Package 'chngpt'

Title: Estimation and Hypothesis Testing for Threshold Regression
Description: Threshold regression models are also called two-phase regression, broken-stick regression, split-point regression, structural change models, and regression kink models, with and without interaction terms. Methods for both continuous and discontinuous threshold models are included, but the support for the former is much greater. This package is described in Fong, Huang, Gilbert and Permar (2017) <DOI:10.1186/s12859-017-1863-x> and the package vignette.
Authors: Youyi Fong [cre], Qianqian Chen [aut], Shuangcheng Hua [aut], Hyunju Son [aut], Adam Elder [aut], Tao Yang [aut], Zonglin He [aut], Simone Giannerini [aut]
Maintainer: Youyi Fong <[email protected]>
License: GPL (>= 2)
Version: 2024.11-15
Built: 2024-12-25 07:04:38 UTC
Source: CRAN

Help Index


chngpt Package

Description

Please see the Index link below for a list of available functions. The main testing function is chngpt.test(). The main estimation function is chngptm().


Threshold Model Hypothesis Testing

Description

Hypothesis testing for threshold models. Only linear models and logistic models are supported at this point.

Usage

chngpt.test (formula.null, formula.chngpt, family=c("binomial","gaussian"), data, 
    type=c("step","hinge","segmented","stegmented"),
    test.statistic=c("lr","score"), # support for score is gradually descreasing
    chngpts=NULL, lb.quantile=.1, ub.quantile=.9, 
    chngpts.cnt=50, #this is set to 25 if int is weighted.two.sided or weighted.one.sided
    prec.weights=NULL,
    p.val.method=c("MC","param.boot"), 
    mc.n=5e4, # 1e3 won't cut it, the p values estimated could be smaller than nominal
    boot.B=1e4,
    robust=FALSE,
    keep.fits=FALSE, verbose=FALSE
) 


antoch.test (formula, data, chngpt.var, plot.=FALSE)

## S3 method for class 'chngpt.test'
plot(x, by.percentile=TRUE, both=FALSE, main=NULL, ...)

Arguments

formula.null

formula for the null model.

formula.chngpt

formula for the change point model. For example, suppose formula.null=y~z and we want to test whether I(x>cutff) is a significant predictor, formula.chngpt=~x If instead we are interested in testing the null that neither I(x>cutff) nor z*I(x>cutff) is a significant predictor, formula.chngpt=~x*z

data

data frame.

family

Currently only linear and logistic regression are supported.

type

step: flat before and after change point; hinge: flat before and slope after change point; segmented: slope before and after change point

test.statistic

method for testing main effects of some threshold model.

chngpts

A grid of potential change points to maximize over. If not supplied, they will be set to a vector of length chngpt.cnt equally spaced between lb.quantile and ub.quantile.

robust

Boolean.

lb.quantile

number. The lower bound in the search for change point in the unit of quantile.

ub.quantile

number. The upper bound in the search for change point in the unit of quantile.

chngpts.cnt

integer. Number of potential change points to maximize over.

mc.n

integer. Number of multivariate normal samples to generate in the Monte Carlo procedure to evaluate p-value.

verbose

Boolean.

chngpt.var

string. Name of the predictor to detect change point

plot.

Boolean. Whether to make a plot.

formula

formula.

x

An object of type chngpt.test.

...

arguments passed to or from methods

by.percentile

tbd

both

tbd

main

tbd

prec.weights

tbd

p.val.method

tbd

boot.B

tbd

keep.fits

tbd

Details

The model under the altnerative is the model under the null plus terms involving the threshold. For example, when the type is segmented and formula.null=~z, formula.chngpt=~x, the model under the null is ~z+x and the model under the alternative is ~z+x+(x-e)_+.

If there are missing values in the chngpt formula, those rows will be removed from the whole dataset, including null model and chngpt model.

antoch.test is only implemented for main effect only and is based on Antoch et al. (2004). Also see Fong et al. (2014).

Value

A list of class htest and chngpt.test

p.value

P-value

family

Family from input

method

Method from input

References

Fong, Y., Huang, Y., Gilbert, P., Permar S. (2017) chngpt: threshold regression model estimation and inference, BMC Bioinformatics, 18(1):454.

