Package 'conos'

Title: Clustering on Network of Samples
Description: Wires together large collections of single-cell RNA-seq datasets, which allows for both the identification of recurrent cell clusters and the propagation of information between datasets in multi-sample or atlas-scale collections. 'Conos' focuses on the uniform mapping of homologous cell types across heterogeneous sample collections. For instance, users could investigate a collection of dozens of peripheral blood samples from cancer patients combined with dozens of controls, which perhaps includes samples of a related tissue such as lymph nodes. This package interacts with data available through the 'conosPanel' package, which is available in a 'drat' repository. To access this data package, see the instructions at <https://github.com/kharchenkolab/conos>. The size of the 'conosPanel' package is approximately 12 MB.
Authors: Viktor Petukhov [aut], Nikolas Barkas [aut], Peter Kharchenko [aut], Weiliang Qiu [ctb], Evan Biederstedt [aut, cre]
Maintainer: Evan Biederstedt <[email protected]>
License: GPL-3
Version: 1.5.2
Built: 2024-11-23 06:54:49 UTC
Source: CRAN

Help Index


Create and preprocess a Seurat object

Description

Create and preprocess a Seurat object

Usage

basicSeuratProc(
  count.matrix,
  vars.to.regress = NULL,
  verbose = TRUE,
  do.par = TRUE,
  n.pcs = 100,
  cluster = TRUE,
  tsne = TRUE,
  umap = FALSE
)

Arguments

count.matrix

gene count matrix

vars.to.regress

variables to regress with Seurat (default=NULL)

verbose

boolean Verbose mode (default=TRUE)

do.par

boolean Use parallel processing for regressing out variables faster (default=TRUE)

n.pcs

numeric Number of principal components (default=100)

cluster

boolean Whether to perform clustering (default=TRUE)

tsne

boolean Whether to construct tSNE embedding (default=TRUE)

umap

boolean Whether to construct UMAP embedding, works only for Seurat v2.3.1 or higher (default=FALSE)

Value

Seurat object


Find threshold of cluster detectability

Description

For a given clustering, walks the walktrap result tree to find a subtree with max(min(sens,spec)) for each cluster, where sens is sensitivity, spec is specificity

Usage

bestClusterThresholds(res, clusters, clmerges = NULL)

Arguments

res

walktrap result object (igraph)

clusters

cluster factor

clmerges

integer matrix of cluster merges (default=NULL). If NULL, the function treeJaccard() performs calculation without it.

Value

a list of $thresholds - per cluster optimal detectability values, and $node - internal node id (merge row) where the optimum was found


Find threshold of cluster detectability in trees of clusters

Description

For a given clustering, walks the walktrap (of clusters) result tree to find a subtree with max(min(sens,spec)) for each cluster, where sens is sensitivity, spec is specificity

Usage

bestClusterTreeThresholds(res, leaf.factor, clusters, clmerges = NULL)

Arguments

res

walktrap result object (igraph) where the nodes were clusters

leaf.factor

a named factor describing cell assignments to the leaf nodes (in the same order as res$names)

clusters

cluster factor

clmerges

integer matrix of cluster merges (default=NULL). If NULL, the function treeJaccard() performs calculation without it.

Value

a list of $thresholds - per cluster optimal detectability values, and $node - internal node id (merge row) where the optimum was found


Rescale the weights in an edge matrix to match a given perplexity.

Description

Rescale the weights in an edge matrix to match a given perplexity.

Usage

buildWijMatrix(x, threads = NULL, perplexity = 50)

## S3 method for class 'TsparseMatrix'
buildWijMatrix(x, threads = NULL, perplexity = 50)

## S3 method for class 'CsparseMatrix'
buildWijMatrix(x, threads = NULL, perplexity = 50)

Arguments

x

A sparse matrix

threads

numeric The maximum number of threads to spawn. Determined automatically if NULL (default=NULL)

perplexity

numeric Given perplexity (default=50)

Value

A list with the following components:

'dist'

An [N,K] matrix of the distances to the nearest neighbors.

'id'

An [N,K] matrix of the node indexes of the neartest neighbors. Note that this matrix is 1-indexed, unlike most other matrices in this package.

'k'

The number of nearest neighbors.


Conos R6 class

Description

The class encompasses sample collections, providing methods for calculating and visualizing joint graph and communities.

Public fields

samples

list of samples (Pagoda2 or Seurat objects)

pairs

pairwise alignment results

graph

alignment graph

clusters

list of clustering results named by clustering type

expression.adj

adjusted expression values

embeddings

list of joint embeddings

embedding

joint embedding

n.cores

number of cores

misc

list with unstructured additional info

override.conos.plot.theme

boolean Whether to override the conos plot theme

Methods

Public methods


Method new()

initialize Conos class

Usage
Conos$new(
  x,
  ...,
  n.cores = parallel::detectCores(logical = FALSE),
  verbose = TRUE,
  override.conos.plot.theme = FALSE
)
Arguments
x

a named list of pagoda2 or Seurat objects (one per sample)

...

additional parameters upon initializing Conos

n.cores

numeric Number of cores to use (default=parallel::detectCores(logical=FALSE))

verbose

boolean Whether to provide verbose output (default=TRUE)

override.conos.plot.theme

boolean Whether to reset plot settings to the ggplot2 default (default=FALSE)

Returns

a new 'Conos' object

Examples
con <- Conos$new(small_panel.preprocessed, n.cores=1)


Method addSamples()

Initialize or add a set of samples to the conos panel. Note: this will simply add samples, but will not update graph, clustering, etc.

Usage
Conos$addSamples(x, replace = FALSE, verbose = FALSE)
Arguments
x

a named list of pagoda2 or Seurat objects (one per sample)

replace

boolean Whether the existing samples should be purged before adding new ones (default=FALSE)

verbose

boolean Whether to provide verbose output (default=FALSE)

Returns

invisible view of the full sample list


Method buildGraph()

Build the joint graph that encompasses all the samples, establishing weighted inter-sample cell-to-cell links

Usage
Conos$buildGraph(
  k = 15,
  k.self = 10,
  k.self.weight = 0.1,
  alignment.strength = NULL,
  space = "PCA",
  matching.method = "mNN",
  metric = "angular",
  k1 = k,
  data.type = "counts",
  l2.sigma = 1e+05,
  var.scale = TRUE,
  ncomps = 40,
  n.odgenes = 2000,
  matching.mask = NULL,
  exclude.samples = NULL,
  common.centering = TRUE,
  verbose = TRUE,
  base.groups = NULL,
  append.global.axes = TRUE,
  append.decoys = TRUE,
  decoy.threshold = 1,
  n.decoys = k * 2,
  score.component.variance = FALSE,
  snn = FALSE,
  snn.quantile = 0.9,
  min.snn.jaccard = 0,
  min.snn.weight = 0,
  snn.k.self = k.self,
  balance.edge.weights = FALSE,
  balancing.factor.per.cell = NULL,
  same.factor.downweight = 1,
  k.same.factor = k,
  balancing.factor.per.sample = NULL
)
Arguments
k

integer integer Size of the inter-sample neighborhood (default=15)

k.self

integer Size of the with-sample neighborhoods (default=10).

k.self.weight

numeric Weight multiplier on the intra-sample edges relative to inter-sample edges (default=0.1)

alignment.strength

numeric Alignment strength (default=NULL will result in alignment.strength=0)

space

character Reduced expression space used to establish putative alignments between pairs of samples (default='PCA'). Currently supported spaces are: — "CPCA" Common principal component analysis — "JNMF" Joint NMF — "genes" Gene expression space (log2 transformed) — "PCA" Principal component analysis — "CCA" Canonical correlation analysis — "PMA" (Penalized Multivariate Analysis <https://cran.r-project.org/web/packages/PMA/index.html>)

matching.method

character Matching method (default='mNN'). Currently supported methods are "NN" (nearest neighbors) or "mNN" (mututal nearest neighbors).

