Package 'conicfit'

Title: Algorithms for Fitting Circles, Ellipses and Conics Based on the Work by Prof. Nikolai Chernov
Description: Geometric circle fitting with Levenberg-Marquardt (a, b, R), Levenberg-Marquardt reduced (a, b), Landau, Spath and Chernov-Lesort. Algebraic circle fitting with Taubin, Kasa, Pratt and Fitzgibbon-Pilu-Fisher. Geometric ellipse fitting with ellipse LMG (geometric parameters) and conic LMA (algebraic parameters). Algebraic ellipse fitting with Fitzgibbon-Pilu-Fisher and Taubin.
Authors: Jose Gama [aut, cre], Nikolai Chernov [aut, cph]
Maintainer: Jose Gama <[email protected]>
License: GPL (>= 3)
Version: 1.0.4
Built: 2024-12-01 07:58:49 UTC
Source: CRAN

Help Index


Conversion of algebraic parameters to geometric parameters

Description

AtoG converts algebraic parameters (A, B, C, D, E, F) to geometric parameters (Center(1:2), Axes(1:2), Angle).

Usage

AtoG(ParA)

Arguments

ParA

vector or array with geometric parameters (A, B, C, D, E, F)

Format

code is: -1 - degenerate cases 0 - imaginary ellipse 4 - imaginary parell lines 1 - ellipse 2 - hyperbola 3 - parabola

Value

list(ParG, exitCode

list with algebraic parameters (Center(1:2), Axes(1:2), Angle) and exit code

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

AtoG(c(0.0551,-0.0908,0.1588,0.0489,-0.9669,0.1620))

Generate points from a circle

Description

calculateCircle generates points from a circle with many options, equally spaced, randomly spaced, with noise added to the radius or limited to a segment of angle alpha.

Usage

calculateCircle(x, y, r, steps=50,sector=c(0,360),randomDist=FALSE, 
randomFun=runif, noiseFun = NA, ...)

Arguments

x

center point x

y

center point y

r

radius

steps

number of points

sector

limited circular sector

randomDist

logical, TRUE = randomly spaced

randomFun

random function for the position of the points in the circle

noiseFun

random function for the noise

...

optional parameters to pass to randomFun

Value

points

array n x 2 of point coordinates.

Author(s)

Jose Gama

Examples

## Not run: 
# 100 points from a circle at c(0,0) with radius=200
a<-calculateCircle(0,0,200,100)
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250))
par(new=T)
# 12 points from a circle at c(0,0) with radius=190, points between 0 and 90 
#degrees
a<-calculateCircle(0,0,190,12,c(0,90))
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='red')
par(new=T)
# 12 points from a circle at c(0,0) with radius=180, points between 0 and 180 
#degrees, uniform random distribution
a<-calculateCircle(0,0,180,12,c(0,180),TRUE)
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='green')
par(new=T)
# 12 points from a circle at c(0,0) with radius=170, points between 0 and 180 
#degrees, normal random distribution
a<-calculateCircle(0,0,170,12,c(0,180),TRUE,rnorm)
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='blue')
par(new=T)
# 12 points from a circle at c(0,0) with radius=200, points between 0 and 180 
#degrees, positioned by uniform random distribution, noise=normal random 
#distribution with sd=10
a<-calculateCircle(0,0,200,12,c(180,360),TRUE,noiseFun=function(x) 
(x+rnorm(1,mean=0,sd=10)))
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='orange')

## End(Not run)

Generate points from a ellipse

Description

calculateEllipse generates points from a ellipse with many options, equally spaced, randomly spaced, with noise added to the radius or limited to a segment of angle alpha.

Usage

calculateEllipse(x, y, a, b, angle = 0, steps = 50, sector = c(0, 360), 
randomDist = FALSE, randomFun = runif, noiseFun = NA, ...)

Arguments

x

center point x

y

center point y

a

axis a

b

axis b

angle

tilt angle

steps

number of points

sector

limited circular sector

randomDist

logical, TRUE = randomly spaced

randomFun

random function for the position of the points in the ellipse

noiseFun

random function for the noise

...

optional parameters to pass to randomFun

Value

points

array n x 2 of point coordinates.