Fong Y, Di C, and Permar S. (2015) Change-Point Testing in Logistic Regression Models with Interaction Term. Statistics in Medicine. 34:1483–1494

Pastor-Barriuso, R. and Guallar, E. and Coresh, J. (2003) Transition models for change-point estimation in logistic regression. Statistics in Medicine. 22:13141

Antoch, J. and Gregoire, G. and Jaruskova, D. (2004) Detection of structural changes in generalized linear models. Statistics and probability letters. 69:315

Examples

dat=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4, 
    family="binomial")
test=chngpt.test(formula.null=y~z, formula.chngpt=~x, dat, type="step", family="binomial",
    mc.n=10)
test
plot(test)

dat=sim.chngpt("thresholded", "segmented", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4,
    family="binomial")
test=chngpt.test(formula.null=y~z, formula.chngpt=~x, dat, type="segmented", family="binomial",
    mc.n=10)
test
plot(test)

test = chngpt.test (formula.null=Volume~1, formula.chngpt=~Girth, family="gaussian", data=trees, 
    type="segmented", mc.n=1e4, verbose=FALSE, chngpts.cnt=100, test.statistic="lr")
test
plot(test)


## Not run: 
# not run because otherwise the examples take >5s and that is a problem for R CMD check

# has interaction
test = chngpt.test(formula.null=y~z, formula.chngpt=~x*z, dat, type="step", family="binomial")
test
plot(test)


## End(Not run)

Threshold Models Estimation

Description

Estimate threshold generalized linear models, Cox proportional hazards models, and linear mixed models. Supports 14 types of two-phase (one threshold) models and 1 type of three-phase (two thresholds) model.

Usage

chngptm (formula.1, formula.2, family, data, type = c("hinge",
 "M01", "M02", "M03", "M04", "upperhinge", "M10",
 "M20", "M30", "M40", "M21", "M12", "M21c", "M12c",
 "M22", "M22c", "M31", "M13", "M33c", "segmented",
 "M11", "segmented2", "M111", "step", "stegmented"),
 formula.strat = NULL, weights = NULL, offset = NULL,
 REML = TRUE, re.choose.by.loglik = FALSE, est.method =
 c("default", "fastgrid2", "fastgrid", "grid",
 "smoothapprox"), var.type = c("default", "none",
 "robust", "model", "bootstrap", "all"), aux.fit =
 NULL, lb.quantile = 0.05, ub.quantile = 0.95,
 grid.search.max = Inf, test.inv.ci = TRUE,
 boot.test.inv.ci = FALSE, bootstrap.type =
 c("nonparametric", "wild", "sieve", "wildsieve",
 "awb"), m.out.of.n = 0, subsampling = 0, order.max =
 10, ci.bootstrap.size = 1000, alpha = 0.05, save.boot
 = TRUE, b.transition = Inf, tol = 1e-04, maxit = 100,
 chngpt.init = NULL, search.bound = 10, keep.best.fit =
 TRUE, ncpus = 1, verbose = FALSE, ...)
         
chngptm.xy(x, y, type=c("step","hinge","segmented","segmented2","stegmented"),
    ...)

## S3 method for class 'chngptm'
 coef(object, ...)
## S3 method for class 'chngptm'
 residuals(object, ...)
## S3 method for class 'chngptm'
 vcov(object, var.type=NULL, ...)
## S3 method for class 'chngptm'
 print(x, ...)
## S3 method for class 'chngptm'
 predict(object, newdata = NULL, 
 type = c("link", "response", "terms"), ...)
## S3 method for class 'chngptm'
 plot(x, which = NULL, xlim = NULL, ylim = NULL, lwd = 2,
         lcol = "red", lty = 1, add = FALSE, add.points = TRUE,
         add.ci = TRUE, breaks = 20, mark.chngpt = TRUE, xlab =
         NULL, ylab = NULL, plot.individual.line = FALSE, main
         = "", y.adj = NULL, auto.adj.y = FALSE, transform =
         NULL, ...)
## S3 method for class 'chngptm'
 summary(object, var.type = NULL, expo = FALSE,
 show.slope.post.threshold = FALSE, verbose = FALSE,
 boot.type = "perc", ...)
## S3 method for class 'chngptm'
 logLik(object, ...)
## S3 method for class 'chngptm'
 AIC(object, ...)
 