metric

character Distance metric to measure similarity (default='angular'). Currenlty supported metrics are "angular" and "L2".

k1

numeric Neighborhood radius for identifying mutually-matching neighbors (default=k). Note that k1 must be greater than or equal to k, i.e. k1>=k. Increasing k1 beyond k will lead to more aggressive alignment of distinct subpopulations (i.e. increased alignment strengths).

data.type

character Type of data type in the input pagoda2 objects within r.n (default='counts').

l2.sigma

numeric L2 distances get transformed as exp(-d/sigma) using this value (default=1e5)

var.scale

boolean Whether to use common variance scaling (default=TRUE). If TRUE, use geometric means for variance, as we're trying to focus on the common variance components. See scaledMatricesP2() code.

ncomps

integer Number of components (default=40)

n.odgenes

integer Number of overdispersed genes to be used in each pairwise alignment (default=2000)

matching.mask

an optional matrix explicitly specifying which pairs of samples should be compared (a symmetrical matrix of logical values with row and column names corresponding to sample names). (default=NULL). By default, comparisons between all paris are allowed. The argument can be used to exclude comparisons across certain pairs of samples (e.g. techincal replicates, which are expected to show very high similarity).

exclude.samples

optional list of sample names that should be excluded from the alignment and the resulting graph (default=NULL)

common.centering

boolean When calculating reduced expression space for a given sample pair, whether the expression of genes should be centered using the mean from both samples (TRUE) or using the mean within each sample (FALSE) (default=TRUE)

verbose

boolean Whether to provide verbose output (default=TRUE)

base.groups

an optional factor on cells specifying previously-obtained cell grouping to be used for adjusting the sample alignment (default: NULL). Specifically, cell clusters specfiieid by the base.groups can be used to i) calculate global expression axes which are appended to the overall set of eigenvectors, ii) adding decoy cells.

append.global.axes

boolean Whether to project samples on global expression axes, as defined by pre-defined (typically crude) set of cell subpopulations as specified by the base.gruops parameter (default=TRUE, but works only if base.groups is specified)

append.decoys

boolean Whether to use pre-defined cell groups (specified by base.groups) to append decoy cells to the samples which are otherwise lacking any of the pre-specified cell groups (default=TRUE, but works only if base.groups is specified). The decoy cells can reduce the number of erroneous matches in highly heterogeneous sample collections, where some of the samples lack entire cell subpopulations which are found in other samples. The approach only works if the base.groups (typically a crude clustering of top-level cell types) can be established with a reasonable confidence.

decoy.threshold

integer Minimal number of cells of a given cell type that should exist in a given sample (according to base.groups) to avoid addition of decoy cells to that sample for the purposes of alignment (default=1)

n.decoys

integer Number of decoy cells that should be added to a sample that had less than decoy.threshold cells of a given cell type (default=k*2)

score.component.variance

boolean Whether to score the amount of total variance explained by different components (default=FALSE as it takes extra time to calculate)

snn

boolean Whether to transform the joint graph by computing a shared nearest neighborhood graph (analogous to Seurat 3), further weighting the edges between two matched cells based on the similarity (measured by Jaccard coefficient) of all of their predicted neighbors (across all of the samples) (default: FALSE)

snn.quantile

numeric Specifies how the shared neighborhood graph transformation will determine final edge weights. If snn.quantile=NULL, the edge weight will be simply equal to the Jaccard coefficient of the neighborhoods. If snn.quantile is a vector of two numeric values (p1, p2), they will be treated as quantile probabilities, and quantile values (q1,q2) on the set of all Jaccard coefficients (for all edges) will be determiend. The edge weights will then be reset, so that edges with Jaccard coefficients below or equal to q1 will be set to 0, and those with coefficients >=q2 will be set to 1. The rest of the weights will be mapped uniformly from [q1,q2]->[0,1] range. If a single numeric value is supplied, it will be treated as a symmetric quantile probability (i.e. snn.quantile=0.8 is equivalent to specifying snn.quantile=c(1-0.8,0.8)). (default: 0.9)

min.snn.jaccard

numeric Minimum Jaccard coefficient required for a shared neighborhood graph edge (default: 0). The edges with Jaccard coefficients below this threshold will be removed (i.e. weight set to 0)

min.snn.weight

numeric Shared nearest neighbor procedure will adjust the weights of the edges, and even eliminate some of the edges (by setting their weight to zero). The min.snn.weight parameter allows to set a minimal adjusted edge weight, so that the edge weight is never reduced beyond this level (and hence never deleted) (default: 0 - no adjustments)

snn.k.self

integer Size of the within-sample neighorhood to be used in shared nearest neighbor calculations (default=k.self)

balance.edge.weights

boolean Whether to balance edge weights to control for a cell- or sample- specific factor (default=FALSE)

balancing.factor.per.cell

A per-cell factor (discrete factor, named with cell names) specifying a design difference should be controlled for by adjusting edge weights in the joint graph (default=NULL)

same.factor.downweight

numeric Optional weighting factor for edges connecting cells with the same cell factor level per cell balancing (default=1.0)

k.same.factor

integer An neighborhood size that should be used when aligning samples of the same balancing.factor.per.sample level. Setting a value smaller than k will lead to reduction of alingment strenth within the sample batches (default=k)

balancing.factor.per.sample

A covariate factor per sample that should be controlled for by adjusting edge weights in the joint graph (default=NULL)

Returns

joint graph to be used for downstream analysis

Examples
con <- Conos$new(small_panel.preprocessed, n.cores=1)
con$buildGraph(k=10, k.self=5, space='PCA', ncomps=10, n.odgenes=20, matching.method='mNN',
    metric='angular', score.component.variance=TRUE, verbose=TRUE)



Method getDifferentialGenes()

Calculate genes differentially expressed between cell clusters. Estimates base mean, z-score, p-values, specificity, precision, expressionFraction, AUC (if append.auc=TRUE)

Usage
Conos$getDifferentialGenes(
  clustering = NULL,
  groups = NULL,
  z.threshold = 3,
  upregulated.only = FALSE,
  verbose = TRUE,
  append.specificity.metrics = TRUE,
  append.auc = TRUE
)
Arguments
clustering

character Name of the clustering to use (see names(con$clusters)) for the value of the groups factor (default: NULL - if groups are not specified, the first clustering will be used)

groups

a cell factor (a factor named with cell names) specifying clusters of cells to be compared (one against all). To compare two cell clusters against each other, simply pass a factor containing only two levels (default: NULL, see clustering)

z.threshold

numeric Minimum absolute value of a Z score for which the genes should be reported (default=3.0).

upregulated.only

boolean If TRUE, will report only genes significantly upregulated in each cluster; otherwise both up- and down-regulated genes will be reported (default=FALSE)

verbose

boolean Whether to provide verbose output (default=TRUE)

append.specificity.metrics

boolean Whether to append specificity metrics (default=TRUE)

append.auc

boolean Whether to append AUC scores (default=TRUE)

Returns

list of DE results; each is a data frame with rows corresponding to the differentially expressed genes, and columns listing log2 fold change (M), signed Z scores (both raw and adjusted for mulitple hypothesis using BH correction), optional specificty/sensitivity and AUC metrics.


