
Emulation of one Camera by another Camera

Glenn Davis <gdavis@gluonics.com>

September 20, 2024

Introduction

The goal of this package colorSpec vignette is to reproduce the findings of [1] and [2], where a
camera with Foveon X3 sensor is modified to closely emulate the spectral responses of the human
eye. The two modifications are:

� a prefilter in front of the camera; this modification is optical and classical, see [3]

� a 3x3 matrix applied to the camera output; this modification is in hardware or in software

The figures below are best viewed on a display calibrated for sRGB. Featured functions in this
vignette are: emulate().

library(colorSpec)

library(spacesRGB) # for function plotPatchesRGB()

1 BT.709.RGB and Foveon X3

The camera BT.709.RGB is not real; it is a theoretical camera whose spectral responses are linear
combinations of the responses of the human eye (the standard observer). See the man page of
BT.709.RGB for details. Create a fixed wavelength vector, and resample both the Foveon camera,
and the reference (the ideal) camera to the same wavelengths. Calibrate and plot both cameras.

wave = 380:720

read the Macbeth ColorCheck target

path = system.file('extdata/cameras/FoveonX3.txt', package='colorSpec')

foveon = radiometric(readSpectra(path, wave=wave))

reference = resample(BT.709.RGB, wave=wave)

calibrate so that both have the same response RGB=(1,1,1) to Illuminant E

illum = illuminantE(wave=wave)

foveon = calibrate(foveon, stimulus=illum)

reference = calibrate(reference, stimulus=illum)

plot both for comparison

par(omi=c(0,0,0,0), mai=c(0.5,0.9,0.1,0))

plot(reference, main='')

plot(foveon, lty=2, add=TRUE, legend=FALSE, color=c('red','green','blue'))

See Figure 1. These spectral responses are obviously quite different; although the area under
all 6 curves is 1. To visualize the difference we will use the ever-popular ColorChecker target. The
data for this target has been kindly provided in CGATS format by [4]. ColorChecker is a Registered
Trademark of X-Rite, and X-Rite is a Trademark.

1

 <gdavis@gluonics.com>

1 BT.709.RGB AND FOVEON X3

400 450 500 550 600 650 700

−0.005

0.000

0.005

0.010

0.015

0.020

Wavelength (nm)

E
le

ct
ric

al
 R

es
po

ns
e

/ R
ad

ia
nt

 E
ne

rg
y r

g
b

Figure 1: Reference camera BT.709.RGB (solid) vs Foveon X3 camera (dashed)

read the Macbeth ColorCheck target

path = system.file('extdata/targets/CC_Avg30_spectrum_CGATS.txt', package='colorSpec')

MacbethCC = readSpectra(path, wave=wave) # MacbethCC is a 'colorSpec' object

MacbethCC = MacbethCC[order(MacbethCC$SAMPLE_ID),] # still class 'colorSpec'

print(extradata(MacbethCC), row.names=F)