lincomb(object, comb, alpha = 0.05, boot.type = "perc")

Arguments

formula.1

The part of formula that is free of terms involving thresholded variables

formula.2

The part of formula that is only composed of thresholded variables

formula.strat

stratification formula

family

string. coxph or any valid argument that can be passed to glm. But variance estimate is only available for binomial and gaussian (only model-based for latter)

data

data frame.

type

type

transform

transform

b.transition

Numeric. Controls whether threshold model or smooth transition model. Default to Inf, which correponds to threshold model

est.method

default: estimation algorithm will be chosen optimally; fastgrid2: a super fast grid search algorithm, limited to linear regression; grid: plain grid search, works for almost all models; smoothapprox: approximates the likelihood function using a smooth function, only works for some models. fastgrid = fastgrid2, kept for backward compatibility

var.type

string. Different methods for estimating covariance matrix and constructing confidence intervals

aux.fit

a model fit object that is needed for model-robust estimation of covariance matrix

grid.search.max

The maximum number of grid points used in grid search. When doing fast grid search, grid.search.max is set to Inf internally because it does not take more time to examine all potential thresholds.

test.inv.ci

Boolean, whether or not to find test-inversion confidence interval for threshold

ci.bootstrap.size

integer, number of bootstrap

alpha

double, norminal type I error rate

save.boot

Boolean, whether to save bootstrap samples

lb.quantile

lower bound of the search range for change point estimate

ub.quantile

upper bound of the search range for change point estimate

tol

Numeric. Stopping criterion on the coefficient estimate.

maxit

integer. Maximum number of iterations in the outer loop of optimization.

chngpt.init

numeric. Initial value for the change point.

weights

passed to glm

verbose

Boolean.

add.points

Boolean.

add.ci

Boolean.

add

Boolean.

breaks

integer.

ncpus

Number of cores to use if the OS is not Windows.

keep.best.fit

Boolean.

y

outcome

show.slope.post.threshold

boolean

x

chngptm fit object.

newdata

newdata

object

chngptm fit object.

...

arguments passed to glm or coxph

m.out.of.n

sample size for m-out-of-n bootstrap, default 0 for not doing this type of bootstrap

subsampling

sample size for subsampling bootstrap, default 0 for not doing this type of bootstrap

boot.test.inv.ci

whether to get test inversion CI under bootstrap

search.bound

bounds for search for sloping parameters

which

an integer

y.adj

y.adj

auto.adj.y

auto.adj.y

xlim

xlim

ylim

ylim

lwd

lwd

lcol

line col

mark.chngpt

mark.chngpt

xlab

xlab

ylab

ylab

offset

offset

lty

lty

boot.type

lty

bootstrap.type

nonparametric: the default, classical Efron bootstrap, works for homoscedastic and heteroscedastic indepdendent errors; sieve: works for homoscedastic autocorrelated errors; wild: works for heteroscedastic independent errors; wildsieve: works for heteroscedastic autocorrelated errors; awb: autoregressive wild bootstrap, also works for heteroscedastic autocorrelated errors, but performance may not be as good as wildsieve

order.max

order of autocorrelation for autocorrelated errors in sieve and wildsieve bootstrap

comb

a vector of combination coefficients that will be used to form an inner product with the estimated slope

expo

If family is binomial and expo is TRUE, coefficients summary will be shown on the scale of odds ratio instead of slopes

REML

mixed model fitting - should the estimates be chosen to optimize the REML criterion for a fixed threshold

re.choose.by.loglik

mixed model fitting - should the estimates be chosen to optimize likelihood (REML nor not) or goodness of fit

plot.individual.line

boolean

main

character string

Details

Without lb.quantile and ub.quantile, finite sample performance of estimator drops considerably!
When est.method is smoothapprox, Newton-Raphson is done with initial values chosen by change point hypothesis testing. The testing procedure may be less subjective to finite sample volatility.

If var.method is bootstrap, summary of fitted model contains p values for each estimated slope. These p values are approximate p-values, obtained assuming that the bootstrap distributions are normal.

