
Package: chkptstanr (via r-universe)
October 21, 2024

Title Checkpoint MCMC Sampling with 'Stan'

Version 0.1.1

Date 2022-04-27

Description Fit Bayesian models in Stan <doi:10.18637/jss.v076.i01>
with checkpointing, that is, the ability to stop the MCMC
sampler at will, and then pick right back up where the MCMC
sampler left off. Custom 'Stan' models can be fitted, or the
popular package 'brms' <doi:10.18637/jss.v080.i01> can be used
to generate the 'Stan' code. This package is fully compatible
with the R packages 'brms', 'posterior', 'cmdstanr', and
'bayesplot'.

License Apache License 2.0 | file LICENSE

Depends R (>= 4.1.0)

Imports brms (>= 2.16.1), abind, methods, Rdpack, rstan

Suggests cmdstanr, rmarkdown, knitr, posterior

Encoding UTF-8

RoxygenNote 7.1.2

Additional_repositories https://mc-stan.org/r-packages/

RdMacros Rdpack

VignetteBuilder knitr

NeedsCompilation no

Author Donald Williams [aut, cre], Tyler Matta [aut], NWEA [cph]

Maintainer Donald Williams <donald.williams@nwea.org>

Repository CRAN

Date/Publication 2022-04-29 15:30:02 UTC

Contents
chkptstanr-package . 2
chkpt_brms . 3

1

https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v080.i01
https://mc-stan.org/r-packages/

2 chkptstanr-package

chkpt_setup . 6
chkpt_stan . 7
combine_chkpt_draws . 9
create_folder . 11
extract_chkpt_draws . 12
extract_hmc_info . 13
extract_stan_state . 14
make_brmsfit . 14
print.chkpt_brms . 15
print.chkpt_setup . 16
print.chkpt_stan . 16

Index 18

chkptstanr-package chkptstanr: Checkpoint MCMC Sampling with ’Stan’

Description

Fit Bayesian models in Stan (Carpenter et al. 2017) with checkpointing, that is, the ability to stop
the MCMC sampler at will, and then pick right back up where the MCMC sampler left off. Custom
Stan models can be fitted, or the popular package brms (Bürkner 2017) can be used to generate the
Stan code. This package is fully compatible with the R packages brms, posterior, cmdstanr, and
bayesplot.
There are a variety of use cases for chkptstanr, including (but not limited to) the following:

• The primary motivation for developing chkptstanr is to reduce the cost of fitting models with
Stan when using, say, AWS, and in particular by taking advantage of so-called spot instances.
These instances are "a cost-effective choice if you can be flexible about when your applications
run and if your applications can be interrupted [emphasis added]" (AWS website).
chkptstanr thus allows for taking advantage of spot instances by enabling "interruptions"
during model fitting. This can reduce the cost by 90 %.

• Stan allows for fitting complex models. This often entails iteratively improving the model
to ensure that the MCMC algorithm has converged. Typically this requires waiting until the
model has finished sampling, and then assessing MCMC diagnostics (e.g., R-hat).
chkptstanr can be used to make iterative model building more efficient, e.g., by having the
ability to pause sampling and examine the model (e.g., convergence diagnostics), and then
deciding to stop sampling or to continue on.

• Computationally intensive models can sometimes take several days to finish up. When using
a personal computer, this can take up all the computing resources.
chkptstanr can be used with scheduling, such that the model is fitted during certain windows
(e.g., at night, weekends, etc.)

• Those familiar with Bayesian methods will know all too well that a model can take longer
than expected. This can be problematic when there is another task that needs to be completed,
because one is faced with waiting it out or stopping the model (and loosing all of the progress).
chkptstanr makes it so that models can be conveniently stopped if need be, while not loosing
any of the progress.

http://paul-buerkner.github.io/brms/
https://mc-stan.org/posterior/
https://mc-stan.org/cmdstanr/
https://mc-stan.org/bayesplot/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

chkpt_brms 3

References

Bürkner P (2017). “brms: An R package for Bayesian multilevel models using Stan.” Journal of
statistical software, 80, 1–28.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J,
Li P, Riddell A (2017). “Stan: A probabilistic programming language.” Journal of statistical soft-
ware, 76(1).

chkpt_brms Checkpoint Sampling: brms

Description

Fit Bayesian generalized (non-)linear multivariate multilevel models using brms with checkpoint-
ing.