SAMPLE_ID SAMPLE_NAME Munsell ISCC-NBS_Name LEFT TOP WIDTH HEIGHT

1 dark skin 3YR 3.7/3.2 moderate brown 7 9 29 29

2 light skin 2.2YR 6.47/4.1 light reddish brown 40 9 29 29

3 blue sky 4.3PB 4.95/5.5 moderate blue 73 9 29 29

4 foliage 6.7GY 4.2/4.1 moderate olive green 106 9 29 29

5 blue flower 9.7PB 5.47/6.7 light violet 139 9 29 29

6 bluish green 2.5BG 7/6 light bluish green 172 9 29 29

7 orange 5YR 6/11 strong orange 7 42 29 29

8 purplish blue 7.5PB 4/10.7 strong purplish blue 40 42 29 29

9 moderate red 2.5R 5/10 moderate red 73 42 29 29

10 purple 5P 3/7 deep purple 106 42 29 29

11 yellow green 5GY 7.1/9.1 strong yellow green 139 42 29 29

12 orange yellow 10YR 7/10.5 strong orange yellow 172 42 29 29

13 Blue 7.5PB 2.9/12.7 vivid purplish blue 7 75 29 29

14 Green 0.25G 5.4/8.65 strong yellowish green 40 75 29 29

15 Red 5R 4/12 strong red 73 75 29 29

16 Yellow 5Y 8/11.1 vivid yellow 106 75 29 29

17 Magenta 2.5RP 5/12 strong reddish purple 139 75 29 29

18 Cyan 5B 5/8 strong greenish blue 172 75 29 29

19 white N9.5/ white 7 108 29 29

20 neutral 8 N8/ light gray 40 108 29 29

21 neutral 6.5 N6.5/ light medium gray 73 108 29 29

22 neutral 5 N5/ medium gray 106 108 29 29

23 neutral 3.5 N3.5/ dark gray 139 108 29 29

24 black N2/ black 172 108 29 29

page 2 of 10

1 BT.709.RGB AND FOVEON X3

Note that MacbethCC is organized as ’df.row’ and contains extra data for each spectrum, most
importantly the coordinates of the patch rectangles.

Calculate the RGB responses to both cameras and display them.

RGB.ref = product(illum, MacbethCC, reference) # this is *linear scene* sRGB

add the rectangle data to RGB.ref, so the patches are plotted in proper places

df.ref = extradata(MacbethCC)

df.ref$RGB.ref = RGB.ref

display in proper location, and use the sRGB display transfer function

par(omi=c(0,0,0,0), mai=c(0,0,0,0))

plotPatchesRGB(df.ref, space='sRGB', which='scene', back='gray20', labels=FALSE)

repeat with foveon camera, and add to existing plot

RGB.foveon = product(illum, MacbethCC, foveon)

df.foveon = extradata(MacbethCC)

df.foveon$RGB.foveon = RGB.foveon

plotPatchesRGB(df.foveon, space='sRGB', which='scene', shape='bottomright', add=T)

Figure 2: Rendering with Illuminant E, with Foveon RGB in bottom right half

There is only agreement for the neutral patches, as might be expected.
Now modify the Foveon camera, using both a pre-filter and a matrix, to emulate the reference.

page 3 of 10

1 BT.709.RGB AND FOVEON X3

foveon.mod = emulate(foveon, reference, filter=TRUE, matrix=TRUE)

par(omi=c(0,0,0,0), mai=c(0.5,0.9,0.2,0))

plot(reference, main='')

plot(foveon.mod, lty=2, add=TRUE, legend=FALSE)

400 450 500 550 600 650 700

−0.005

0.000

0.005

0.010

0.015

0.020

Wavelength (nm)

E
le

ct
ric

al
 R

es
po

ns
e

/ R
ad

ia
nt

 E
ne

rg
y r

g
b

Figure 3: Reference camera (solid) vs the modified Foveon camera (dashed)

The agreement is now much better. Replot the ColorChecker to visualize the improvement.

par(omi=c(0,0,0,0), mai=c(0,0,0,0))

plotPatchesRGB(df.ref, space='sRGB', which='scene', back='gray20', labels=FALSE)

repeat with modified foveon camera, and add to existing plot

df.foveon.mod = extradata(MacbethCC)

df.foveon.mod$RGB.foveon.mod = product(illum, MacbethCC, foveon.mod)

plotPatchesRGB(df.foveon.mod, space='sRGB', which='scene', shape='bottomright', add=T)

page 4 of 10

1 BT.709.RGB AND FOVEON X3

Figure 4: Rendering with Illuminant E, with modified Foveon RGB in bottom right half

The agreement in the RGBs is now much bettter, c.f. Figure 2. There is a noticeable difference
in the Red and Magenta patches, and minor differences in some others. However, the neutrals are
now worse; the green is low so they have a purple tint. A new feature - white-point preservation
- might be added to a future version of emulate(), using the techniques in [5]. Alternatively, one
could also re-calibrate (white-balance) foveon.mod.