When var.method is bootstrap and the OS is not Windows, the boot package we use under the hood takes advantage of ncpus cores through parallel::mclapply.

lincomb can be used to get the estimate and CI for a linear combination of slopes.

Value

A an object of type chngptm with the following components

converged

Boolean

coefficients

vector. Estimated coefficients. The last element, named ".chngpt", is the estimated change point

test

htest. Max score test results

iter

integer. Number of iterations

References

Son, H, Fong, Y. (2020) Fast Grid Search and Bootstrap-based Inference for Continuous Two-phase Polynomial Regression Models, Environmetrics, in press.

Elder, A., Fong, Y. (2020) Estimation and Inference for Upper Hinge Regression Models, Environmental and Ecological Statistics, 26(4):287-302.

Fong, Y. (2019) Fast bootstrap confidence intervals for continuous threshold linear regression, Journal of Computational and Graphical Statistics, 28(2):466-470.

Fong, Y., Huang, Y., Gilbert, P., Permar S. (2017) chngpt: threshold regression model estimation and inference, BMC Bioinformatics, 18(1):454.

Fong, Y., Di, C., Huang, Y., Gilbert, P. (2017) Model-robust inference for continuous threshold regression models, Biometrics, 73(2):452-462.

Pastor-Barriuso, R. and Guallar, E. and Coresh, J. (2003) Transition models for change-point estimation in logistic regression. Statistics in Medicine. 22:13141

Examples

# also see the vignette for examples
    
# threshold linear regression
# for actual use, set ci.bootstrap.size to default or higher
par(mfrow=c(2,2))
types=c("hinge", "segmented", "M02", "M03")
for (type in types) {
    fit=chngptm(formula.1=logratio~1, formula.2=~range, lidar, type=type, family="gaussian", 
        var.type="bootstrap", ci.bootstrap.size=100)
    print(summary(fit))
    for (i in 1:3) plot(fit, which=i)
    out=predict(fit)
    plot(lidar$range, out, main=type)
}


# with weights
dat.1=sim.chngpt("thresholded", "segmented", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4,
    family="gaussian")
fit.1.a=chngptm(formula.1=y~z, formula.2=~x, family="gaussian", dat.1, type="segmented", 
    est.method="fastgrid", var.type="bootstrap", weights=ifelse(dat.1$x<3.5,100,1)
    , ci.bootstrap.size=10)
summary(fit.1.a)
plot(fit.1.a)
# fit.1.a$vcov$boot.samples

## Not run: 
# likelihood test, combination of slopes
dat=sim.chngpt("thresholded", "segmented", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4,
    family="gaussian")
fit=chngptm(y~z, ~x, family="gaussian", dat, type="segmented", ci.bootstrap.size=100)
fit.0=lm(y~1,dat)
# likelihood ratio test using lmtest::lrtest
library(lmtest)
lrtest(fit, fit.0)
# estimate the slope after threshold using lincomb function in the chngpt package
lincomb(fit, c(0,0,1,1))

## End(Not run)


# threshold logistic regression
dat.2=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1, x.distr="norm", e.=4, 
    family="binomial")

fit.2=chngptm(formula.1=y~z, formula.2=~x, family="binomial", dat.2, type="step", est.method="grid")
summary(fit.2) 
# no variance estimates available for discontinuous threshold models such as step
# vcov(fit.2$best.fit) gives the variance estimates for the best model conditional on threshold est

# also supports cbind() formula on left hand side
set.seed(1)
dat.2$success=rbinom(nrow(dat.2), 10, 1/(1 + exp(-dat.2$eta)))
dat.2$failure=10-dat.2$success
fit.2a=chngptm(formula.1=cbind(success,failure)~z, formula.2=~x, family="binomial", dat.2, 
    type="step")


# Poisson example
counts <- c(18,17,15,20,10,20,25,13,12,33,35)
x <- 1:length(counts)
print(d.AD <- data.frame(x, counts))
fit.4=chngptm(formula.1=counts ~ 1, formula.2=~x, data=d.AD, family="poisson", 
    type="segmented", var.type="bootstrap", verbose=1, ci.bootstrap.size=1)
summary(fit.4)

fit.4a=chngptm(formula.1=counts ~ 1, formula.2=~x, data=d.AD, family="quasipoisson", 
    type="segmented", var.type="bootstrap", verbose=1, ci.bootstrap.size=1)