Method findCommunities()

Find cell clusters (as communities on the joint graph)

Usage
Conos$findCommunities(
  method = leiden.community,
  min.group.size = 0,
  name = NULL,
  test.stability = FALSE,
  stability.subsampling.fraction = 0.95,
  stability.subsamples = 100,
  verbose = TRUE,
  cls = NULL,
  sr = NULL,
  ...
)
Arguments
method

community detection method (igraph syntax) (default=leiden.community)

min.group.size

numeric Minimal allowed community size (default=0)

name

character Optional name of the clustering result (will default to the algorithm name) (default=NULL will try to obtain the name from the community detection method, or will use 'community' as a default)

test.stability

boolean Whether to test stability of community detection (default=FALSE)

stability.subsampling.fraction

numeric Fraction of clusters to subset (default=0.95). Must be within range [0, 1].

stability.subsamples

integer Number of subsampling iterations (default=100)

verbose

boolean Whether to provide verbose output (default=TRUE)

cls

optional pre-calculated community result (may be useful for stability testing) (default: NULL)

sr

optional pre-calculated subsampled community results (useful for stability testing) (default: NULL)

...

extra parameters are passed to the specified community detection method

Returns

invisible list containing identified communities (groups) and the full community detection result (result); The results are stored in $clusters$name slot in the conos object. Each such slot contains an object with elements: $results which stores the raw output of the community detection method, and $groups which is a factor on cells describing the resulting clustering. The later can be used, for instance, in plotting: con$plotGraph(groups=con$clusters$leiden$groups). If test.stability==TRUE, then the result object will also contain a $stability slot.

Examples
con <- Conos$new(small_panel.preprocessed, n.cores=1)
con$buildGraph(k=10, k.self=5, space='PCA', ncomps=10, n.odgenes=20, matching.method='mNN',
    metric='angular', score.component.variance=TRUE, verbose=TRUE)
con$findCommunities(method = igraph::walktrap.community, steps=5)


Method plotPanel()

Plot panel of individual embeddings per sample with joint coloring

Usage
Conos$plotPanel(
  clustering = NULL,
  groups = NULL,
  colors = NULL,
  gene = NULL,
  use.local.clusters = FALSE,
  plot.theme = NULL,
  use.common.embedding = FALSE,
  embedding = NULL,
  adj.list = NULL,
  ...
)
Arguments
clustering

character Name of the clustering to use (see names(con$clusters)) for the value of the groups factor (default=NULL - if groups are not specified, the first clustering will be used)

groups

a cell factor (a factor named with cell names) specifying clusters of cells to be compared (one against all). To compare two cell clusters against each other, simply pass a factor containing only two levels (default=NULL, see clustering)

colors

a color factor (named with cell names) use for cell coloring

gene

show expression of a gene

use.local.clusters

boolean Whether clusters should be taken from the individual samples; otherwise joint clusters in the conos object will be used (see clustering) (default=FALSE).

plot.theme

string Theme for the plot, passed to plotSamples() (default=NULL)

use.common.embedding

boolean Whether a joint embedding in the conos object should be used (or embeddings determined for the individual samples) (default=FALSE)

embedding

(default=NULL) If a character value is passed, it is interpreted as an embedding name (a name of a joint embedding in conos when use.commmon.embedding=TRUE, or a name of an embedding within the individual objects when use.common.embedding=FALSE). If a matrix is passed, it is interpreted as an actual embedding (then first two columns are interpreted as x/y coordinates, row names must be cell names). If NULL, the default embedding will be used.

adj.list

an optional list of additional ggplot2 directions to apply (default=NULL)

...

Additional parameters passed to plotSamples(), plotEmbeddings(), sccore::embeddingPlot().

Returns

cowplot grid object with the panel of plots


Method embedGraph()

Generate an embedding of a joint graph

Usage
Conos$embedGraph(
  method = "largeVis",
  embedding.name = method,
  M = 1,
  gamma = 1,
  alpha = 0.1,
  perplexity = NA,
  sgd_batches = 1e+08,
  seed = 1,
  verbose = TRUE,
  target.dims = 2,
  ...
)
Arguments
method

Embedding method (default='largeVis'). Currently 'largeVis' and 'UMAP' are supported.

embedding.name

character Optional name of the name of the embedding set by user to store multiple embeddings (default: method name)

M

numeric (largeVis) The number of negative edges to sample for each positive edge to be used (default=1)

gamma

numeric (largeVis) The strength of the force pushing non-neighbor nodes apart (default=1)

alpha

numeric (largeVis) Hyperparameter used in the default distance function, 1/(1+α˙yiyj2)1 / (1 + \alpha \dot ||y_i - y_j||^2) (default=0.1). The function relates the distance between points in the low-dimensional projection to the likelihood that the two points are nearest neighbors. Increasing α\alpha tends to push nodes and their neighbors closer together; decreasing α\alpha produces a broader distribution. Setting α\alpha to zero enables the alternative distance function. α\alpha below zero is meaningless.

perplexity

(largeVis) The perplexity passed to largeVis (default=NA)

sgd_batches

(largeVis) The number of edges to process during SGD (default=1e8). Defaults to a value set based on the size of the dataset. If the parameter given is between 0 and 1, the default value will be multiplied by the parameter.

seed

numeric Random seed for the largeVis algorithm (default=1)

verbose

boolean Whether to provide verbose output (default=TRUE)

target.dims

numeric Number of dimensions for the reduction (default=2). Higher dimensions can be used to generate embeddings for subsequent reductions by other methods, such as tSNE

...

additional arguments, passed to UMAP embedding (run ?conos:::embedGraphUmap for more info)


Method plotClusterStability()

Plot cluster stability statistics.

Usage
Conos$plotClusterStability(clustering = NULL, what = "all")
Arguments
clustering

string Name of the clustering result to show (default=NULL)

what

string Show a specific plot (ari - adjusted rand index, fjc - flat Jaccard, hjc - hierarchical Jaccard, dend - cluster dendrogram, all - everything except 'dend') (default='all')

Returns

cluster stability statistics


Method plotGraph()

Plot joint graph

Usage
Conos$plotGraph(
  color.by = "cluster",
  clustering = NULL,
  embedding = NULL,
  groups = NULL,
  colors = NULL,
  gene = NULL,
  plot.theme = NULL,
  subset = NULL,
  ...
)
Arguments
color.by

character A shortcut to color the plot by 'cluster' or by 'sample' (default: 'cluster'). If any other string is input, an error is thrown.

clustering

a character name of the clustering to use (see names(con$clusters)) for the value of the groups factor (default: NULL - if groups are not specified, the first clustering will be used)

embedding

A character name of an embedding, or a matrix of the actual embedding (rownames should correspond to cells, first to columns to x/y coordinates). If NULL (default: NULL), the latest generated embedding will be used

groups

a cell factor (a factor named with cell names) specifying clusters of cells to be compared (one against all). To compare two cell clusters against each other, simply pass a factor containing only two levels (default: NULL, see clustering)

colors

a color factor (named with cell names) use for cell coloring (default=NULL)

gene

Show expression of a gene (default=NULL)

plot.theme

Theme for the plot, passed to sccore::embeddingPlot() (default=NULL)

subset

A subset of cells to show (default: NULL - shows all the cells)

...

Additional parameters passed to sccore::embeddingPlot()

Returns

ggplot2 plot of joint graph


Method correctGenes()

Smooth expression of genes to minimize the batch effect between samples Use diffusion of expression on graph with the equation dv = exp(-a * (v + b))

Usage
Conos$correctGenes(
  genes = NULL,
  n.od.genes = 500,
  fading = 10,
  fading.const = 0.5,
  max.iters = 15,
  tol = 0.005,
  name = "diffusion",
  verbose = TRUE,
  count.matrix = NULL,
  normalize = TRUE
)
Arguments
genes

List of genes to be smooothed smoothing (default=NULL will smooth top n.od.genes overdispersed genes)

n.od.genes

numeric If 'genes' is NULL, top n.od.genes of overdispersed genes are taken across all samples (default=500)

fading

numeric Level of fading of expression change from distance on the graph (parameter 'a' of the equation) (default=10)

fading.const

numeric Minimal penalty for each new edge during diffusion (parameter 'b' of the equation) (default=0.5)

max.iters

numeric Maximal number of diffusion iterations (default=15)

tol

numeric Tolerance after which the diffusion stops (default=5e-3)

name

string Name to save the correction (default='diffusion')

verbose

boolean Verbose mode (default=TRUE)

count.matrix

Alternative gene count matrix to correct (rows: genes, columns: cells; has to be dense matrix). Default: joint count matrix for all datasets.

normalize

boolean Whether to normalize values (default=TRUE)

Returns

smoothed expression of the input genes


Method propagateLabels()

Estimate labeling distribution for each vertex, based on a partial labeling of the cells. There are two methods used for the propagation to calculate the distribution of labels: "solver" and "diffusion". * "diffusion" (default) will estimate the labeling distribution for each vertex, based on provided labels using a random walk. * "solver" will propagate labels using the algorithm described by Zhu, Ghahramani, Lafferty (2003) <http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf> Confidence values are then calculated by taking the maximum value from this distribution of labels, for each cell.