Usage

chkpt_brms(
formula,
data,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 100,
iter_typical = 150,
parallel_chains = 2,
threads_per = 1,
chkpt_progress = TRUE,
control = NULL,
brmsfit = TRUE,
seed = 1,
path,
...

)

Arguments

formula An object of class formula, brmsformula, or brms{mvbrmsformula}. Further
information can be found in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

iter_warmup (positive integer) The number of warmup iterations to run per chain (defaults to
1000).

iter_sampling (positive integer) The number of post-warmup iterations to run per chain (de-
faults to 1000).

4 chkpt_brms

iter_per_chkpt (positive integer). The number of iterations per checkpoint. Note that iter_sampling
is divided by iter_per_chkpt to determine the number of checkpoints. This
must result in an integer (if not, there will be an error).

iter_typical (positive integer) The number of iterations in the initial warmup, which finds the
so-called typical set. This is an initial phase, and not included in iter_warmup.
Note that a large enough value is required to ensure convergence (defaults to
150).

parallel_chains

(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
mc.cores, which can be set for an entire R session by options(mc.cores=value).
If the mc.cores option has not been set then the default is 1.

threads_per (positive integer) Number of threads to use in within-chain parallelization (de-
faults to 1).

chkpt_progress logical. Should the chkptstanr progress be printed (defaults to TRUE) ? If set
to FALSE, the standard cmdstanr progress bar is printed for each checkpoint
(which does not actually keep track of checkpointing progress)

control A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. For a comprehensive overview see
stan.

brmsfit Logical. Should a brmsfit object be returned (defaults to TRUE).

seed (positive integer). The seed for random number generation to make results re-
producible.

path Character string. The path to the folder, that is used for saving the checkpoints.

... Additional arguments based to make_stancode, including, for example, user-
defined prior distributions and the brmsfamily (e.g., family = poisson()).

Value

An object of class brmsfit (with brmsfit = TRUE) or chkpt_brms (with brmsfit = FALSE)

Examples

Not run:
library(brms)
library(cmdstanr)

path for storing checkpoint info
path <- create_folder(folder_name = "chkpt_folder_fit1")

"random" intercept
fit1 <- chkpt_brms(bf(formula = count ~ zAge + zBase * Trt + (1|patient),

family = poisson()),
data = epilepsy, ,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = path)

chkpt_brms 5

brmsfit output
fit1

path for storing checkpoint info
path <- create_folder(folder_name = "chkpt_folder_fit2")

remove "random" intercept (for model comparison)
fit2 <- chkpt_brms(bf(formula = count ~ zAge + zBase * Trt,

family = poisson()),
data = epilepsy, ,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = path)

brmsfit output
fit2

compare models
loo(fit1, fit2)

using custom priors
path <- create_folder(folder_name = "chkpt_folder_fit3")

priors
bprior <- prior(constant(1), class = "b") +

prior(constant(2), class = "b", coef = "zBase") +
prior(constant(0.5), class = "sd")

fit model
fit3 <-

chkpt_brms(
bf(

formula = count ~ zAge + zBase + (1 | patient),
family = poisson()

),
data = epilepsy,
path = path,
prior = bprior,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,

)

check priors
prior_summary(fit3)

End(Not run)

6 chkpt_setup

chkpt_setup Checkpoint Setup

Description

Deterimine the number of checkpoints for the warmup and sampling, given the desired number of
iterations for each and the iterations per checkpoint.