## Not run: 
# Not run because otherwise the examples take >5s and that is a problem for R CMD check

# coxph example
library(survival)
fit=chngptm(formula.1=Surv(time, status) ~ ph.ecog, formula.2=~age, data=lung, family="coxph",
    type="segmented", var.type="bootstrap", ci.bootstrap.size=10)
summary(fit)


# one interaction term (mtcars is part of R default installation)
# est.method will be grid as fastgrid not available for models with interaction terms yet
fit=chngptm(formula.1=mpg ~ hp, formula.2=~hp*drat, mtcars, type="segmented", 
    family="gaussian", var.type="bootstrap", ci.bootstrap.size=10)
summary(fit)



# interaction, upperhinge model, bootstrap
fit=chngptm(formula.1=mpg ~ hp, formula.2=~hp*drat, mtcars, type="M10", 
    family="gaussian", var.type="bootstrap", ci.bootstrap.size=10)
summary(fit)

# more than one interaction term
# subsampling bootstrap confidence interval for step model
fit=chngptm(formula.1=mpg~hp+wt, formula.2=~hp*drat+wt*drat, mtcars, type="step",
    family="gaussian", var.type="bootstrap", ci.bootstrap.size=10)
summary(fit)

# step model, subsampling bootstrap confidence intervals
fit=chngptm(formula.1=mpg~hp, formula.2=~drat, mtcars, type="step",
    family="gaussian", var.type="bootstrap", ci.bootstrap.size=10, verbose=TRUE)
summary(fit)

# higher order threshold models
dat=sim.chngpt(mean.model="thresholded", threshold.type="M22", n=500, seed=1, 
    beta=c(32,2,10, 10), x.distr="norm", e.=6, b.transition=Inf, family="gaussian", 
    alpha=0, sd=0, coef.z=0)
fit.0=chngptm(formula.1=y~z, formula.2=~x, dat, type="M22", family="gaussian", 
    est.method="fastgrid2"); plot(fit.0)

dat=sim.chngpt(mean.model="thresholded", threshold.type="M22c", n=500, seed=1, 
    beta=c(32,2,32, 10), x.distr="norm", e.=6, b.transition=Inf, family="gaussian", 
    alpha=0, sd=0, coef.z=0)
fit.0=chngptm(formula.1=y~z, formula.2=~x, dat, type="M22c", family="gaussian", 
    est.method="fastgrid2"); plot(fit.0)
    

# examples of aux.fit
fit.0=glm(yy~zz+ns(xx,df=3), data, family="binomial")
fit = chngptm (formula.1=yy~zz, formula.2=~xx, family="binomial", data, type="hinge", 
    est.method="smoothapprox", var.type="all", verbose=verbose, aux.fit=fit.0, 
    lb.quantile=0.1, ub.quantile=0.9, tol=1e-4, maxit=1e3)




## End(Not run)

# example of random intercept
dat=sim.twophase.ran.inte(threshold.type="segmented", n=50, seed=1)
fit = chngptm (formula.1=y~z+(1|id), formula.2=~x, family="gaussian", dat, 
    type="segmented", est.method="grid", var.type="bootstrap", ci.bootstrap.size=1)
plot(fit)
out=predict(fit, re.form=NA)
plot(dat$x, out)
out.1=predict(fit, type="response", re.form=NULL)# includes re
plot(dat$x, out.1, type="p", xlab="x")

Simulation Study Parameters

Description

The true parameters used in the simulation studies.

Usage

data("coef.0.ls")

Format

The format is list of lists.


Helper functions

Description

Some helper functions. predictx returns confidence bands for predictions as functions of the change point variable. threshold.func returns thresholded covariates.