Usage
Conos$propagateLabels(labels, method = "diffusion", ...)
Arguments
labels

Input labels

method

type of propagation. Either 'diffusion' or 'solver'. 'solver' gives better result but has bad asymptotics, so is inappropriate for datasets > 20k cells. (default='diffusion')

...

additional arguments for conos:::propagateLabels* functions

Returns

list with three fields: * labels = matrix with distribution of label probabilities for each vertex by rows. * uncertainty = 1 - confidence values * label.distribution = the distribution of labels calculated using either the methods "diffusion" or "solver"


Method getClusterCountMatrices()

Calculate pseudo-bulk expression matrices for clusters (by adding up, for each gene, all of the molecules detected for all cells in a given cluster in a given sample)

Usage
Conos$getClusterCountMatrices(
  clustering = NULL,
  groups = NULL,
  common.genes = TRUE,
  omit.na.cells = TRUE
)
Arguments
clustering

string Name of the clustering to use

groups

a factor on cells to use for coloring

common.genes

boolean Whether to bring individual sample matrices to a common gene list (default=TRUE)

omit.na.cells

boolean If set to FALSE, the resulting matrices will include a first column named 'NA' that will report total molecule counts for all of the cells that were not covered by the provided factor. (default=TRUE)

Returns

a list of per-sample uniform dense matrices with rows being genes, and columns being clusters


Method getDatasetPerCell()

applies 'getCellNames()' on all samples

Usage
Conos$getDatasetPerCell()
Returns

list of cellnames for all samples

Examples
con <- Conos$new(small_panel.preprocessed, n.cores=1)
con$getDatasetPerCell()


Method getJointCountMatrix()

Retrieve joint count matrices

Usage
Conos$getJointCountMatrix(raw = FALSE)
Arguments
raw

boolean If TRUE, return merged "raw" count matrices, using function getRawCountMatrix(). Otherwise, return the merged count matrices, using getCountMatrix(). (default=FALSE)

Returns

list of merged count matrices

Examples
con <- Conos$new(small_panel.preprocessed, n.cores=1)
con$getJointCountMatrix()


Method clone()

The objects of this class are cloneable with this method.

Usage
Conos$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `Conos$new`
## ------------------------------------------------

con <- Conos$new(small_panel.preprocessed, n.cores=1)


## ------------------------------------------------
## Method `Conos$buildGraph`
## ------------------------------------------------

con <- Conos$new(small_panel.preprocessed, n.cores=1)
con$buildGraph(k=10, k.self=5, space='PCA', ncomps=10, n.odgenes=20, matching.method='mNN',
    metric='angular', score.component.variance=TRUE, verbose=TRUE)



## ------------------------------------------------
## Method `Conos$findCommunities`
## ------------------------------------------------

con <- Conos$new(small_panel.preprocessed, n.cores=1)
con$buildGraph(k=10, k.self=5, space='PCA', ncomps=10, n.odgenes=20, matching.method='mNN',
    metric='angular', score.component.variance=TRUE, verbose=TRUE)
con$findCommunities(method = igraph::walktrap.community, steps=5)


## ------------------------------------------------
## Method `Conos$getDatasetPerCell`
## ------------------------------------------------

con <- Conos$new(small_panel.preprocessed, n.cores=1)
con$getDatasetPerCell()


## ------------------------------------------------
## Method `Conos$getJointCountMatrix`
## ------------------------------------------------

con <- Conos$new(small_panel.preprocessed, n.cores=1)
con$getJointCountMatrix()

Convert Conos object to Pagoda2 object

Description

Convert Conos object to Pagoda2 object

Usage

convertToPagoda2(con, n.pcs = 100, n.odgenes = 2000, verbose = TRUE, ...)

Arguments

con

Conos object

n.pcs

numeric Number of principal components (default=100)

n.odgenes

numeric Number of overdispersed genes (default=2000)

verbose

boolean Whether to give verbose output (default=TRUE)

...

parameters passed to Pagoda2$new()

Value

pagoda2 object


Set edge matrix edgeMat with certain values on sample

Description

Set edge matrix edgeMat with certain values on sample

Access edgeMat from sample

Usage

edgeMat(sample) <- value

## S4 replacement method for signature 'Pagoda2'
edgeMat(sample) <- value

## S4 replacement method for signature 'seurat'
edgeMat(sample) <- value

## S4 replacement method for signature 'Seurat'
edgeMat(sample) <- value

edgeMat(sample)

## S4 method for signature 'Pagoda2'
edgeMat(sample)

## S4 method for signature 'seurat'
edgeMat(sample)

## S4 method for signature 'Seurat'
edgeMat(sample)

Arguments

sample

sample from which to access edge matrix edgeMat

value

values to set with edgeMat<-


Estimate entropy of edge weights per cell according to the specified factor. Can be used to visualize alignment quality according to this factor.

Description

Estimate entropy of edge weights per cell according to the specified factor. Can be used to visualize alignment quality according to this factor.

Usage

estimateWeightEntropyPerCell(con, factor.per.cell)

Arguments

con

conos object

factor.per.cell

some factor, which group cells, such as sample or a specific condition

Value

entropy of edge weights per cell


Increase resolution for a specific set of clusters

Description

Increase resolution for a specific set of clusters

Usage

findSubcommunities(
  con,
  target.clusters,
  clustering = NULL,
  groups = NULL,
  method = leiden.community,
  ...
)

Arguments

con

conos object

target.clusters

clusters for which the resolution should be increased

clustering

name of clustering in the conos object to use. Either 'clustering' or 'groups' must be provided (default=NULL).

groups

set of clusters to use. Ignored if 'clustering' is not NULL (default=NULL).

method

function, used to find communities (default=leiden.community).

...

additional params passed to the community function

Value

set of clusters with increased resolution


Compare two cell types across the entire panel

Description

Compare two cell types across the entire panel

Usage

getBetweenCellTypeCorrectedDE(
  con.obj,
  sample.groups = NULL,
  groups = NULL,
  cooks.cutoff = FALSE,
  refgroup = NULL,
  altgroup = NULL,
  min.cell.count = 10,
  independent.filtering = FALSE,
  cluster.sep.chr = "<!!>",
  return.details = TRUE,
  only.paired = TRUE,
  correction = NULL,
  ref.level = NULL
)

Arguments

con.obj

conos object

sample.groups

a named list of two character vectors specifying the app groups to compare

groups

factor describing cell grouping

cooks.cutoff

cooksCutoff parameter for DESeq2

refgroup

cell type to compare to be used as reference

altgroup

cell type to compare to

min.cell.count

minimum number of cells per celltype/sample combination to keep

independent.filtering

independentFiltering parameter for DESeq2

cluster.sep.chr

character string of length 1 specifying a delimiter to separate cluster and app names

return.details

logical, return detailed results

only.paired

only keep samples that that both cell types above the min.cell.count threshold

correction

fold change corrections per genes

ref.level

reference level on the basis of which the correction was calculated

Value

Returns either a DESeq2::results() object, or if return.details=TRUE, returns a list of the DESeq2::results(), the samples from the panel to use in this comparison, refgroups, altgroup, and samplegroups