The computed pre-filter and matrix are attached to foveon.mod, and are easy to print and plot.

attr(foveon.mod,"emulate")$A

r g b

Red 13.054064 -7.362972 5.627526

Green -10.008693 10.482482 -13.407764

Blue 2.848111 -3.419678 11.254107

par(omi=c(0,0,0,0), mai=c(0.5,0.9,0.2,0))

prefilter = attr(foveon.mod,"emulate")$filter

specnames(prefilter) = "prefilter for modified Foveon"

plot(prefilter, main='', ylim=c(0,1.1))

page 5 of 10

2 RED EPIC DRAGON AND PLUMBICON

400 450 500 550 600 650 700

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Wavelength (nm)

Tr
an

sm
itt

an
ce

prefilter for modified Foveon

Figure 5: Prefilter for the modified Foveon camera

This curve is broadly similar to those in [1] and [2]. All are bimodal and have a valley near
500nm. But the peaks are in different locations, shaped differently, and both of their peaks have
a maximum of 1. I suspect that they are different because of different optimization criteria. The
function emulate() uses a simple least-squares criterion with the same weight at every wavelength.
[1] uses a ”Metamerism Index”defined in [6]. This index uses color targets which might be the same
as those in the ColorChecker. [2] uses a criterion based on principal angles between subspaces. These
optional criteria might be added to emulate() in the future. For a good comparison of the other
2 prefilters, see Figure 6 in [2].

A real engineering implementation of these modifications would have to include a noise and
sensitivity analysis. We will not pursue that here, except to observe the condition number of the
matrix.

A = attr(foveon.mod,"emulate")$A # A is the 3x3 matrix already printed above

kappa(A, exact=TRUE, norm='2') # kappa() returns the condition number of A

[1] 14.27221

This is quite large so that is not a good sign.

2 Red Epic Dragon and Plumbicon

The plumbicon, introduced in 1965, is a graylevel television camera tube. The Red Epic Dragon,
announced in 2013, is a modern high-speed cinema RGB camera with 19.4 Megapixel CMOS sensor.
We will find a good linear combination of the RGB responsivities of the Dragon to emulate the
graylevel responsivity of the plumbicon.

Create a fixed wavelength vector, and resample both cameras to the same wavelengths. Then
calibrate and plot both cameras.

page 6 of 10

2 RED EPIC DRAGON AND PLUMBICON

400 450 500 550 600 650 700

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

Wavelength (nm)

E
le

ct
ric

al
 R

es
po

ns
e

/ R
ad

ia
nt

 E
ne

rg
y Plumbicon30mm.Gray

Figure 6: plumbicon (solid) vs Dragon (dashed)

wave = 400:700

read the 2 cameras

path = system.file('extdata/cameras/Plumbicon30mm.txt', package='colorSpec')

plumbicon = readSpectra(path, wave=wave)

path = system.file('extdata/cameras/Red-Epic-Dragon.txt', package='colorSpec')

dragon = readSpectra(path, wave=wave)

calibrate to normalize the response to Illuminant E

illum = illuminantE(wave=wave)

plumbicon = calibrate(plumbicon, stimulus=illum)

dragon = calibrate(dragon, stimulus=illum)

plot both for comparison

par(omi=c(0,0,0,0), mai=c(0.5,0.9,0.1,0))

plot(dragon, main='', lty=2, legend=FALSE)

plot(plumbicon, col='black', lty=1, add=TRUE, legend='topleft')

The integral of all 4 curves is 1. Now matrix the Dragon camera to emulate the plumbicon. A
filter is not used here, since the plumbicon has only one output channel, the problem is underde-
termined and we could get an *exact* match with a filter.

dragon.mod = emulate(dragon, plumbicon, filter=FALSE, matrix=TRUE)

specnames(dragon.mod) = "Dragon, matrixed"

combo = bind(plumbicon, dragon.mod)

par(omi=c(0,0,0,0), mai=c(0.5,0.9,0.2,0))

plot(combo, main='', lty=c(1,2), col='black')

page 7 of 10

2 RED EPIC DRAGON AND PLUMBICON

400 450 500 550 600 650 700

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Wavelength (nm)

