Package 'clubpro'

Title: Classification Using Binary Procrustes Rotation
Description: Implements a classification method described by Grice (2011, ISBN:978-0-12-385194-9) using binary procrustes rotation; a simplified version of procrustes rotation.
Authors: Timothy Beechey [aut, cre]
Maintainer: Timothy Beechey <[email protected]>
License: GPL (>= 3)
Version: 0.6.2
Built: 2024-11-05 06:32:26 UTC
Source: CRAN

Help Index


Classification accuracy for each observation.

Description

Classification accuracy for each observation.

Usage

accuracy(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns a character vector containing a string corresponding to each observation indicating whether classification of that observation was "correct", "incorrect", or "ambigous".

Value

a table

Examples

mod <- club(rate ~ dose, data = caffeine)
accuracy(mod)

Convert the output of csi() to a data.frame.

Description

Convert the output of csi() to a data.frame.

Usage

## S3 method for class 'clubprocsi'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x

an object of class "clubprocsi"

row.names

ignored

optional

ignored

...

ignored

Details

This function is useful to format pcc replicates data for plotting.

Examples

mod <- club(rate ~ dose, data = caffeine)
z <- csi(mod)
as.data.frame(z)

Convert the output of pcc_replicates() to a data.frame.

Description

Convert the output of pcc_replicates() to a data.frame.

Usage

## S3 method for class 'clubprorand'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x

an object of class "clubprorand"

row.names

ignored

optional

ignored

...

ignored

Details

This function is useful to format pcc replicates data for plotting.

Examples

mod <- club(rate ~ dose, data = caffeine)
z <- pcc_replicates(mod)
as.data.frame(z)

Caffeine data

Description

Effect of three different doses of caffeine on finger tapping rate.

Usage

caffeine

Format

A data frame with 30 rows and 2 columns:

dose

dose of caffeine in mg

rate

finger taps per minute

Source

Hand D.J., Daly F., Lunn A.D., McConway K.J., Ostrowski E. (1994) A Handbook of Small Data Sets. London: Chapman & Hall. Data set 50.


Classify observations.

Description

club() is used to classify obervations using binary procrustes rotation.

Usage

club(
  f,
  data,
  imprecision,
  nreps,
  normalise_cols,
  reorder_obs,
  display_progress
)

Arguments

f

a formula.

data

a data.frame.

imprecision

a number indicting the margin of imprecision allowed in classification.

nreps

the number of replicates to use in the randomisation test.

normalise_cols

a boolean indicating whether to normalise matrix columns.

reorder_obs

a string indicating the method for reordering observations to calculate c-values.

display_progress

a boolean indictaing whether a progress bar should be displayed.

Value

an object of class "clubprofit" is a list containing the folllowing components:

prediction

a character vector of predicted classifications.

accuracy

a character vector indicating whether each classification is "correct", "incorrect", or "ambiguous".

pcc

the percentage of correct classifications.

cval

the chance of randomly reordered data producing a PCC >= the observed PCC.

pcc_replicates

a vector of PCCs generated from randomly reordered data used to calculate cval.

call

the matched call.

Examples

mod <- club(rate ~ dose, data = caffeine)

Compare models.

Description

Compare models.

Usage

compare(m1, m2)

Arguments

m1

an object of class "clubprofit" produced by club()

m2

an object of class "clubprofit" produced by club()

Details

Compare the PCC of two clubprofit models and compute the chance-value of the difference.

Value

an object of type "clubprocomparison"

Examples

m1 <- club(width ~ location, jellyfish)
m2 <- club(length ~ location, jellyfish)
compare(m1, m2)

Classification strength indices.

Description

Classification strength indices.

Usage

csi(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns a vector containing the classification strength index for each observation.

Value

a numeric vector.

Examples

mod <- club(rate ~ dose, data = caffeine)
csi(mod)

Chance value.

Description

Chance value.

Usage

cval(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Compute the chance that randomly reordered data results in a percentage of correctly classified observations at least as high as the observed data.

Value

a numeric value.

Examples

mod <- club(rate ~ dose, data = caffeine)
cval(mod)

Individual level classification results.

Description

Individual level classification results.

Usage

individual_results(m, digits)

Arguments

m

an object of class "clubprofit" produced by club()

digits

an integer

Details

Returns a data.frame containing predicted classifications and classification accuracy for each individual observation.

Value

a data.frame containing a columns of predictions and prediction accuracy

Examples

mod <- club(rate ~ dose, data = caffeine)
individual_results(mod)

Jellyfish dimension data

Description

Sizes of jellyfish from two locations in the Hawkesbury River, New South Wales, Australia.

Usage

jellyfish

Format

A data frame with 46 rows and 3 columns:

location

location where jellyfish was caught

width

jellyfish width in mm

length

jellyfish length in mm

Source

Hand D.J., Daly F., Lunn A.D., McConway K.J., Ostrowski E. (1994) A Handbook of Small Data Sets. London: Chapman & Hall. Data set 225.


Median classification strength index.

Description

Median classification strength index.

Usage

median_csi(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the median classification strength index.

Value

a numeric vector.

Examples

mod <- club(rate ~ dose, data = caffeine)
median_csi(mod)

Number of ambiguous classifications.

Description

Number of ambiguous classifications.

Usage

n_ambiguous(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the number of observations which were classified ambiguously by the model.

Value

an integer.

Examples

mod <- club(rate ~ dose, data = caffeine)
n_ambiguous(mod)

Number of correct classifications.