Compare two cell types across the entire panel

Description

Compare two cell types across the entire panel

Usage

getBetweenCellTypeDE(
  con.obj,
  groups = NULL,
  sample.groups = NULL,
  cooks.cutoff = FALSE,
  refgroup = NULL,
  altgroup = NULL,
  min.cell.count = 10,
  independent.filtering = FALSE,
  cluster.sep.chr = "<!!>",
  return.details = TRUE,
  only.paired = TRUE,
  remove.na = TRUE
)

Arguments

con.obj

conos object

groups

factor describing cell grouping (default=NULL)

sample.groups

a named list of two character vectors specifying the app groups to compare (default=NULL)

cooks.cutoff

boolean cooksCutoff parameter for DESeq2 (default=FALSE)

refgroup

cell type to compare to be used as reference (default=NULL)

altgroup

cell type to compare to be used as ALT against refgroup (default=NULL)

min.cell.count

numeric Minimum number of cells per celltype/sample combination to keep (default=10)

independent.filtering

boolean Whether to use independentFiltering parameter for DESeq2 (default=FALSE)

cluster.sep.chr

character string of length 1 specifying a delimiter to separate cluster and app names (default='<!!>')

return.details

boolean Return detailed results (default=TRUE)

only.paired

boolean Only keep samples that that both cell types above the min.cell.count threshold (default=TRUE)

remove.na

boolean If TRUE, remove NAs from DESeq calculations (default=TRUE)

Value

Returns either a DESeq2::results() object, or if return.details=TRUE, returns a list of the DESeq2::results(), the samples from the panel to use in this comparison, refgroups, altgroup, and samplegroups


Access cell names from sample

Description

Access cell names from sample

Usage

getCellNames(sample)

## S4 method for signature 'Pagoda2'
getCellNames(sample)

## S4 method for signature 'seurat'
getCellNames(sample)

## S4 method for signature 'Seurat'
getCellNames(sample)

## S4 method for signature 'Conos'
getCellNames(sample)

Arguments

sample

sample from which to cell names


Access clustering from sample

Description

Access clustering from sample

Usage

getClustering(sample, type)

## S4 method for signature 'Pagoda2'
getClustering(sample, type)

## S4 method for signature 'seurat'
getClustering(sample, type)

## S4 method for signature 'Seurat'
getClustering(sample, type)

## S4 method for signature 'Conos'
getClustering(sample, type)

Arguments

sample

sample from which to get the clustering

type

character Type of clustering to get


Access count matrix from sample

Description

Access count matrix from sample

Usage

getCountMatrix(sample, transposed = FALSE)

## S4 method for signature 'Pagoda2'
getCountMatrix(sample, transposed = FALSE)

## S4 method for signature 'seurat'
getCountMatrix(sample, transposed = FALSE)

## S4 method for signature 'Seurat'
getCountMatrix(sample, transposed = FALSE)

Arguments

sample

sample from which to get the count matrix

transposed

boolean Whether the count matrix should be transposed (default=FALSE)


Access embedding from sample

Description

Access embedding from sample

Usage

getEmbedding(sample, type)

## S4 method for signature 'Pagoda2'
getEmbedding(sample, type)

## S4 method for signature 'seurat'
getEmbedding(sample, type)

## S4 method for signature 'Seurat'
getEmbedding(sample, type)

## S4 method for signature 'Conos'
getEmbedding(sample, type)

Arguments

sample

sample from which to get the embedding

type

character Type of embedding to get


Access gene expression from sample

Description

Access gene expression from sample

Usage

getGeneExpression(sample, gene)

## S4 method for signature 'Pagoda2'
getGeneExpression(sample, gene)

## S4 method for signature 'Conos'
getGeneExpression(sample, gene)

## S4 method for signature 'Seurat'
getGeneExpression(sample, gene)

## S4 method for signature 'seurat'
getGeneExpression(sample, gene)

Arguments

sample

sample from which to access gene expression

gene

character vector Genes to access


Access genes from sample

Description

Access genes from sample

Usage

getGenes(sample)

## S4 method for signature 'Pagoda2'
getGenes(sample)

## S4 method for signature 'seurat'
getGenes(sample)

## S4 method for signature 'Seurat'
getGenes(sample)

## S4 method for signature 'Conos'
getGenes(sample)

Arguments

sample

sample from which to get genes


Access overdispersed genes from sample

Description

Access overdispersed genes from sample

Usage

getOverdispersedGenes(sample, n.odgenes = 1000)

## S4 method for signature 'Pagoda2'
getOverdispersedGenes(sample, n.odgenes = NULL)

## S4 method for signature 'seurat'
getOverdispersedGenes(sample, n.odgenes = NULL)

## S4 method for signature 'Seurat'
getOverdispersedGenes(sample, n.odgenes = NULL)

## S4 method for signature 'Conos'
getOverdispersedGenes(sample, n.odgenes = NULL)

Arguments

sample

sample from which to overdispereed genes

n.odgenes

numeric Number of overdisperesed genes to get


Access PCA from sample

Description

Access PCA from sample

Usage

getPca(sample)

## S4 method for signature 'Pagoda2'
getPca(sample)

## S4 method for signature 'seurat'
getPca(sample)

## S4 method for signature 'Seurat'
getPca(sample)

Arguments

sample

sample from which to access PCA


Do differential expression for each cell type in a conos object between the specified subsets of apps

Description

Do differential expression for each cell type in a conos object between the specified subsets of apps

Usage

getPerCellTypeDE(
  con.obj,
  groups = NULL,
  sample.groups = NULL,
  cooks.cutoff = FALSE,
  ref.level = NULL,
  min.cell.count = 10,
  remove.na = TRUE,
  max.cell.count = Inf,
  test = "LRT",
  independent.filtering = FALSE,
  n.cores = 1,
  cluster.sep.chr = "<!!>",
  return.details = TRUE
)

Arguments

con.obj

conos object

groups

factor specifying cell types (default=NULL)

sample.groups

a list of two character vector specifying the app groups to compare (default=NULL)

cooks.cutoff

boolean cooksCutoff for DESeq2 (default=FALSE)

ref.level

the reference level of the sample.groups against which the comparison should be made (default=NULL). If NULL, will pick the first one.

min.cell.count

integer Minimal number of cells per cluster for a sample to be taken into account in a comparison (default=10)

remove.na

boolean If TRUE, remove NAs from DESeq calculations, which often arise as comparisons not possible (default=TRUE)

max.cell.count

maximal number of cells per cluster per sample to include in a comparison (useful for comparing the number of DE genes between cell types) (default=Inf)

test

which DESeq2 test to use (options: "LRT" or "Wald") (default="LRT")

independent.filtering

boolean independentFiltering for DESeq2 (default=FALSE)

n.cores

numeric Number of cores (default=1)

cluster.sep.chr

character string of length 1 specifying a delimiter to separate cluster and app names (default='<!!>')

return.details

boolean Whether to return verbose details (default=TRUE)

Value

A list of differential expression results for every cell type


Access raw count matrix from sample

Description

Access raw count matrix from sample

Usage

getRawCountMatrix(sample, transposed = FALSE)

## S4 method for signature 'Pagoda2'
getRawCountMatrix(sample, transposed = FALSE)

## S4 method for signature 'seurat'
getRawCountMatrix(sample, transposed = FALSE)

## S4 method for signature 'Seurat'
getRawCountMatrix(sample, transposed = FALSE)

## S4 method for signature 'Conos'
getRawCountMatrix(sample, transposed = FALSE)

Arguments

sample

sample from which to get the raw count matrix

transposed

boolean Whether the raw count matrix should be transposed (default=FALSE)


Retrieve sample names per cell

Description

Retrieve sample names per cell

Usage

getSampleNamePerCell(samples)

Arguments

samples

list of samples

Value

list of sample names getSampleNamePerCell(small_panel.preprocessed)