Usage

chkpt_setup(iter_sampling, iter_warmup, iter_per_chkpt)

Arguments

iter_sampling (positive integer) The number of post-warmup iterations to run per chain. Note:
in the CmdStan User’s Guide this is referred to as num_samples.

iter_warmup (positive integer) The number of warmup iterations to run per chain. Note: in
the CmdStan User’s Guide this is referred to as num_warmup.

iter_per_chkpt (positive integer) The number of iterations per check point.

Value

A list with the following:

• warmup_chkpts: Number of warmup checkpoints

• sample_chkpts: Number of sampling checkpoints

• total_chkpts: Total number of checkpoints (warmup_chkpts + sample_chkpts)

• iter_per_chkpt: Iterations per checkpoint

Examples

chkpt_setup <- chkpt_setup(
iter_sampling = 5000,
iter_warmup = 2000,
iter_per_chkpt = 10

)

chkpt_setup

chkpt_stan 7

chkpt_stan Checkpoint Sampling: Stan

Description

Fit Bayesian models using Stan with checkpointing.

Usage

chkpt_stan(
model_code,
data,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 100,
iter_typical = 150,
parallel_chains = 2,
threads_per = 1,
chkpt_progress = TRUE,
control = NULL,
seed = 1,
path,
...

)

Arguments

model_code Character string corresponding to the Stan model.

data A named list of R objects (like for RStan). Further details can be found in
sample.

iter_warmup (positive integer) The number of warmup iterations to run per chain (defaults to
1000).

iter_sampling (positive integer) The number of post-warmup iterations to run per chain (de-
faults to 1000).

iter_per_chkpt (positive integer). The number of iterations per checkpoint. Note that iter_sampling
is divided by iter_per_chkpt to determine the number of checkpoints. This
must result in an integer (if not, there will be an error).

iter_typical (positive integer) The number of iterations in the initial warmup, which finds the
so-called typical set. This is an initial phase, and not included in iter_warmup.
Note that a large enough value is required to ensure converge (defaults to 150).

parallel_chains

(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
mc.cores, which can be set for an entire R session by options(mc.cores=value).
If the mc.cores option has not been set then the default is 1.

8 chkpt_stan

threads_per (positive integer) Number of threads to use in within-chain parallelization (de-
faults to 1).

chkpt_progress logical. Should the chkptstanr progress be printed (defaults to TRUE) ? If set
to FALSE, the standard cmdstanr progress bar is printed for each checkpoint
(which does not actually keep track of checkpointing progress)

control A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. For a comprehensive overview see
stan.

seed (positive integer). The seed for random number generation to make results re-
producible.

path Character string. The path to the folder, that is used for saving the checkpoints.

... Currently ignored.

Value

An objet of class chkpt_stan

Examples

Not run:

path for storing checkpoint info
path <- create_folder(folder_name = "chkpt_folder_fit1")

stan_code <- make_stancode(bf(formula = count ~ zAge + zBase * Trt + (1|patient),
family = poisson()),

data = epilepsy)
stan_data <- make_standata(bf(formula = count ~ zAge + zBase * Trt + (1|patient),

family = poisson()),
data = epilepsy)

"random" intercept
fit1 <- chkpt_stan(model_code = stan_code,

data = stan_data,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = path)

draws <- combine_chkpt_draws(object = fit1)

posterior::summarise_draws(draws)

eight schools example

path for storing checkpoint info
path <- create_folder(parent_folder = "chkpt_folder_fit2")

stan_code <- "

combine_chkpt_draws 9

data {
int<lower=0> n;
real y[n];
real<lower=0> sigma[n];

}
parameters {

real mu;
real<lower=0> tau;
vector[n] eta;

}
transformed parameters {

vector[n] theta;
theta = mu + tau * eta;

}
model {

target += normal_lpdf(eta | 0, 1);
target += normal_lpdf(y | theta, sigma);

}
"
stan_data <- schools.data <- list(

n = 8,
y = c(28, 8, -3, 7, -1, 1, 18, 12),
sigma = c(15, 10, 16, 11, 9, 11, 10, 18)

)

fit2 <- chkpt_stan(model_code = stan_code,
data = stan_data,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = path)

draws <- combine_chkpt_draws(object = fit2)

posterior::summarise_draws(draws)

End(Not run)

combine_chkpt_draws Combine Checkpoint Draws

Description

Combine Checkpoint Draws

Usage

combine_chkpt_draws(object, ...)