Author(s)

Jose Gama

Examples

## Not run: 
# 50 points from an ellipse at c(0,0) with axis (200, 100), angle 45 degrees
a<-calculateEllipse(0,0,200,100,45,50)
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250))
par(new=T)
# 10 points from an ellipse at c(0,0) with axis (200, 100), angle 45 degrees,
#points between 0 and 180 # degrees, normal random distribution
b<-calculateEllipse(0,0,200,100,45,10,c(0,90))
plot(b[,1],b[,2],xlim=c(-250,250),ylim=c(-250,250),col='red')
par(new=T)
# 50 points from an ellipse at c(0,0) with axis (200, 100), angle 45 degrees
a<-calculateEllipse(0,0,200,100,45,50, randomDist=TRUE,noiseFun=function(x) 
(x+rnorm(1,mean=0,sd=10)))
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='cyan')

## End(Not run)

Algebraic circle fit (Kasa method)

Description

CircleFitByKasa applies the simple algebraic circle fit (Kasa method)

Usage

CircleFitByKasa(XY)

Arguments

XY

array of sample data

Value

vector(a, b, R)

vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c3 <- CircleFitByKasa(xy)
xyc3<-calculateCircle(c3[1],c3[2],c3[3])
plot(xyc3[,1],xyc3[,2],xlim=c(-250,250),ylim=c(-250,250),col='green',type='l');par(new=TRUE)

Geometric circle fit (minimizing orthogonal distances) by Landau algorithm

Description

CircleFitByLandau applies the Geometric circle fit (minimizing orthogonal distances) by Landau algorithm

Usage

CircleFitByLandau(XY,ParIni = NA, epsilon = 1e-06, IterMAX = 50)

Arguments

XY

array of sample data

ParIni

initial guess (a, b, R)

epsilon

tolerance (small threshold)

IterMAX

maximal number of iterations, with a bad initial guess it may take >100 iterations

Value

vector(a, b, R)

vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Geometric circle fit (minimizing orthogonal distances) by Landau algorithm M. Landau, "Estimation of a circular arc center and its radius", Computer Vision, Graphics and Image Processing, Vol. 38, pages 317-326, (1987)

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Geometric circle fit (minimizing orthogonal distances) by Landau algorithm M. Landau, "Estimation of a circular arc center and its radius", Computer Vision, Graphics and Image Processing, Vol. 38, pages 317-326, (1987)

Examples

xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c6 <- CircleFitByLandau(xy)
xyc6<-calculateCircle(c6[1],c6[2],c6[3])
plot(xyc6[,1],xyc6[,2],xlim=c(-250,250),ylim=c(-250,250),col='purple',type='l');par(new=TRUE)

Algebraic circle fit by Pratt

Description

CircleFitByPratt applies the Algebraic circle fit by Pratt

Usage

CircleFitByPratt(XY)

Arguments

XY

array of sample data

Value

vector(a, b, R)

vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c2 <- CircleFitByPratt(xy)
xyc2<-calculateCircle(c2[1],c2[2],c2[3])
plot(xyc2[,1],xyc2[,2],xlim=c(-250,250),ylim=c(-250,250),col='blue',type='l');par(new=TRUE)

Geometric circle fit by Spath

Description

CircleFitBySpath applies the Geometric circle fit by Spath

Usage

CircleFitBySpath(XY, ParIni = NA, epsilon = 1e-06, IterMAX = 50)

Arguments

XY

array of sample data

ParIni

initial guess (a, b, R)

epsilon

tolerance (small threshold)

IterMAX

maximal number of iterations, with a bad initial guess it may take >100 iterations

Value

vector(a, b, R)

vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c5 <- CircleFitBySpath(xy)
xyc5<-calculateCircle(c5[1],c5[2],c5[3])
plot(xyc5[,1],xyc5[,2],xlim=c(-250,250),ylim=c(-250,250),col='magenta',type='l');par(new=TRUE)

Algebraic circle fit (Taubin method)

Description

CircleFitByTaubin applies the simple algebraic circle fit (Taubin method)

Usage

CircleFitByTaubin(XY)

Arguments

XY

array of sample data

Value

vector(a, b, R)

vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c1 <- CircleFitByTaubin(xy)
xyc1<-calculateCircle(c1[1],c1[2],c1[3])
plot(xyc1[,1],xyc1[,2],xlim=c(-250,250),ylim=c(-250,250),col='red',type='l');par(new=TRUE)

Algebraic ellipse fit method by Fitzgibbon-Pilu-Fisher

Description

EllipseDirectFit applies the algebraic ellipse fit method by Fitzgibbon-Pilu-Fisher