Usage

convert.coef(coef.0, threshold.type)

predictx(fit, boot.ci.type = c("perc", "basic", "symm"), alpha
 = 0.05, xx = NULL, verbose = FALSE, return.boot =
 FALSE, include.intercept = FALSE, get.simultaneous =
 TRUE)
         
threshold.func(threshold.type, coef, xx, x.name, include.intercept=FALSE)

Arguments

include.intercept

coef.0

coef.0

coef.0

threshold.type

threshold.type

get.simultaneous

threshold.type

return.boot

threshold.type

fit

fit

boot.ci.type

boot.ci.type

alpha

alpha

verbose

verbose

coef

coef

xx

xx

x.name

x.name


An Example Dataset

Description

A dataset from the immune correlates study of Maternal To Child Transmission of HIV-1

Usage

data("dat.mtct")

Format

A data frame with 236 observations on the following 3 variables.

y

a numeric vector

birth

a factor with levels C-section Vaginal

NAb_SF162LS

a numeric vector

References

Permar, S. R., Fong, Y., Nathan Vandergrift, Genevieve G. Fouda, Peter Gilbert, Georgia D. Tomaras, Feng Gao and Barton F. Haynes et al. (2015) Maternal HIV-1 Envelope variable loop 3-specific IgG responses and reduced risk of perinatal transmission. Journal of Clinical Investigation, 125(7):2702:2706.


An Example Dataset

Description

A dataset from the immune correlates study of Maternal To Child Transmission of HIV-1

Usage

dat.mtct.2

Format

A data frame with 248 observations on the following 2 variables.

NAb_score

a numeric vector

V3_BioV3B

a numeric vector

References

Permar, S. R., Fong, Y., Nathan Vandergrift, Genevieve G. Fouda, Peter Gilbert, Georgia D. Tomaras, Feng Gao and Barton F. Haynes et al. (2015) Maternal HIV-1 Envelope variable loop 3-specific IgG responses and reduced risk of perinatal transmission. Journal of Clinical Investigation, 125(7):2702:2706.


Fit Double Hinge Models

Description

Fit double hinge models.

Usage

double.hinge(x, y, lower.y = NULL, upper.y = NULL,
         var.type = c("none", "bootstrap"), ci.bootstrap.size =
         1000, alpha = 0.05, save.boot = TRUE, ncpus = 1, 
         boot.ci.type=c("percentile","symmetric"))

## S3 method for class 'double.hinge'
 plot(x, which = NULL, xlim = NULL, 
 lwd = 2, lcol = "red",
 lty = 1, add.points = TRUE, add.ci = TRUE, breaks =
 20, mark.chngpt = FALSE, xlab = NULL, ylab = NULL,
 ...) 
## S3 method for class 'double.hinge'
 fitted(object, ...) 
## S3 method for class 'double.hinge'
 residuals(object, ...)

Arguments

object

x

x

x

y

y

lower.y

lower.y

upper.y

upper.y

var.type

var.type

boot.ci.type

var.type

ci.bootstrap.size

ci.bootstrap.size

alpha

alpha

save.boot

save.boot

ncpus

ncpus

lcol

ncpus

lwd

ncpus

which

x

xlim

x

lty

x

add.points

x

add.ci

x

breaks

x

mark.chngpt

x

xlab

x

ylab

x

...

arguments passed along

Details

If lower.y and upper.y are not supplied, min(y) is taken as the function value when x is less than or equal to the first threshold, and max(y) is taken as the function value when x is greater than or equal to the second threshold.

If the function is expected to be decreasing between the two thresholds, lower.y and upper.y should be supplied to ensure the correct fit.

mse is residual sum of squares


A non-nested hypothesis testing problem for threshold regression models

Description

Test a hinge effect against a linear effect

Usage

hinge.test(formula, cov.interest, family = c("binomial", "gaussian"), data, thres = NA,
    lb.quantile = 0.1, ub.quantile = 0.9, chngpts.cnt = 10, method = c("FDB", "B", "DB"),
    boot.B = 10000, B2 = NA, verbose = FALSE)

Arguments

formula

formula

cov.interest

cov.interest

family

family

data

data

thres

If supplied, this will be the threshold value to use in the hinge model.

lb.quantile

lower bound of threshold candidates in quantile

ub.quantile

upper bound of threshold candidates in quantile

chngpts.cnt

number of candidate thresholds

method

type of test. FDB: false double bootstrap, B: parametric bootstrap, DB: double bootstrap.

