implementation of the Andrews Mono-
tone Chain, which is a well known algorithm that is able to solve the convex hull with O(nlogn)
complexity. Typical computation time on a Macbook Air, 1.7Ghz I7, 8Gb Ram, using random
points in the range [0,1]:

• 100K points 0.03 Seconds

• 1M points 0.3 seconds, and

• 10M points3.3 seconds.

Usage

getConvexHull(x, y, includeColinear = FALSE)

Arguments

x numeric vector of x values

y numeric vector of y values of same length as x

includeColinear

keep or discard the points that lie ON the hull, default is to discard (ie dont keep
colinear points), as this is the true definition of the convex hull.

Value

Returns a vector of integers that represent the ’1-based’ indexes of the points relative to the x and y
input arguments. The resulting vector represents the closed list, meaning that the first index and the
last index in the series will be the same.

References

https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain
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Examples

#Generate the Convex Hull of a Series of Points
set.seed(1)
x = runif(100)
y = runif(100)
ch = getConvexHull(x,y)

#To demonstrate, Lets view the hull
library(ggplot2)
df = data.frame(x,y)
ggplot(data=df,aes(x,y)) +

geom_path(data=df[ch,]) +
geom_point()

getDelaunayMesh Get Delaunay Mesh

Description

Retrieves the Delaunay Mesh for a series of x and y points in 2D. With the exception of a few brief
checks, is almost a direct wrapper to the delaunayn function as part of the geometry package.

Usage

getDelaunayMesh(x, y)

Arguments

x numeric vector of x values

y numeric vector of y values of same length as x

Value

matrix object having three columns that represent the (1-based) indexes of each vertex relative to
the data in the x and y input parameters.

Examples

#Generate a sample Delaunay Mesh
set.seed(1)
x = runif(100)
y = runif(100)
dm = getDelaunayMesh(x,y)

#To demonstrate, Lets view the mesh
library(ggplot2)
library(reshape)
df = as.data.frame(dm); df$id = 1:nrow(df); df = melt(df,id="id")
df = cbind(df,data.frame(x,y)[df$value,])
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ggplot(data=df,aes(x,y,group=id)) +
geom_polygon(aes(fill=id),color="gray")

orderPoints Order Points Clockwise or Counter-Clockwise

Description

Returns the indexes of supplied points, x and y, ordered either clockwise or anticlockwise about
another point, which by default is taken to be the non-weighted midpoint of the supplied data

Usage

orderPoints(x, y, ..., xm = mean(range(x)), ym = mean(range(y)),
clockwise = TRUE)

Arguments

x numeric vector of x values

y numeric vector of y values of same length as x

... not used

xm the x value of the reference point

ym the y value of the reference point

clockwise order in clockwise or anticlockwise manner

Examples

#Generate a random set of points and put them clockwise order
set.seed(1)
x = runif(100)
y = runif(100)
op = orderPoints(x,y)

#To demonstrate, Lets view the points in order
library(ggplot2)
df = data.frame(x,y)
df = df[op,];
df$id = 1:nrow(df)
ggplot(data=df,aes(x,y,colour=id)) +

geom_path() + geom_point() +
scale_colour_gradient(low="green",high="red")



Index

contoureR, 2
contourLines, 2, 3
contourLinesR, 2, 3, 7
contourWalker, 2, 4, 7
convexHullAM, 5
convexHullAM_Indexes (convexHullAM), 5
convexHullAM_Points (convexHullAM), 5

delaunayn, 9

getContourLines, 2–5, 6
getConvexHull, 7, 8
getDelaunayMesh, 7, 9
grDevices, 2, 3

orderPoints, 10

11


	contoureR
	contourLinesR
	contourWalker
	convexHullAM
	getContourLines
	getConvexHull
	getDelaunayMesh
	orderPoints
	Index