Usage

EllipseDirectFit(XY)

Arguments

XY

array of sample data

Value

vector(A, B, C, D, E, F)

vector of algebraic parameters of the fitting ellipse: ax^2 + bxy + cy^2 +dx + ey + f = 0

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

A. W. Fitzgibbon, M. Pilu, R. B. Fisher, 1999 Direct Least Squares Fitting of Ellipses IEEE Trans. PAMI, Vol. 21, pages 476-480

A. W. Fitzgibbon, M. Pilu, R. B. Fisher, "Direct Least Squares Fitting of Ellipses", IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) Halir R, Flusser J (1998) Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization, Numerically stable direct least squares fitting of ellipses (WSCG, Plzen, Czech Republic), pp 125–132.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

A. W. Fitzgibbon, M. Pilu, R. B. Fisher, 1999 Direct Least Squares Fitting of Ellipses IEEE Trans. PAMI, Vol. 21, pages 476-480

A. W. Fitzgibbon, M. Pilu, R. B. Fisher, "Direct Least Squares Fitting of Ellipses", IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) Halir R, Flusser J (1998) Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization, Numerically stable direct least squares fitting of ellipses (WSCG, Plzen, Czech Republic), pp 125–132.

Examples

xy<-calculateEllipse(0,0,200,100,45,50, randomDist=TRUE,noiseFun=function(x) 
(x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250),col='magenta');par(new=TRUE)

ellipDirect <- EllipseDirectFit(xy)
ellipDirectG <- AtoG(ellipDirect)$ParG
xyDirect<-calculateEllipse(ellipDirectG[1], ellipDirectG[2], ellipDirectG[3], 
ellipDirectG[4], 180/pi*ellipDirectG[5])
plot(xyDirect[,1],xyDirect[,2],xlim=c(-250,250),ylim=c(-250,250),type='l',
col='cyan');par(new=TRUE)

Algebraic ellipse fit by Taubin

Description

EllipseFitByTaubin applies the Algebraic ellipse fit by Taubin

Usage

EllipseFitByTaubin(XY)

Arguments

XY

array of sample data

Value

vector(A, B, C, D, E, F)

vector with the values for the ellipse

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

xy<-calculateEllipse(0,0,200,100,45,50, randomDist=TRUE,noiseFun=function(x) 
(x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250),col='magenta');par(new=TRUE)

ellipTaubin <- EllipseFitByTaubin(xy)
ellipTaubinG <- AtoG(ellipTaubin)$ParG
xyTaubin<-calculateEllipse(ellipTaubinG[1], ellipTaubinG[2], ellipTaubinG[3], 
ellipTaubinG[4], 180/pi*ellipTaubinG[5])
plot(xyTaubin[,1],xyTaubin[,2],xlim=c(-250,250),ylim=c(-250,250),type='l',
col='red');par(new=TRUE)

Formulas for the ellipse

Description

ellipticity ellipticity = flattening factor ellipseEccentricity eccentricity of the ellipse ellipseFocus focus of the ellipse ellipseRa radius at apoapsis (the farthest distance) ellipseRp radius at periapsis (the closest distance) ellipse.l semi-latus rectum l

Usage

ellipticity(minorAxis,majorAxis)

Arguments

minorAxis

minor ellipse axis

majorAxis

major ellipse axis

Value

scalar result

Author(s)

Jose Gama

Source

Wikipedia Ellipse http://en.wikipedia.org/wiki/Ellipse#Mathematical_definitions_and_properties

References

Wikipedia Ellipse http://en.wikipedia.org/wiki/Ellipse#Mathematical_definitions_and_properties


Estimate Initial Guess Circle values

Description

estimateInitialGuessCircle estimates initial guess values for the center and radius of the circle

Usage

estimateInitialGuessCircle(XY)

Arguments

XY

array of sample data

Value

vector(a, b, R)

vector with the estimates for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Examples

xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
estimateInitialGuessCircle(xy)

Fitting a conic to a given set of points (Implicit method)

Description

fit.conicLMA fits a conic to a given set of points (Implicit method) using algebraic parameters. Conic: Ax^2 + Bxy + Cy^2 +Dx + Ey + F = 0

Usage

fit.conicLMA(XY, ParAini, LambdaIni, epsilonP = 1e-10, epsilonF = 1e-13,
IterMAX = 2e+06)

Arguments

XY

array of sample data

ParAini

initial parameter vector c(A,B,C,D,E,F)

LambdaIni

initial value of the control parameter Lambda

epsilonP

tolerance (small threshold)

epsilonF

tolerance (small threshold)

IterMAX

maximum number of (main) iterations, usually 10-20 will suffice

Value

list(ParA, RSS, iters

list with algebraic parameters (Center(1:2), Axes(1:2), Angle), Residual Sum of Squares and number of iterations

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.

