--- title: "Spline ML example" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Spline ML example} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo=TRUE, results='hold', warning=F, cache=F, eval=T, #dev = 'pdf', message=F, fig.width=5, fig.height=5, # fig.retina=0.7, tidy.opts=list(width.cutoff=75), tidy=TRUE ) old <- options(scipen = 1, digits = 4) ``` ```{r setup} library(circularEV) require(plotly) ``` ### Reading Data ```{r} data(HsSP) data(drc) timeRange <- 54.5 idx <- order(drc) drc <- drc[idx] Data <- HsSP[idx] set.seed(1234) Data <- Data + runif(length(Data), -1e-4, 1e-4) ``` ```{r} PlotData(Data=Data, drc=drc, thr=NULL, pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2) PolarPlotData(Data=Data, drc=drc, thr=NULL, pointSize=4, fontSize=14, thrWidth=4, ylim=c(0,max(Data)) ) ``` ### Threshold selection Grid values at which the estimation is performed: ```{r} thetaVec <- 1:360 ``` ```{r, eval=F} thrResultML <- ThrSelection(Data=Data, drc=drc, h=60, b=0.35, thetaGrid=thetaVec, EVIestimator="ML", useKernel=T, concent=10, bw=30, numCores=2)$thr ``` ```{r, echo=F} data(thresholdExampleML) thrResultML <- thresholdExampleML ``` ```{r} PlotData(Data=Data, drc=drc, thr=thrResultML, pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2) PolarPlotData(Data=Data, drc=drc, thr=thrResultML, pointSize=4, fontSize=12, thrWidth=4, ylim=c(0,max(Data))) ``` ### Estimation of spline ML model The code below performs optimisation for a unique pair of lambda and kappa. ```{r, results='hide'} lambda <- 100 kappa <- 40 thrPerObs <- thrResultML[drc] excess <- Data - thrPerObs drcExcess <- drc[excess>0] excess <- excess[excess>0] splineFit <- SplineML(excesses = excess, drc = drcExcess, nBoot = 30, numIntKnots = 16, lambda=lambda, kappa=kappa, numCores=2) ``` ```{r} xiBoot <- splineFit$xi sigBoot <- splineFit$sig PlotParamEstim(bootEstimates=xiBoot, thetaGrid=0:360, ylab=bquote(hat(xi)), alpha=0.05, ylim=NULL, cex.axis=15, cex.lab=2, thrWidth=2) PlotParamEstim(bootEstimates=sigBoot, thetaGrid=0:360, ylab=bquote(hat(sigma)), alpha=0.05, ylim=NULL, cex.axis=15, cex.lab=2, thrWidth=2) ``` ### High Quantiles ```{r} h <- 60 # needed for calculating local probability of exceedances RLBoot <- CalcRLsplineML(Data=Data, drc=drc, xiBoot=xiBoot, sigBoot=sigBoot, h=h, TTs=c(100, 10000), thetaGrid=thetaVec, timeRange=timeRange, thr=thrResultML) ``` ```{r} # 100-year level PlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc, TTs=c(100, 10000), whichPlot=1, alpha=0.05, ylim=NULL, pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2) PolarPlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc, TTs=c(100, 10000), whichPlot=1, alpha=0.05, ylim=c(0, 25), pointSize=4, fontSize=12, lineWidth=2) ``` ```{r} # 10000-year level PlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc, TTs=c(100, 10000), whichPlot=2, alpha=0.05, ylim=NULL, pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2) PolarPlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc, TTs=c(100, 10000), whichPlot=2, alpha=0.05, ylim=c(0, 25), pointSize=4, fontSize=12, lineWidth=2) ``` ```{r, include = FALSE} options(old) ```