boot.B

number of parametric bootstrap replicates for B and FDB

B2

number of inner bootstrap replicates for DB

verbose

verbose

Value

A list of class htest

p.value

P-value

chngpts

Vector of change points evaluated

TT

Standardized absolute score statistics

V.S.hat

Estimated variance-covariance matrix of the score statistics

Author(s)

Zonglin He

References

He, Fong, Fouda, Permar. A non-nested hypothesis testing problem for threshold regression model, under review

Examples

dat=sim.hinge(threshold.type = 'NA',family = 'binomial',thres='NA',X.ditr = 'norm',mu.X = c(0,0,0),
    coef.X = c(0,.5,.5,.4),cov.X = diag(3),eps.sd = 1,seed = 1,n=100)
test=hinge.test(Y~X1+X2, "x", family="binomial", data=dat,'method'='FDB',boot.B=10)
test

Light Detection and Ranging Data

Description

LIDAR

Usage

data("lidar")

Format

A data frame with 221 observations on the following 2 variables.

range

a numeric vector

logratio

a numeric vector

Source

Holst, U., Hossjer, O., Bjorklund, C., Ragnarson, P. and Edner, H. (1996), Locally weighted leastsquares kernel regression and statistical evaluation of LIDAR measurements, Environmetrics,7, 401-416. Wakefield (2013), Bayesian and Frequentist Regression Methods. Chapter 11 Spline and Kernel Methods.


Infant Nutrition Data

Description

The infant nutrition dataset comprises data collected in a study on the nutrition of infants and preschool children in the north central region of the United States of America.

Usage

data("nutrition")

Format

A data frame with 72 observations on the following 2 variables.

woh

weight/height ratio

age

a numeric vector

Source

Eppright, E. S., Fox, H. M., Fryer, B. A., Lamkin, G. H., Vivian, V. M., Fuller, E. S. (1972). Nutrition of Infants and Preschool Children in the North Central Region of the United States of America. In World Review of Nutrition and Dietetics (Vol. 14, pp. 269-332). Karger Publishers.


Perform unit testing for performance evaluation.

Description

This function performs unit testing for performance evaulation.

Usage

performance.unit.test(formula.1, formula.2, family, data, B, I)

Arguments

formula.1

formula.1

formula.2

formula.2

family

family

data

data

B

B

I

I


Simulation Parameters

Description

Simulation Parameters

Usage

data(sim.alphas)

Format

List of 6. Names: sigmoid2_norm, sigmoid2_norm3, sigmoid3_norm, sigmoid3_norm3, sigmoid4_norm, sigmoid4_norm3. Each element is a 5x4 matrix


Simulation Function

Description

Generate simulation datasets for change point Monte Carlo studies.

Usage

sim.chngpt (mean.model = c("thresholded", "thresholdedItxn",
 "quadratic", "quadratic2b", "cubic2b", "exp",
 "flatHyperbolic", "z2", "z2hinge", "z2segmented",
 "z2linear", "logistic"), threshold.type = c("NA",
 "M01", "M02", "M03", "M10", "M20", "M30", "M11",
 "M21", "M12", "M22", "M22c", "M31", "M13", "M33c",
 "hinge", "segmented", "upperhinge", "segmented2",
 "step", "stegmented"), b.transition = Inf, family =
 c("binomial", "gaussian"), x.distr = c("norm",
 "norm3", "norm6", "imb", "lin", "mix", "gam",
 "zbinary", "gam1", "gam2", "fixnorm", "unif"), e. =
 NULL, mu.x = 4.7, sd.x = NULL, sd = 0.3, mu.z = 0,
 alpha = NULL, alpha.candidate = NULL, coef.z =
 log(1.4), beta = NULL, beta.itxn = NULL,
 logistic.slope = 15, n, seed, weighted = FALSE,
 heteroscedastic = FALSE, ar = FALSE, verbose = FALSE)

sim.twophase.ran.inte(threshold.type, n, seed)

sim.threephase(n, seed, gamma = 1, e = 3, beta_e = 5, f = 7, beta_f = 2, coef.z = 1)

Arguments

threshold.type

string. Types of threshold effect to simulate, only applicable when label does not start with sigmoid.

family

string. Glm family.