Performs a greedy top-down selective cut to optmize modularity

Description

Performs a greedy top-down selective cut to optmize modularity

Usage

greedyModularityCut(
  wt,
  N,
  leaf.labels = NULL,
  minsize = 0,
  minbreadth = 0,
  flat.cut = TRUE
)

Arguments

wt

walktrap result

N

numeric Number of top greedy splits to take

leaf.labels

leaf sample label factor, for breadth calculations - must be a named factor containing all wt$names, or if wt$names is null, a factor listing cells in the same order as wt leafs (default=NULL)

minsize

numeric Minimum size of the branch (in number of leafs) (default=0)

minbreadth

numeric Minimum allowed breadth of a branch (measured as normalized entropy) (default=0)

flat.cut

boolean Whether to simply take a flat cut (i.e. follow provided tree; default=TRUE). Does no observe minsize/minbreadth restrictions

Value

list(hclust - hclust structure of the derived tree, leafContent - binary matrix with rows corresponding to old leaves, columns to new ones, deltaM - modularity increments)


Utility function to generate a pagoda2 app from a conos object

Description

Utility function to generate a pagoda2 app from a conos object

Usage

p2app4conos(
  conos,
  cdl = NULL,
  metadata = NULL,
  filename = "conos_app.bin",
  save = TRUE,
  n.cores = 1,
  n.odgenes = 3000,
  nPcs = 100,
  k = 30,
  perplexity = 50,
  log.scale = TRUE,
  trim = 10,
  keep.genes = NULL,
  min.cells.per.gene = 0,
  min.transcripts.per.cell = 100,
  get.largevis = TRUE,
  get.tsne = TRUE,
  make.geneknn = TRUE,
  go.env = NULL,
  cell.subset = NULL,
  max.cells = Inf,
  additional.embeddings = NULL,
  test.pathway.overdispersion = FALSE,
  organism = NULL,
  return.details = FALSE
)

Arguments

conos

Conos object

cdl

list Optional list of raw matrices (so that gene merging doesn't have to be redone) (default=NULL)

metadata

list Optional list of (named) metadata factors (default=NULL)

filename

string Name of the *.bin file to seralize for the pagoda2 application if save=TRUE (default='conos_app.bin')

save

boolean Save serialized *bin file specified in filename (default=TRUE)

n.cores

integer Number of cores (default=1)

n.odgenes

numeric Number of top overdispersed genes to use (dfault=3e3). From pagoda2::basicP2proc().

nPcs

numeric Number of PCs to use (default=100). From pagoda2::basicP2proc().

k

numeric Default number of neighbors to use in kNN graph (default=30). From pagoda2::basicP2proc().

perplexity

numeric Perplexity to use in generating tSNE and largeVis embeddings (default=50). From pagoda2::basicP2proc().

log.scale

boolean Whether to use log scale normalization (default=TRUE). From pagoda2::basicP2proc().

trim

numeric Number of cells to trim in winsorization (default=10). From pagoda2::basicP2proc().

keep.genes

optional set of genes to keep from being filtered out (even at low counts) (default=NULL). From pagoda2::basicP2proc().

min.cells.per.gene

numeric Minimal number of cells required for gene to be kept (unless listed in keep.genes) (default=0). From pagoda2::basicP2proc().

min.transcripts.per.cell

numeric Minimumal number of molecules/reads for a cell to be admitted (default=100). From pagoda2::basicP2proc().

get.largevis

boolean Whether to caluclate largeVis embedding (default=TRUE). From pagoda2::basicP2proc().

get.tsne

boolean Whether to calculate tSNE embedding (default=TRUE). From pagoda2::basicP2proc().

make.geneknn

boolean Whether pre-calculate gene kNN (for gene search) (default=TRUE). From pagoda2::basicP2proc().

go.env

GO environment for the organism of interest (default=NULL)

cell.subset

string Cells to subset with the conos embedding conos$embedding. If NULL, uses all cells via rownames(conos$embedding) (default=NULL)

max.cells

numeric Limit to the cells that are included in the conos. If Inf, there is no limit (default=Inf)

additional.embeddings

list Additional embeddings to add to conos for the pagoda2 app (default=NULL)

test.pathway.overdispersion

boolean Find all IDs using GO category against either org.Hs.eg.db ('hs') or org.Mm.eg.db ('mm') (default=FALSE

organism

string Organism of interest, either 'hs' (Homo sapiens) or 'mm' (Mus musculus, i.e. mouse) (default=NULL). Only used if test.pathway.overdispersion is TRUE. If NULL and test.pathway.overdispersion=TRUE, then 'hs' is used.

return.details

boolean If TRUE, return list of p2 application, pagoda2 object, list of raw matrices, and cell names. If FALSE, simply return pagoda2 app object. (default=FALSE)

Value

pagoda2 app object


Plots barplots per sample of composition of each pagoda2 application based on selected clustering

Description

Plots barplots per sample of composition of each pagoda2 application based on selected clustering

Usage

plotClusterBarplots(
  conos.obj = NULL,
  clustering = NULL,
  groups = NULL,
  sample.factor = NULL,
  show.entropy = TRUE,
  show.size = TRUE,
  show.composition = TRUE,
  legend.height = 0.2
)

Arguments

conos.obj

A conos object (default=NULL)

clustering

name of clustering in the current object (default=NULL)

groups

arbitrary grouping of cells (to use instead of the clustering) (default=NULL)

sample.factor

a factor describing cell membership in the samples (or some other category) (default=NULL). This will default to samples if not provided.

show.entropy

boolean Whether to include entropy barplot (default=TRUE)

show.size

boolean Whether to include size barplot (default=TRUE)

show.composition

boolean Whether to include composition barplot (default=TRUE)

legend.height

numeric Relative hight of the legend panel (default=0.2)

Value

a ggplot object


Generate boxplot per cluster of the proportion of cells in each celltype

Description

Generate boxplot per cluster of the proportion of cells in each celltype

Usage

plotClusterBoxPlotsByAppType(
  conos.obj,
  clustering = NULL,
  apptypes = NULL,
  return.details = FALSE
)

Arguments

conos.obj

conos object

clustering

name of the clustering to use (default=NULL)

apptypes

a factor specifying how to group the samples (default=NULL)

return.details

boolean If TRUE return a list with the plot and the summary data.frame (default=FALSE)

Value

Boxplot per cluster of the proportion of cells in each celltype


Plot fraction of variance explained by the successive reduced space components (PCA, CPCA)

Description

Requires buildGraph() or updatePairs() to be ran first with the argument score.component.variance=TRUE.

Usage

plotComponentVariance(
  conos.obj,
  space = "PCA",
  plot.theme = ggplot2::theme_bw()
)

Arguments

conos.obj

conos object

space

character Reduction space to be analyzed (currently, component variance scoring is only supported by PCA and CPCA) (default='PCA')

plot.theme

ggplot theme (default=ggplot2::theme_bw()). Refer to <https://ggplot2.tidyverse.org/reference/ggtheme.html> for more details.

