Package 'clustur'

Title: Clustering
Description: A tool that implements the clustering algorithms from 'mothur' (Schloss PD et al. (2009) <doi:10.1128/AEM.01541-09>). 'clustur' make use of the cluster() and make.shared() command from 'mothur'. Our cluster() function has five different algorithms implemented: 'OptiClust', 'furthest', 'nearest', 'average', and 'weighted'. 'OptiClust' is an optimized clustering method for Operational Taxonomic Units, and you can learn more here, (Westcott SL, Schloss PD (2017) <doi:10.1128/mspheredirect.00073-17>). The make.shared() command is always applied at the end of the clustering command. This functionality allows us to generate and create clustering and abundance data efficiently.
Authors: Gregory Johnson [aut] , Sarah Westcott [aut], Patrick Schloss [aut, cre, cph]
Maintainer: Patrick Schloss <[email protected]>
License: MIT + file LICENSE
Version: 0.1.1
Built: 2024-11-25 23:14:15 UTC
Source: CRAN

Help Index


Cluster entities together

Description

Clusters entities represented in a distance matrix and count table using one of several algorithms and outputs information about the composition and abundance of each cluster

Usage

cluster(
  distance_object,
  cutoff,
  method = "opticlust",
  feature_column_name_to = "feature",
  bin_column_name_to = "bin",
  random_seed = 123
)

Arguments

distance_object

The distance object that was created using the 'read_dist()' function.

cutoff

The cutoff you want to cluster towards.

method

The method of clustering to be performed: opticlust (default), furthest, nearest, average, or weighted.

feature_column_name_to

Set the name of the column in the cluster dataframe that contains the sequence names.

bin_column_name_to

Set the name of the column in the cluster dataframe that contains the name of the group of sequence names.

random_seed

the random seed to use, (default = 123).

Value

A list of 'data.frames' that contain abundance, and clustering results. If you used 'method = opticlust', it will also return clustering performance metrics.

Examples

cutoff <- 0.03
 count_table <- read_count(example_path("amazon.full.count_table"))
 distance_data <- read_dist(example_path("amazon_column.dist"),
                            count_table, cutoff)

 cluster_results <- cluster(distance_data,
                            cutoff, method = "opticlust",
                            feature_column_name_to = "sequence",
                            bin_column_name_to = "omu")
 cluster_results <- cluster(distance_data,
                            cutoff, method = "furthest")
 cluster_results <- cluster(distance_data,
                            cutoff, method = "nearest")
 cluster_results <- cluster(distance_data,
                            cutoff, method = "average")
 cluster_results <- cluster(distance_data,
                            cutoff, method = "weighted")

Create Sparse Matrix

Description

Given a list of i indexes, j indexes, and distances values, we can create a sparse distance matrix for you. Each vector must have the same size.

Usage

create_sparse_matrix(i_index, j_index, distances)

Arguments

i_index

A list of i indexes, must be numeric

j_index

A list of j indexes, must be numeric

distances

A list of the distance at the i and j index

Value

a 'dgTMatrix' from the 'Matrix' library.

Examples

i_values <- as.integer(1:100)
 j_values <- as.integer(sample(1:100, 100, TRUE))
 x_values <- as.numeric(runif(100, 0, 1))
 s_matrix <- create_sparse_matrix(i_values, j_values, x_values)

Example Path

Description

This function was created as a helper function to generate file paths to our internal data. You should use this function if you want to follow along with the example, or interact with the data

Usage

example_path(file = NULL)

Arguments

file

The file name of the data; leave as NULL (default) to get full list of example files

Value

the path to the file as a 'character' or a vector of 'character' giving example filenames if 'fill = NULL'.

Examples

example_path("amazon_phylip.dist")
example_path()

Get Shared

Description

GetShared returns the generated abundance 'data.frame' from the 'cluster()' function

Usage

get_abundance(cluster_data)

Arguments

cluster_data

The output from the 'cluster()' function.

Value

a shared data.frame

Examples

cutoff <- 0.2
count_table <- read_count(example_path("amazon.full.count_table"))
distance_data <- read_dist(example_path("amazon_column.dist"),
                           count_table, cutoff, FALSE)
df_clusters <- cluster(distance_data, cutoff, method = "opticlust")
shared <- get_abundance(df_clusters)

Get Clusters

Description

GetClusters returns a 'data.frame' of the generated clusters from the 'cluster()' function.

Usage

get_bins(cluster_data)

Arguments

cluster_data

The output from the 'cluster()' function.

Value

the created cluster 'data.frame'.

Examples

cutoff <- 0.2
count_table <- read_count(example_path("amazon.full.count_table"))
distance_data <- read_dist(example_path("amazon_column.dist"),
                           count_table, cutoff, FALSE)
df_clusters <- cluster(distance_data, cutoff, method = "opticlust")
clusters <- get_bins(df_clusters)

Get Count Table

Description

This function returns the count table that was used to generate the distance object.