Description

Number of correct classifications.

Usage

n_correct(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the number of observations which were classified correctly by the model.

Value

an integer.

Examples

mod <- club(rate ~ dose, data = caffeine)
n_correct(mod)

Number of incorrect classifications.

Description

Number of incorrect classifications.

Usage

n_incorrect(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the number of observations which were classified incorrectly by the model.

Value

an integer.

Examples

mod <- club(rate ~ dose, data = caffeine)
n_incorrect(mod)

Percentage of correct classifications.

Description

Percentage of correct classifications.

Usage

pcc(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the percentage of correctly classified observations.

Value

a numeric value.

Examples

mod <- club(rate ~ dose, data = caffeine)
pcc(mod)

PCC replicates.

Description

PCC replicates.

Usage

pcc_replicates(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns an object containing a vector of PCC replicates used to calculate the chance-value.

Value

an object of class clubprorand.

Examples

mod <- club(rate ~ dose, data = caffeine)
head(pcc_replicates(mod))

Plot accuracy.

Description

Plot accuracy.

Usage

## S3 method for class 'clubproaccuracy'
plot(x, ...)

Arguments

x

an object of class "clubproaccuracy"

...

ignored

Details

Produces a mosaic plot of predictio naccuracy by category

Value

called for side-effects only

Examples

mod <- club(rate ~ dose, data = caffeine)
z <- accuracy(mod)
plot(z)

Plot model comparison.

Description

Plot model comparison.

Usage

## S3 method for class 'clubprocomparison'
plot(x, ...)

Arguments

x

an object of class "clubprocomparison".

...

ignored

Details

Plot a distribution of PCCs computed from randomly reordered data used to calculate the chance-value for a model comparison.

Value

no return value, called for side effects only.

Examples

m1 <- club(width ~ location, jellyfish)
m2 <- club(length ~ location, jellyfish)
z <- compare(m1, m2)
plot(z)

Plot classification strength indices.

Description

Plot classification strength indices.

Usage

## S3 method for class 'clubprocsi'
plot(x, ...)

Arguments

x

an object of class "clubprocsi"

...

ignored

Details

Produces dotplot showing classification strength for each individual.

Value

called for side-effects only

Examples

mod <- club(rate ~ dose, data = caffeine)
z <- csi(mod)
plot(z)

Plot classification accuracy.

Description

Plot classification accuracy.

Usage

## S3 method for class 'clubprofit'
plot(x, ...)

Arguments

x

an object of class "clubprofit" produced by club()

...

ignored

Details

Produces bar plot showing counts of individuals against observed values within each target grouping. Fill colours indicate whether each individual was classified correctly, incorrectly or ambiguously.

Value

called for side-effects only

Examples

mod <- club(rate ~ dose, data = caffeine)
plot(mod)

Plot predictions.

Description

Plot predictions.

Usage

## S3 method for class 'clubpropredictions'
plot(x, ...)

Arguments

x

an object of class "clubpropredictions"

...

ignored

Details

Produces a mosaic plot of observed versus predicted categories

Value

called for side-effects only

Examples

mod <- club(rate ~ dose, data = caffeine)
z <- predict(mod)
plot(z)

Plot PCC replicates.

Description

Plot PCC replicates.

Usage

## S3 method for class 'clubprorand'
plot(x, ...)

Arguments

x

an object of class "clubprofit" produced by club()

...

ignored

Details

Plot the distribution of PCCs computed from randomly reordered data used to calculate the chance-value.

Value

no return value, called for side effects only.

Examples

mod <- club(rate ~ dose, data = caffeine)
plot(pcc_replicates(mod))

Plot PCC as a function of binary category boundary location.

Description

Plot PCC as a function of binary category boundary location.

Usage

## S3 method for class 'clubprothreshold'
plot(x, ...)

Arguments

x

an object of class "clubprothreshold"

...

ignored

Details

Produces an xyplot showing the PCC returned for each possible category boundary.

Value

called for side-effects only

Examples

mod <- club(rate ~ dose, data = caffeine)
z <- threshold(mod)
plot(z)

Predicted category for each observation.

Description

Predicted category for each observation.

Usage

## S3 method for class 'clubprofit'
predict(object, ...)

Arguments

object

an object of class "clubprofit" produced by club()

...

ignored

Details

Returns a character vector containing the name of the predicted category for each observed value.

Value

a table

Examples

mod <- club(rate ~ dose, data = caffeine)
predict(mod)

Generate a summary of a comparison of clubprofit models.

Description

Generate a summary of a comparison of clubprofit models.

Usage

## S3 method for class 'clubprocomparison'
summary(object, ...)

Arguments

object

an object of class "clubprocomparison".

...

ignored

Value

No return value, called for side effects.

Examples

m1 <- club(width ~ location, jellyfish)
m2 <- club(length ~ location, jellyfish)
z <- compare(m1, m2)
summary(z)

Generate a summary of results from a fitted clubpro model.

Description

Generate a summary of results from a fitted clubpro model.

Usage

## S3 method for class 'clubprofit'
summary(object, ...)

Arguments

object

an object of class "clubprofit".

...

ignored

Value

No return value, called for side effects.

Examples

mod <- club(rate ~ dose, data = caffeine)
summary(mod)

Classification strength indices.

Description

Classification strength indices.

Usage

threshold(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns a vector containing the classification strength index for each observation.

Value

an object of class clubprothreshold

Examples

mod <- club(width ~ location, data = jellyfish)
threshold(mod)