10 combine_chkpt_draws

Arguments

object An object of class brmsfit or chkpt_stan.

... Currently ignored.

Value

An object of class draws_array.

Examples

Not run:
path <- create_folder(folder_name = "chkpt_folder_fit1")

stan_code <- "
data {
int<lower=0> n;
real y[n];
real<lower=0> sigma[n];

}
parameters {

real mu;
real<lower=0> tau;
vector[n] eta;

}
transformed parameters {

vector[n] theta;
theta = mu + tau * eta;

}
model {

target += normal_lpdf(eta | 0, 1);
target += normal_lpdf(y | theta, sigma);

}
"

stan_data <- schools.data <- list(
n = 8,
y = c(28, 8, -3, 7, -1, 1, 18, 12),
sigma = c(15, 10, 16, 11, 9, 11, 10, 18)

)

fit2 <- chkpt_stan(model_code = stan_code,
data = stan_data,
iter_warmup = 1000,
iter_sampling = 1000,
iter_per_chkpt = 250,
path = path)

draws <- combine_chkpt_draws(object = fit2)

draws

End(Not run)

create_folder 11

create_folder Create Folder for Checkpointing

Description

Create the folder for checkingpointing, which will "house" additional folders for the .stan model,
checkpointing information, and draws from the posterior distribution.

Usage

create_folder(folder_name = "cp_folder", path = NULL)

Arguments

folder_name Character string. Desired name for the "parent" folder (defaults to checkpoint).

path Character string, when specified. Defaults to NULL, which then makes the folder
in the working directory.

Value

No return value, and instead creates a directory with folders that will contain the checkpointing
samples and other information.

Note

This creates a directory with four folders:

• cmd_fit: The cmdstanr fittted models (one for each checkpoint).

• cp_info: Mass matrix, step size, and initial values for next checkpoint (last iteration from
previous checkpoint).

• cp_samples: Samples from the posterior distribution (post warmup)

• stan_model: Complied Stan model

Examples

path <- create_folder(folder_name = "cp_folder")

remove folder
unlink("cp_folder", recursive = TRUE)

12 extract_chkpt_draws

extract_chkpt_draws Extract Draws from CmdStanMCMC Objects

Description

A convenience function for extracting the draws from a CmdStanMCMC object.

Usage

extract_chkpt_draws(object, phase)

Arguments

object An object of class CmdStanMCMC.

phase Character string. Which phase during checkpointing? The options included
warmup and sample. The latter extracts the draws with inc_warmup = FALSE,
which is the default in draws

Value

A 3-D draws_array object (iteration x chain x variable).

Note

This can be used to extract the draws in general by setting phase = "sample" which then only
includes the post-warmup draws.

Examples

Not run:
library(cmdstanr)

eight schools example
fit_schools_ncp_mcmc <- cmdstanr_example("schools_ncp")

drws <- extract_chkpt_draws(object = fit_schools_ncp_mcmc,
phase = "sample")

compare to cmdstanr
all.equal(drws, fit_schools_ncp_mcmc$draws())

End(Not run)

extract_hmc_info 13

extract_hmc_info Extract HMC Sampler Information

Description

Extract the inverse metric and step size adaption from CmdStanMCMC objects.

Usage

extract_hmc_info(object)

Arguments

object An object of class CmdStanMCMC

Value

A list including

• inv_metric: Inverse metric for each chain (with matrix = FALSE).