Usage

get_count_table(distance_object)

Arguments

distance_object

The output from the 'read.dist()' function.

Value

a count_table 'data.frame'.

Examples

cutoff <- 0.2
count_table <- read_count(example_path("amazon.full.count_table"))
distance_data <- read_dist(example_path("amazon_column.dist"),
                           count_table, cutoff, FALSE)
count_table <- get_count_table(distance_data)

Get Cutoff

Description

Returns the distance cutoff of the cluster object from the 'cluster()' function

Usage

get_cutoff(cluster_data)

Arguments

cluster_data

The output from the 'cluster()' function.

Value

the cutoff value as a 'dbl'

Examples

cutoff <- 0.2
count_table <- read_count(example_path("amazon.full.count_table"))
distance_data <- read_dist(example_path("amazon_column.dist"),
                           count_table, cutoff, FALSE)
df_clusters <- cluster(distance_data, cutoff, method = "opticlust")
cutoff <- get_cutoff(df_clusters)

Get Distance Data Frame

Description

This function will generate a 'data.frame' that contains the distances of all the indexes.

Usage

get_distance_df(distance_object)

Arguments

distance_object

The output from the 'read.dist()' function.

Value

a distance 'data.frame'.

Examples

cutoff <- 0.2
count_table <- read_count(example_path("amazon.full.count_table"))
distance_data <- read_dist(example_path("amazon_column.dist"),
                                        count_table, cutoff, FALSE)
count_table <- get_count_table(distance_data)

Get Metrics

Description

GetMetrics returns the generated metrics 'data.frame' from the 'cluster()' function.

Usage

get_metrics(cluster_data)

Arguments

cluster_data

The output from the 'cluster()' function.

Value

a list of metric data.frames

Examples

cutoff <- 0.2
count_table <- read_count(example_path("amazon.full.count_table"))
distance_data <- read_dist(example_path("amazon_column.dist"),
                           count_table, cutoff, FALSE)
df_clusters <- cluster(distance_data, cutoff, method = "opticlust")
list_of_metrics <- get_metrics(df_clusters)

Read count table

Description

This function will read and return your count table. It can take in sparse and full count tables.

Usage

read_count(count_table_path)

Arguments

count_table_path

The file path of your count table.

Value

a count table 'data.frame'.

Examples

count_table <- read_count(example_path("amazon.full.count_table"))

Read distance matrices

Description

Read in distances from a file that is formatted with three columns for the row, column, and distance of a sparse, square matrix or in a phylip-formatted distance matrix.

Usage

read_dist(distance_file, count_table, cutoff, is_similarity_matrix = FALSE)

Arguments

distance_file

Either a phylip or column distance file, or a sparse matrix. The function will detect the format for you.

count_table

A table of names and the given abundance per group. Can be in mothur's sparse or full format. The function will detect the format for you.

cutoff

The value you wish to use as a cutoff when clustering.

is_similarity_matrix

are you using a similarity matrix (default) or distance matrix?

Value

A distance 'externalptr' object that contains all your distance information. Can be accessed using 'get_distance_df()'

Examples

i_values <- as.integer(1:100)
 j_values <- as.integer(sample(1:100, 100, TRUE))
 x_values <- as.numeric(runif(100, 0, 1))
 s_matrix <- create_sparse_matrix(i_values, j_values, x_values)

 sparse_count <- data.frame(
                 Representative_Sequence = 1:100,
                 total = rep(1, times = 100))

 column_path <- example_path("amazon_column.dist")
 phylip_path <- example_path("amazon_phylip.dist")
 count_table <- read_count(example_path("amazon.full.count_table"))

 data_column <- read_dist(column_path, count_table, 0.03)
 data_phylip <- read_dist(phylip_path, count_table, 0.03)
 data_sparse <- read_dist(s_matrix, sparse_count, 0.03)

Split Clusters to List

Description

'split_clusters_to_list()' will extract clusters from the cluster generated 'data.frame'. It will then turn those clusters into a list. This allows users to more easily visualize their data.

Usage

split_clusters_to_list(cluster)

Arguments

cluster

The output generated from the 'cluster()' function.

Value

a named 'list' of clusters.

Examples

cutoff <- 0.2
 count_table <- read_count(example_path("amazon.full.count_table"))
 distance_data <- read_dist(example_path("amazon_column.dist"),
                            count_table, cutoff, FALSE)
 cluster_results <- cluster(distance_data, cutoff, method = "opticlust")

 cluster_list <- split_clusters_to_list(cluster_results)

Validate Count Table

Description

If the count table is already valid nothing will change, otherwise it will add a new group to the count table file.

Usage

validate_count_table(count_table_df)

Arguments

count_table_df

The count table 'data.frame' object.

Details

Determines whether user supplied count table is valid

Value

A validated count table 'data.frame'

Examples

count_table <- read.delim(example_path("amazon.full.count_table"))
 count_table_valid <- validate_count_table(count_table)