Examples

XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParAini <- matrix(c(0.2500,0, 1.0000, 0, 0, -1.0000),ncol=1)
LambdaIni=0.1
fit.conicLMA(XY,ParAini,LambdaIni)

Fitting an ellipse using Implicit method

Description

fit.ellipseLMG Fits an ellipse to a given set of points (Implicit method) using geometric parameters. Conic:

Usage

fit.ellipseLMG(XY,ParGini,LambdaIni = 1, epsilon = 1e-06, IterMAX = 200,
L = 200)

Arguments

XY

array of sample data

ParGini

initial parameter vector c(Center(1:2), Axes(1:2), Angle)

LambdaIni

initial value of the control parameter Lambda

epsilon

tolerance (small threshold)

IterMAX

maximum number of (main) iterations, usually 10-20 will suffice

L

boundary for major/minor axis

Value

list(ParG, RSS, iters, TF)

list with geometric parameters (A,B,C,D,E,F), Residual Sum of Squares, number of iterations and TF==TRUE if the method diverges

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.

Examples

XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParGini <- matrix(c(0,0,2,1,0),ncol=1)
LambdaIni=0.1
fit.ellipseLMG(XY,ParGini,LambdaIni)

Linear ellipse fit using bookstein constraint

Description

fitbookstein Linear ellipse fit using bookstein constraint

conic2parametric Diagonalise A - find Q, D such at A = Q' * D * Q

fitggk Linear least squares with the Euclidean-invariant constraint Trace(A) = 1

Usage

fitbookstein(x)

Arguments

x

array of sample data

Value

list(z, a, b, alpha)

list with fitted ellipse parameters

Author(s)

Jose Gama

Source

Richard Brown, May 28, 2007 http://www.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m/content/demo/html/ellipsedemo.html

References

Richard Brown, May 28, 2007 http://www.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m/content/demo/html/ellipsedemo.html

W. Gander, G. H. Golub, R. Strebel, 1994 Least-Squares Fitting of Circles and Ellipses BIT Numerical Mathematics, Springer


Conversion of geometric parameters to algebraic parameters

Description

GtoA converts geometric parameters (A, B, C, D, E, F) to algebraic parameters (Center(1:2), Axes(1:2), Angle).

Usage

GtoA(ParG)

Arguments

ParG

list with geometric parameters (A, B, C, D, E, F)

Value

ParA

vector or array with algebraic parameters (Center(1:2), Axes(1:2), Angle)

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

GtoA(c(0,0,20,60,45))

Compute the Jacobian matrix using algebraic parameters

Description

JmatrixLMA Computes the Jacobian matrix(Implicit method) using algebraic parameters

Usage

JmatrixLMA(XY,ParA,XYproj)

Arguments

XY

array of sample data

ParA

initial parameter vector c(Center(1:2), Axes(1:2), Angle)

XYproj

corresponding n projection points on the conic

Value

list(Res, J)

list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParA <- matrix(c(0.250000000000000,0,1,0,0,-1),ncol=1)
XYproj=matrix(c(0.394467220216675,0.980356518335872,0.833315950425981,
0.909063326557293,1.40466123643977,0.711850899213363,
1.70601340510202,0.521899957274429,1.89925244997324,0.313384799914835,
1.06482258038841,0.846485805004280,1.95308457257492,
0.215325713960169,1.91319150256275,0.291418202297698),8,2,byrow=TRUE)
JmatrixLMA(XY,ParA,XYproj)

Compute the Jacobian matrix using geometric parameters

Description

JmatrixLMG Computes the Jacobian matrix (Implicit method) using geometric parameters

Usage

JmatrixLMG(XY,A,XYproj)

Arguments

XY

array of sample data

A

initial parameter vector c(Xc,Yc,a,b,alpha)