Value

ggplot


Plot a heatmap of differential genes

Description

Plot a heatmap of differential genes

Usage

plotDEheatmap(
  con,
  groups,
  de = NULL,
  min.auc = NULL,
  min.specificity = NULL,
  min.precision = NULL,
  n.genes.per.cluster = 10,
  additional.genes = NULL,
  exclude.genes = NULL,
  labeled.gene.subset = NULL,
  expression.quantile = 0.99,
  pal = colorRampPalette(c("dodgerblue1", "grey95", "indianred1"))(1024),
  ordering = "-AUC",
  column.metadata = NULL,
  show.gene.clusters = TRUE,
  remove.duplicates = TRUE,
  column.metadata.colors = NULL,
  show.cluster.legend = TRUE,
  show_heatmap_legend = FALSE,
  border = TRUE,
  return.details = FALSE,
  row.label.font.size = 10,
  order.clusters = FALSE,
  split = FALSE,
  split.gap = 0,
  cell.order = NULL,
  averaging.window = 0,
  max.cells = Inf,
  ...
)

Arguments

con

conos (or p2) object

groups

groups in which the DE genes were determined (so that the cells can be ordered correctly)

de

differential expression result (list of data frames) (default=NULL)

min.auc

optional minimum AUC threshold (default=NULL)

min.specificity

optional minimum specificity threshold (default=NULL)

min.precision

optional minimum precision threshold (default=NULL)

n.genes.per.cluster

numeric Number of genes to show for each cluster (default=10)

additional.genes

optional additional genes to include (the genes will be assigned to the closest cluster) (default=NULL)

exclude.genes

an optional list of genes to exclude from the heatmap (default=NULL)

labeled.gene.subset

a subset of gene names to show (instead of all genes) (default=NULL). Can be a vector of gene names, or a number of top genes (in each cluster) to show the names for.

expression.quantile

numeric Expression quantile to show (default=0.99)

pal

palette to use for the main heatmap (default=colorRampPalette(c('dodgerblue1','grey95','indianred1'))(1024))

ordering

order by which the top DE genes (to be shown) are determined (default "-AUC")

column.metadata

additional column metadata, passed either as a data.frame with rows named as cells, or as a list of named cell factors (default=NULL).

show.gene.clusters

whether to show gene cluster color codes

remove.duplicates

remove duplicated genes (leaving them in just one of the clusters)

column.metadata.colors

a list of color specifications for additional column metadata, specified according to the HeatmapMetadata format. Use "clusters" slot to specify cluster colors.

show.cluster.legend

boolean Whether to show the cluster legend (default=TRUE)

show_heatmap_legend

boolean Whether to show the expression heatmap legend (default=FALSE)

border

boolean Whether to show borders around the heatmap and annotations (default=TRUE)

return.details

boolean If TRUE will return a list containing the heatmap (ha), but also raw matrix (x), expression list (expl) and other info to produce the heatmap on your own (default=FALSE).

row.label.font.size

numeric Font size for the row labels (default=10)

order.clusters

boolean Whether to re-order the clusters according to the similarity of the expression patterns (of the genes being shown) (default=FALSE)

split

boolean Whether to use arguments "row_split" and "column_split" in ComplexHeatmap::Heatmap() (default=FALSE). These arguments are categorical vectors used to split the rows/columns in the heatmap.

split.gap

numeric Value of millimeters "mm" to use for 'row_gap' and 'column_gap' (default=0). If split is FALSE, this argument is ignored.

cell.order

explicitly supply cell order (default=NULL)

averaging.window

numeric Optional window averaging between neighboring cells within each group (turned off by default) - useful when very large number of cells shown (requires zoo package) (default=0)

max.cells

numeric Maximum cells to include in any given group (default: Inf)

...

extra parameters are passed to ComplexHeatmap::Heatmap() call

Value

ComplexHeatmap::Heatmap object (see return.details param for other output)


Project a distance matrix into a lower-dimensional space.

Description

Takes as input a sparse matrix of the edge weights connecting each node to its nearest neighbors, and outputs a matrix of coordinates embedding the inputs in a lower-dimensional space.

Usage

projectKNNs(
  wij,
  dim = 2,
  sgd_batches = NULL,
  M = 5,
  gamma = 7,
  alpha = 1,
  rho = 1,
  coords = NULL,
  useDegree = FALSE,
  momentum = NULL,
  seed = NULL,
  threads = NULL,
  verbose = getOption("verbose", TRUE)
)

Arguments

wij

A symmetric sparse matrix of edge weights, in C-compressed format, as created with the Matrix package.

dim

numeric Number of dimensions for the projection space (default=2).

sgd_batches

The number of edges to process during SGD (default=NULL). Defaults to a value set based on the size of the dataset. If the parameter given is between 0 and 1, the default value will be multiplied by the parameter.

M

numeric Number of negative edges to sample for each positive edge (default=5).

gamma

numeric Strength of the force pushing non-neighbor nodes apart (default=7).

alpha

numeric Hyperparameter used in the default distance function, 1/(1+α˙yiyj2)1 / (1 + \alpha \dot ||y_i - y_j||^2) (default=1). The function relates the distance between points in the low-dimensional projection to the likelihood that the two points are nearest neighbors. Increasing α\alpha tends to push nodes and their neighbors closer together; decreasing α\alpha produces a broader distribution. Setting α\alpha to zero enables the alternative distance function. α\alpha below zero is meaningless.

rho

numeric Initial learning rate (default=1)

coords

An initialized coordinate matrix (default=NULL).

useDegree

boolean Whether to use vertex degree to determine weights (default=FALSE). If TRUE, weights determined in negative sampling; if FALSE, weights determined by the sum of the vertex's edges. See Notes.

momentum

If not NULL (the default), SGD with momentum is used, with this multiplier, which must be between 0 and 1. Note that momentum can drastically speed-up training time, at the cost of additional memory consumed.

seed

numeric Random seed to be passed to the C++ functions (default=NULL). If NULL, sampled from hardware entropy pool. Note that if the seed is not NULL (the default), the maximum number of threads will be set to 1 in phases of the algorithm that would otherwise be non-deterministic.

threads

numeric The maximum number of threads to spawn (default=NULL). Determined automatically if NULL.

verbose

boolean Verbosity (default=getOption("verbose", TRUE))

Details

The algorithm attempts to estimate a dim-dimensional embedding using stochastic gradient descent and negative sampling.

The objective function is:

O=(i,j)Ewij(logf(p(eij=1)+k=1MEjk Pn(j)γlog(1f(p(eijk1)))O = \sum_{(i,j)\in E} w_{ij} (\log f(||p(e_{ij} = 1||) + \sum_{k=1}^{M} E_{jk~P_{n}(j)} \gamma \log(1 - f(||p(e_{ij_k} - 1||)))

where f()f() is a probabilistic function relating the distance between two points in the low-dimensional projection space, and the probability that they are nearest neighbors.

The default probabilistic function is 1/(1+α˙x2)1 / (1 + \alpha \dot ||x||^2). If α\alpha is set to zero, an alternative probabilistic function, 1/(1+exp(x2))1 / (1 + \exp(x^2)) will be used instead.

Note that the input matrix should be symmetric. If any columns in the matrix are empty, the function will fail.

Value

A dense [N,D] matrix of the coordinates projecting the w_ij matrix into the lower-dimensional space.

Note

If specified, seed is passed to the C++ and used to initialize the random number generator. This will not, however, be sufficient to ensure reproducible results, because the initial coordinate matrix is generated using the R random number generator. To ensure reproducibility, call set.seed before calling this function, or pass it a pre-allocated coordinate matrix.

The original paper called for weights in negative sampling to be calculated according to the degree of each vertex, the number of edges connecting to the vertex. The reference implementation, however, uses the sum of the weights of the edges to each vertex. In experiments, the difference was imperceptible with small (MNIST-size) datasets, but the results seems aesthetically preferrable using degree. The default is to use the edge weights, consistent with the reference implementation.

