Package: consrq (via r-universe)

November 25, 2024

Contents

consrq-package	2
Lower and upper bound constrained quantile regression	2
Positive and unit sum constrained quantile regression	4
Positively constrained quantile regression	5

7

Index

consrq-package

Description

Constrained quantile regression is performed. One constraint is that all beta coefficients (including the constant) cannot be negative. They can be either 0 or strictly positive. Another constraint is that the beta coefficients lie within an interval.

Details

Package:	consrq
Type:	Package
Version:	1.0
Date:	2024-11-20

Maintainers

Michail Tsagris <mtsagris@uoc.gr>.

Author(s)

Michail Tsagris <mtsagris@uoc.gr>

References

Koenker R. (2005) Quantile Regression, Cambridge University Press.

Lower and upper bound constrained quantile regression Lower and upper bound constrained quantile regression

Description

Lower and upper bound constrained quantile regression.

Usage

int.crq(y, x, tau = 0.5, lb, ub)
int.mcrq(y, x, tau = 0.5, lb, ub)

Arguments

У	For the int.crq() the response variable, a numerical vector with observations, but a matrix of response variables for the int.mcrq().
x	A matrix with independent variables, the design matrix.
tau	The quantile(s) to be estimated, a number strictly between 0 and 1. It a vector of values between 0 and 1; in this case an object of class "rqs" is returned containing among other things a matrix of coefficient estimates at the specified quantiles.
lb	A vector or a single value with the lower bound(s) in the coefficients.
ub	A vector or a single value with the upper bound(s) in the coefficients.

Details

This function performs quantile regression under the constraint that the beta coefficients lie within interval(s), i.e. $\min \sum_{i=1}^{n} |y_i - x_i^{\top}\beta|$ such that $lb_j \leq \beta_j \leq ub_j$.

Value

A list including:

be	A numerical matrix with the constrained beta coefficients.
mae	A numerical vector with the mean absolute error(s).

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

prq, pcrq

Examples

x <- as.matrix(iris[1:50, 1:4])
y <- rnorm(50)
int.crq(y, x, lb = -0.2, ub = 0.2)</pre>

Positive and unit sum constrained quantile regression *Positive and unit sum constrained quantile regression*

Description

Positive and unit sum constrained quantile regression.

Usage

pcrq(y, x, tau = 0.5)mpcrq(y, x, tau = 0.5)

Arguments

У	The response variable. For the pcrq() a numerical vector with observations, but for the mpcrq() a numerical matrix.
x	A matrix with independent variables, the design matrix.
tau	The quantile(s) to be estimated, a number strictly between 0 and 1. It a vector of values between 0 and 1; in this case an object of class "rqs" is returned containing among other things a matrix of coefficient estimates at the specified quantiles.

Details

The constraint is that all beta coefficients are positive and sum to 1. That is, i.e. $\min \sum_{i=1}^{n} (y_i - x_i^{\top} \beta)^2$ such that $\beta_j \ge 0$ and $\sum_{j=1}^{d} \beta_j = 1$. The pcrq() function performs a single regression model, whereas the mpcrq() function performs a regression for each column of y. Each regression is independent of the others.

Value

A list including:

be	A numerical matrix with the positively constrained beta coefficients.
mae	A numerical vector with the mean absolute error.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

prq

Examples

```
x <- as.matrix( iris[1:50, 1:4] )
y <- rnorm(50)
pcrq(y, x)</pre>
```

Positively constrained quantile regression Positively constrained quantile regression

Description

Positively constrained quantile regression.

Usage

prq(y, x, tau = 0.5)mprq(y, x, tau = 0.5)

Arguments

У	The response variable. For the prq() a numerical vector with observations, but for the mprq() a numerical matrix .
х	A matrix with independent variables, the design matrix.
tau	The quantile(s) to be estimated, a number strictly between 0 and 1. It a vector of values between 0 and 1; in this case an object of class "rqs" is returned containing among other things a matrix of coefficient estimates at the specified quantiles.

Details

The constraint is that all beta coefficients (including the constant) are non negative. That is, $\min \sum_{i=1}^{n} |y_i - x_i^{\top} \beta|$ such that $\beta_j \ge 0$. The pls() function performs a single regression model, whereas the mpls() function performs a regression for each column of y. Each regression is independent of the others.

Value

A list including:

be	A numerical matrix with the positively constrained beta coefficients.
mae	A numerical vector with the mean absolute error(s).

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

pcrq

Examples

x <- as.matrix(iris[1:50, 1:4])
y <- rnorm(50)
prq(y, x)</pre>

Index

consrq-package, 2 int.crq(Lower and upper bound constrained quantile regression), 2 int.mcrq(Lower and upper bound constrained quantile regression), 2 Lower and upper bound constrained quantile regression, 2 mpcrq(Positive and unit sum constrained quantile regression), 4 mprq(Positively constrained quantile regression), 5 pcrq, 3, 6 pcrq(Positive and unit sum constrained quantile regression), 4 Positive and unit sum constrained quantile regression, 4 Positively constrained quantile regression, 5 prq, 3, 4

prq(Positively constrained quantile regression), 5