XYproj

corresponding n projection points on the conic

Value

list(Res, J)

list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
A <- matrix(c(0,0,2,1,0),ncol=1)
XYproj=matrix(c(0.394467220216675,0.980356518335872,0.833315950425981,
0.909063326557293,1.40466123643977,0.711850899213363,
1.70601340510202,0.521899957274429,1.89925244997324,0.313384799914835,
1.06482258038841,0.846485805004280,1.95308457257492,
0.215325713960169,1.91319150256275,0.291418202297698),8,2,byrow=TRUE)
JmatrixLMG(XY,A,XYproj)

Geometric circle fit (minimizing orthogonal distances) based on the Levenberg-Marquardt method

Description

LMcircleFit applies a Geometric circle fit (minimizing orthogonal distances) based on the standard Levenberg-Marquardt scheme

Usage

LMcircleFit(XY, ParIni, LambdaIni = 1, epsilon = 1e-06, IterMAX = 50)

Arguments

XY

array of sample data

ParIni

initial guess (a, b, R)

LambdaIni

initial value for the correction factor lambda

epsilon

tolerance (small threshold)

IterMAX

maximum number of (main) iterations, usually 10-20 will suffice

Value

vector(a, b, R)

vector with the estimates for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c4 <- LMcircleFit(xy)
xyc4<-calculateCircle(c4[1],c4[2],c4[3])
plot(xyc4[,1],xyc4[,2],xlim=c(-250,250),ylim=c(-250,250),col='cyan',type='l')

Geometric circle fit (minimizing orthogonal distances) based on the Levenberg-Marquardt method

Description

LMreducedCircleFit applies a Geometric circle fit (minimizing orthogonal distances) based on the standard Levenberg-Marquardt scheme in the "reduced" (a,b) parameter space

Usage

LMreducedCircleFit(XY, ParIni, LambdaIni = 1, epsilon = 1e-06, 
IterMAX = 50)

Arguments

XY

array of sample data

ParIni

initial guess (a, b)

LambdaIni

initial value for the correction factor lambda

epsilon

tolerance (small threshold)

IterMAX

maximum number of (main) iterations, usually 10-20 will suffice

Value

vector(a, b, R)

vector with the estimates for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c7 <- LMreducedCircleFit(xy)
xyc7<-calculateCircle(c7[1],c7[2],c7[3])
plot(xyc7[,1],xyc7[,2],xlim=c(-250,250),ylim=c(-250,250),col='pink',type='l')

Projecting a given set of points onto an ellipse

Description

Residuals.ellipse projects a given set of points onto an ellipse and computing the distances from the points to the ellipse

Usage

Residuals.ellipse(XY,ParG)

Arguments

XY

array of sample data

ParG

vector 5x1 of the ellipse parameters (Center(1:2), Axes(1:2), Angle)

Value

list(Res, J)

list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG <- matrix(c(0,0,2,1,0),ncol=1)
Residuals.ellipse(XY,ParG)

Projecting a given set of points onto an hyperbola

Description

Residuals.hyperbola projects a given set of points onto an hyperbola and computing the distances from the points to the hyperbola

Usage

Residuals.hyperbola(XY,ParG)

Arguments

XY

array of sample data

ParG

vector 5x1 of the hyperbola parameters (Center(1:2), Axes(1:2), Angle)

Value

list(RSS, XYproj)

list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG <- matrix(c(0,0,2,1,0),ncol=1)
Residuals.hyperbola(XY,ParG)

Projecting a given set of points onto an parabola

Description

Residuals.parabola projects a given set of points onto an parabola and computing the distances from the points to the parabola

Usage

Residuals.parabola(XY,ParG)

Arguments

XY

array of sample data

ParG

vector 4x1 of the parabola parameters (Vertex(1:2), p, Angle)

Value

list(RSS, XYproj)

list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG <- matrix(c(0,0,2,1,0),ncol=1)
Residuals.parabola(XY,ParG)

Projecting a given set of points onto an ellipse

Description

ResidualsG projects a given set of points onto an ellipse and computing the distances from the points to the ellipse

Usage

ResidualsG(XY,ParG)

Arguments

XY

array of sample data

ParG

vector 5x1 of the ellipse parameters (Center(1:2), Axes(1:2), Angle)

Value

list(RSS, XYproj)

list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG <- matrix(c(0,0,2,1,0),ncol=1)
ResidualsG(XY,ParG)