Examples

## Not run: 
data(CO2)
CO2$Plant <- as.integer(CO2$Plant)
CO2$Type <- as.integer(CO2$Type)
CO2$Treatment <- as.integer(CO2$Treatment)
co <- scale(as.matrix(CO2))
# Very small datasets often produce a warning regarding the alias table.  This is safely ignored.
suppressWarnings(vis <- largeVis(t(co), K = 20, sgd_batches = 1, threads = 2))
suppressWarnings(coords <- projectKNNs(vis$wij, threads = 2))
plot(t(coords))

## End(Not run)

Get raw matrices with common genes

Description

Get raw matrices with common genes

Usage

rawMatricesWithCommonGenes(con.obj, sample.groups = NULL)

Arguments

con.obj

Conos object

sample.groups

list of samples to select from Conos object, con.obj$samples (default=NULL)

Value

raw matrices subset with common genes


Save Conos object on disk to read it from ScanPy

Description

Save Conos object on disk to read it from ScanPy

Usage

saveConosForScanPy(
  con,
  output.path,
  hdf5_filename,
  metadata.df = NULL,
  cm.norm = FALSE,
  pseudo.pca = FALSE,
  pca = FALSE,
  n.dims = 100,
  embedding = TRUE,
  alignment.graph = TRUE,
  verbose = FALSE
)

Arguments

con

conos object

output.path

path to a folder, where intermediate files will be saved

hdf5_filename

name of HDF5 written with ScanPy files. Note: the rhdf5 package is required

metadata.df

data.frame with additional metadata with rownames corresponding to cell ids, which should be passed to ScanPy (default=NULL) If NULL, only information about cell ids and origin dataset will be saved.

cm.norm

boolean Whether to include the matrix of normalised counts (default=FALSE).

pseudo.pca

boolean Whether to produce an emulated PCA by embedding the graph to a space with 'n.dims' dimensions and save it as a pseudoPCA (default=FALSE).

pca

boolean Whether to include PCA of all the samples (not batch corrected) (default=FALSE).

n.dims

numeric Number of dimensions for calculating PCA and/or pseudoPCA (default=100).

embedding

boolean Whether to include the current conos embedding (default=TRUE).

alignment.graph

boolean Whether to include graph of connectivities and distances (default=TRUE).

verbose

boolean Whether to use verbose mode (default=FALSE)

Value

AnnData object for ScanPy, saved to disk

See Also

The rhdf5 package documentation here: <https://www.bioconductor.org/packages/release/bioc/html/rhdf5.html>


Save differential expression as table in *csv format

Description

Save differential expression as table in *csv format

Usage

saveDEasCSV(de.results, saveprefix, gene.metadata = NULL)

Arguments

de.results

output of differential expression results, corrected or uncorrected

saveprefix

character prefix for output file

gene.metadata

gene metadta to include (default=NULL)


Save differential expression results as JSON

Description

Save differential expression results as JSON

Usage

saveDEasJSON(
  de.results = NULL,
  saveprefix = NULL,
  gene.metadata = NULL,
  cluster.sep.chr = "<!!>"
)

Arguments

de.results

differential expression results (default=NULL)

saveprefix

prefix for the differential expression output (default=NULL)

gene.metadata

data.frame with gene metadata (default=NULL)

cluster.sep.chr

character string of length 1 specifying a delimiter to separate cluster and app names (default='<!!>')

Value

JSON with DE results


Scan joint graph modularity for a range of k (or k.self) values Builds graph with different values of k (or k.self if scan.k.self=TRUE), evaluating modularity of the resulting multilevel clustering NOTE: will run evaluations in parallel using con$n.cores (temporarily setting con$n.cores to 1 in the process)

Description

Scan joint graph modularity for a range of k (or k.self) values Builds graph with different values of k (or k.self if scan.k.self=TRUE), evaluating modularity of the resulting multilevel clustering NOTE: will run evaluations in parallel using con$n.cores (temporarily setting con$n.cores to 1 in the process)

Usage

scanKModularity(
  con,
  min = 3,
  max = 50,
  by = 1,
  scan.k.self = FALSE,
  omit.internal.edges = TRUE,
  verbose = TRUE,
  plot = TRUE,
  ...
)

Arguments

con

Conos object to test

min

numeric Minimal value of k to test (default=3)

max

numeric Value of k to test (default=50)

by

numeric Scan step (default=1)

scan.k.self

boolean Whether to test dependency on scan.k.self (default=FALSE)

omit.internal.edges

boolean Whether to omit internal edges of the graph (default=TRUE)

verbose

boolean Whether to provide verbose output (default=TRUE)

plot

boolean Whether to plot the output (default=TRUE)

...

other parameters will be passed to con$buildGraph()

Value

a data frame with $k $m columns giving k and the corresponding modularity


Calculate the default number of batches for a given number of vertices and edges. The formula used is the one used by the 'largeVis' reference implementation. This is substantially less than the recommendation E10000E * 10000 in the original paper.

Description

Calculate the default number of batches for a given number of vertices and edges. The formula used is the one used by the 'largeVis' reference implementation. This is substantially less than the recommendation E10000E * 10000 in the original paper.

Usage

sgdBatches(N, E = 150 * N/2)

Arguments

N

Number of vertices

E

Number of edges (default = 150*N/2)

Value

The recommended number of sgd batches.

Examples

# Observe that increasing K has no effect on processing time
N <- 70000 # MNIST
K <- 10:250
plot(K, sgdBatches(rep(N, length(K)), N * K / 2))

# Observe that processing time scales linarly with N
N <- c(seq(from = 1, to = 10000, by = 100), seq(from = 10000, to = 10000000, by = 1000))
plot(N, sgdBatches(N))

Small pre-processed data from Pagoda2, two samples, each dimension (1000, 100)

Description

Small pre-processed data from Pagoda2, two samples, each dimension (1000, 100)

Usage

small_panel.preprocessed

Format

An object of class list of length 2.


Determine number of detectable clusters given a reference walktrap and a bunch of permuted walktraps

Description

Determine number of detectable clusters given a reference walktrap and a bunch of permuted walktraps

Usage

stableTreeClusters(
  refwt,
  tests,
  min.threshold = 0.8,
  min.size = 10,
  n.cores = 30,
  average.thresholds = FALSE
)

Arguments

refwt

reference walktrap result

tests

a list of permuted walktrap results

min.threshold

numeric Min detectability threshold (default=0.8)

min.size

numeric Minimum cluster size (number of leafs) (default=10)

n.cores

numeric Number of cores (default=30)

average.thresholds

boolean Report a single number of detectable clusters for averaged detected thresholds (default=FALSE) (a list of detected clusters for each element of the tests list is returned by default)

Value

number of detectable stable clusters


RNA velocity analysis on samples integrated with conos Create a list of objects to pass into gene.relative.velocity.estimates function from the velocyto.R package

Description

RNA velocity analysis on samples integrated with conos Create a list of objects to pass into gene.relative.velocity.estimates function from the velocyto.R package

Usage

velocityInfoConos(
  cms.list,
  con,
  clustering = NULL,
  groups = NULL,
  n.odgenes = 2000,
  verbose = TRUE,
  min.max.cluster.average.emat = 0.2,
  min.max.cluster.average.nmat = 0.05,
  min.max.cluster.average.smat = 0.01
)

Arguments

cms.list

list of velocity files written out as cell.counts.matrices.rds files by running dropest with -V option

con

conos object (after creating an embedding and running leiden clustering)

clustering

name of clustering in the conos object to use (default=NULL). Either 'clustering' or 'groups' must be provided.

groups

set of clusters to use (default=NULL). Ignored if 'clustering' is not NULL.

n.odgenes

numeric Number of overdispersed genes to use for PCA (default=2000).

verbose

boolean Whether to use verbose mode (default=TRUE)

min.max.cluster.average.emat

Required minimum average expression count for emat, the spliced (exonic) count matrix (default=0.2). Note: no normalization is perfomed. See the parameter 'min.max.cluster.average' in the function 'filter.genes.by.cluster.expression.'

min.max.cluster.average.nmat

Required minimum average expression count for nmat, the unspliced (nascent) count matrix (default=0.05). Note: no normalization is perfomed. See the parameter 'min.max.cluster.average' in the function 'filter.genes.by.cluster.expression.'

min.max.cluster.average.smat

Required minimum average expression count for smat, the spanning read matrix (used in offset calculations) (default=0.01). Note: no normalization is perfomed. See the parameter 'min.max.cluster.average' in the function 'filter.genes.by.cluster.expression.'

Value

List with cell distances, combined spliced expression matrix, combined unspliced expression matrix, combined matrix of spanning reads, cell colors for clusters and embedding (taken from conos)