n

n

mu.z

n

seed

seed

weighted

beta

beta

beta

coef.z

numeric. Coefficient for z.

beta.itxn

numeric. Coefficient for z.

alpha

numeric, intercept.

mu.x

numeric

sd.x

numeric

mean.model

numeric

x.distr

string. Possible values: norm (normal distribution), gam (gamma distribution). gam1 is a hack to allow e. be different

e.

e.

verbose

Boolean

b.transition

b.

sd

b.

ar

autocorrelation

alpha.candidate

Candidate values of alpha, used in code to determine alpha values

e

e

beta_e

beta_e

f

f

beta_f

beta_f

logistic.slope

beta_f

gamma

beta_f

heteroscedastic

Boolean.

Details

mean.model, threshold.type and b.transition all affect mean models.

Value

A data frame with following columns:

y

0/1 outcome

x

observed covariate that we are interested in

x.star

unobserved covariate that underlies x

z

additional covariate

In addition, columns starting with 'w' are covariates that we also adjust in the model; columns starting with 'x' are covariates derived from x.

Examples

seed=2
par(mfrow=c(2,2))
dat=sim.chngpt(mean.model="thresholded", threshold.type="hinge", family="gaussian", beta=0, n=200, 
    seed=seed, alpha=-1, x.distr="norm", e.=4, heteroscedastic=FALSE)
plot(y~z, dat)
dat=sim.chngpt(mean.model="thresholded", threshold.type="hinge", family="gaussian", beta=0, n=200, 
    seed=seed, alpha=-1, x.distr="norm", e.=4, heteroscedastic=TRUE)
plot(y~z, dat)
dat=sim.chngpt(mean.model="z2", threshold.type="hinge", family="gaussian", beta=1, n=200, 
    seed=seed, alpha=1, x.distr="norm", e.=4, heteroscedastic=FALSE)
plot(y~z, dat)
dat=sim.chngpt(mean.model="z2", threshold.type="hinge", family="gaussian", beta=1, n=200, 
    seed=seed, alpha=1, x.distr="norm", e.=4, heteroscedastic=TRUE)
plot(y~z, dat)

Simulation function

Description

Simulate data for Monte Carlo study.

Usage

sim.hinge(threshold.type = c("NA", "hinge"), family = c("binomial", "gaussian"),
    thres = "NA", X.ditr = "norm", mu.X, coef.X, cov.X, eps.sd, seed, n)

Arguments

threshold.type

threshold.type

family

family

thres

thres

X.ditr

X.ditr

mu.X

mu.X

coef.X

coef.X

cov.X

cov.X

eps.sd

eps.sd

seed

seed

n

n


Simulate data

Description

Simulate data

Usage

sim.my(n, seed, label, alpha, beta, e. = NULL, b. = NULL, tr. = NULL)

Arguments

n

Sample size

seed

Seed for random number generator

label

A character string which specifies the simulation scenario. sigmoid4, sigmoidgam4, elbow4

alpha

regression parameter

beta

regression parameter

e.

inflection point for the logistic transformation (the log scale)

b.

slope for the logistic transformation

tr.

threshold point

Details

When the label starts with elbow, the transformation on x.star is elbow shaped. When the label starts with sigmoid, the transformation on x.star is sigmoid shaped. Data simulated from logit(Pr(Y==1))=alpha + beta*(transformed x.star).

Value

A data frame with columns: y, x.star, x.star.expit (if label starts with sigmoid), x.star.tr (if label starts with elbow), x.bin.med (x.star dichotomized at median), x.tri (x.star trichotomized at tertiles).

Examples

alpha=-1; beta=log(0.2)
e.=5; b.=-30; t.=1
dat=sim.my(n=250, seed=1, label="sigmoid4", alpha, beta, e.=e., b.=b.)

Simulate data according to one of the scenarios considered in Pastor-Barriuso et al 2003

Description

Simulate data according to one of the scenarios considered in Pastor-Barriuso et al 2003

Usage

sim.pastor(seed)

Arguments

seed

Seed for the random number generator.

Value

A data frame with columns: y, x.star, x.star.expit, and x.bin.med (x.star dichotomized at median).

Examples

dat=sim.pastor(seed=1)