E
le

ct
ric

al
 R

es
po

ns
e

/ R
ad

ia
nt

 E
ne

rg
y Plumbicon30mm.Gray

Dragon, matrixed

Figure 7: Plumbicon camera (solid) vs the modified Dragon camera (dashed)

The match on the interval [400,500] is not good. The RGB weights are attached to dragon.mod

and easy to display. Note that the red weight is small.

t(attr(dragon.mod,"emulate")$A)

R G B

Plumbicon30mm.Gray -0.06454983 0.3641843 0.6736629

Calculate the ColorChecker graylevel responses from both cameras and display them.

MacbethCC = resample(MacbethCC,wave=wave)

graylevel = product(illum, MacbethCC, plumbicon)

RGB.plumbicon = matrix(graylevel, length(graylevel), 3)

df.plumbicon = extradata(MacbethCC)

df.plumbicon$RGB = RGB.plumbicon

par(omi=c(0,0,0,0), mai=c(0,0,0,0))

plotPatchesRGB(df.plumbicon, space='sRGB', which='scene', back='black')

repeat with dragon.mod camera, and add to existing plot, as triangles

graylevel = product(illum, MacbethCC, dragon.mod)

df.dragon = extradata(MacbethCC)

df.dragon$RGB = matrix(graylevel, length(graylevel), 3)

plotPatchesRGB(df.dragon, space='sRGB', which='scene', add=T, shape='bottomright')

page 8 of 10

REFERENCES REFERENCES

Figure 8: Rendering with Illuminant E, with matrixed Dragon in bottom right half

Despite the mismatch on the interval [400,500], the visual agreement is pretty good.

References

[1] R. F. Lyon and P. M. Hubel, “Eyeing the camera: Into the next century,” in in Proc. IS&T/SID
10th Color Imaging Conference, vol. 10, (Scottsdale, AZ, USA), pp. 349–355, 2002.

[2] S. Bezryadin, “Quality criterion for digital still camera,” in Proceedings SPIE, vol. 6502, 2007.

[3] Wayne E. Bretl, “Viewing 1950s Color, Over 50 Years Later,” 2008.
http://www.bretl.com/Viewing

[4] D. Pascale, “The ColorChecker, page 2.” http://www.babelcolor.com/colorchecker-2.htm.

[5] G. D. Finlayson and M. S. Drew, “Constrained least-squares regression in color spaces,” Journal
of Electronic Imaging, vol. 6, pp. 484–493, October 1997.

[6] ISO/17321, “Graphic technology and photography – Colour characterisation of digital still cam-
eras (DSCs) – Part 1: Stimuli, metrology and test procedures,” standard, International Orga-
nization for Standardization, Geneva, CH, 2012.

Appendix

This document was prepared September 20, 2024, with the following configuration:

page 9 of 10

http://www.babelcolor.com/colorchecker-2.htm

REFERENCES REFERENCES

� R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

� Running under: Ubuntu 24.04.1 LTS

� Matrix products: default

� BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

� LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so ;
LAPACK version3.12.0

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: colorSpec 1.5-0, knitr 1.48, rmarkdown 2.28, spacesRGB 1.5-0

� Loaded via a namespace (and not attached): MASS 7.3-61, R6 2.5.1, bslib 0.8.0,
buildtools 1.0.0, cachem 1.1.0, cli 3.6.3, compiler 4.4.1, digest 0.6.37, evaluate 1.0.0,
fastmap 1.2.0, highr 0.11, htmltools 0.5.8.1, jquerylib 0.1.4, jsonlite 1.8.8, lifecycle 1.0.4,
maketools 1.3.0, microbenchmark 1.5.0, rlang 1.1.4, sass 0.4.9, sys 3.4.2, tools 4.4.1,
xfun 0.47, yaml 2.3.10

page 10 of 10

	BT.709.RGB and Foveon X3
	Red Epic Dragon and Plumbicon