• step_size_adapt: Step size adaptation for each chain.

Note

This is primarily used internally.

Examples

Not run:

library(cmdstanr)

fit_schools_ncp_mcmc <- cmdstanr_example("schools_ncp")

extract_hmc_info(fit_schools_ncp_mcmc)

End(Not run)

14 make_brmsfit

extract_stan_state Extract Stan State

Description

Extract Stan State

Usage

extract_stan_state(object, phase)

Arguments

object An object of class cmdstanr

phase Character string indicating the current phase. Options include wormup and sample/

Value

A list containing the inverse metric, step size, and last MCMC draw (to be used as the initial value
for the next checkpoint)

Examples

Not run:
library(cmdstanr)

eight schools example
fit_schools_ncp_mcmc <- cmdstanr_example("schools_ncp")

extract_stan_state(fit_schools_ncp_mcmc, "sample")

End(Not run)

make_brmsfit Make brmsfit Object

Description

This is primarily used internally, wherein the cmdstanr object is converted into a brmsfit object.

Usage

make_brmsfit(object, formula = NULL, data = NULL, prior = NULL, path)

print.chkpt_brms 15

Arguments

object An object of class chkpt_brms

formula An object of class formula, brmsformula, or brms{mvbrmsformula}. Further
information can be found in brmsformula.

data An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

prior An object of class brmsprior.

path Character string. The path to the folder, that is used for saving the checkpoints.

Value

An object of class brmsfit

Note

This is primarily an internal function that constructs a brmsfit object.

print.chkpt_brms Print chkpt_brms Objects

Description

Print chkpt_brms Objects

Usage

S3 method for class 'chkpt_brms'
print(x, ...)

Arguments

x Object of class chkpt_brms

... Currently ignored

Value

No return value, and used to print the chkpt_brms object.

Note

This function mainly avoids printing out a list, and it is only used when brmsfit = "FALSE" in
chkpt_brms.

Typically, after fitting, the posterior draws should be summarized with combine_chkpt_draws (as-
suming brmsfit = "FALSE").

16 print.chkpt_stan

print.chkpt_setup Print chkpt_setup Object

Description

Print chkpt_setup Object

Usage

S3 method for class 'chkpt_setup'
print(x, ...)

Arguments

x An object of class chkpt_setup.

... Currently ignored.

Value

No return value, and used to print the chkpt_setup object.

Examples

chkpt_setup <- chkpt_setup(
iter_sampling = 5000,
iter_warmup = 2000,
iter_per_chkpt = 10

)

chkpt_setup

print.chkpt_stan Print chkpt_stan Objects

Description

Print chkpt_stan Objects

Usage

S3 method for class 'chkpt_stan'
print(x, ...)

print.chkpt_stan 17

Arguments

x Object of class chkpt_stan

... Currently ignored

Value

No return value, and used to print the chkpt_stan object.

Note

This function mainly avoids printing out a list.

Typically, after fitting, the posterior draws should be summarized with combine_chkpt_draws.

Index

brms, 3, 15
brmsfamily, 4
brmsformula, 3, 15

chkpt_brms, 3, 15
chkpt_setup, 6
chkpt_stan, 7
chkptstanr-package, 2
combine_chkpt_draws, 9, 15, 17
create_folder, 11

draws, 12

extract_chkpt_draws, 12
extract_hmc_info, 13
extract_stan_state, 14

formula, 3, 15

make_brmsfit, 14
make_stancode, 4

print.chkpt_brms, 15
print.chkpt_setup, 16
print.chkpt_stan, 16

sample, 7
stan, 4, 8

18

	chkptstanr-package
	chkpt_brms
	chkpt_setup
	chkpt_stan
	combine_chkpt_draws
	create_folder
	extract_chkpt_draws
	extract_hmc_info
	extract_stan_state
	make_brmsfit
	print.chkpt_brms
	print.chkpt_setup
	print.chkpt_stan
	Index

