
Package: chinese.misc (via r-universe)
September 2, 2024

Type Package

Title Miscellaneous Tools for Chinese Text Mining and More

Version 0.2.3

Date 2020-09-10

Maintainer Jiang Wu <textidea@sina.com>

Description Efforts are made to make Chinese text mining easier,
faster, and robust to errors. Document term matrix can be
generated by only one line of code; detecting encoding,
segmenting and removing stop words are done automatically. Some
convenient tools are also supplied.

License GPL-3

URL https://github.com/githubwwwjjj/chinese.misc/blob/master/README.md

Depends R (>= 3.6.0)

Imports jiebaR, NLP, tm (>= 0.7), stringi, slam (>= 0.1-37), Matrix,
purrr

Encoding UTF-8

LazyLoad true

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Author Jiang Wu [aut, cre] (from Capital Normal University)

Repository CRAN

Date/Publication 2020-09-11 21:50:03 UTC

Contents
chinese.misc-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
as.character2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
as.numeric2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
corp_or_dtm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1

https://github.com/githubwwwjjj/chinese.misc/blob/master/README.md


2 chinese.misc-package

create_ttm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
csv2txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DEFAULT_control1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DEFAULT_control2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
DEFAULT_cutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
dictionary_dtm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
dir_or_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
get_tag_word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
get_tmp_chi_locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
is_character_vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
is_positive_integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
m2doc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
m3m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
make_stoplist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
match_pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
output_dtm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
scancn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
seg_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
slim_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
sort_tf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
sparse_left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
tf2doc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
topic_trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
txt2csv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
VCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
VR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
VRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
word_cor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Index 38

chinese.misc-package Miscellaneous Tools for Chinese Text Mining and More

Description

This package aims to help accomplish the basic tasks of Chinese text mining in a more efficient way.
The manual in Chinese is in https://github.com/githubwwwjjj/chinese.misc. Compared
with other packages and functions, the package puts more weight on the following three points:
(1) It helps save users’ time. (2) It helps decrease errors (it tolerates and corrects input errors,
if it can; and if it cannot, it gives meaningful error messages). (3) Although the functions in this
package depend on tm and stringi, several steps and the values of arguments have been specially set
to facilitate processing Chinese text. For example, corp_or_dtm creates corpus or document term
matrix, users only need to input folder names or file names, and the function will automatically
detect file encoding, segment terms, modify texts, remove stop words. txt2csv and csv2txt help

https://github.com/githubwwwjjj/chinese.misc


as.character2 3

convert the format of texts and do some data cleaning. And there are some functions for object class
assertion and coercion.

Author(s)

Jiang Wu

Examples

require(tm)
# Since no Chinese character is allowed, here we
# use English instead.
# Make a document term matrix in 1 step, few arguments have
# to be modified by the user.
x <- c(

"Hello, what do you want to drink?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water",
"hello, drink a cup of coffee")

dtm <- corp_or_dtm(x, from = "v", type = "dtm")
# Coerce list containing data frames and other lists
df <- data.frame(matrix(c(66, 77, NA, 99), nr = 2))
l <- list(a = 1:4, b = factor(c(10, 20, NA, 30)), c = c('x', 'y', NA, 'z'), d = df)
l2 <- list(l, l, cha = c('a', 'b', 'c'))
as.character2(l2)

as.character2 An Enhanced Version of as.character

Description

This function manages to coerce one or more objects into a character vector. Unlike as.character,
this function can handle data frames, lists and recursive lists (lists of lists), even when there are
factor objects inside data frames and lists. If there is any NULL object in a list, as.character2
will coerce that element into character(0) rather than the character "NULL", which is what
as.character does. When the object is of class matrix or data frame, the function will open it
by column. The order of characters in result manages to keep accordance with that of the input
object.

Usage

as.character2(...)

Arguments

... one or more objects to be coerced.



4 as.numeric2

Value

a character vector

Examples

as.character2(NULL, NULL)
# Try a list of NULLs
null_list <- list(a = NULL, b = NULL, c = NULL)
# Compare the different results of as.character
# and as.character2. In fact, we usually
# want the latter one.
as.character(null_list)
as.character2(null_list)
# Try a list with a data frame in it
df <- data.frame(matrix(c(66,77,NA,99), nrow = 2))
l <- list(a = 1:4, b = factor(c(10,20,NA, 30)), c = c('x', 'y', NA, 'z'), d = df)
as.character2(l)
# Try a list of lists
l2 <- list(l, l, cha = c('a', 'b', 'c'))
as.character2(l2)

as.numeric2 An Enhanced Version of as.numeric

Description

This function coerces objects into a numeric vector. There are several differences between this
function and as.numeric. First, if as.character2 fails to coerce (this is usually because there are
characters in the input object), it will raise an error and stop rather than to give a warning. Second,
it can handle data frame object, list, and recursive list. Third, it can coerce number-like factors
exactly into what users see on the screen.

Usage

as.numeric2(...)

Arguments

... one or more objects to be coerced.

Value

a numeric vector, or, if fails, an error will be raised.



corp_or_dtm 5

Examples

# Try to coerce data frame
a <- c(55, 66, 77, 88, 66, 77, 88)
b <- factor(a)
df <- data.frame(a, b)
as.numeric2(df, a*2)
# Try a list
l <- list(a, a*2)
as.numeric2(l)
# Try a list of lists
l2 <- list(l, l)
as.numeric2(l2)

corp_or_dtm Create Corpus or Document Term Matrix with 1 Line

Description

This function allows you to input a vector of characters, or a mixture of files and folders, it will
automatically detect file encodings, segment Chinese texts, do specified modification, remove stop
words, and then generate corpus or dtm (tdm). Since tm does not support Chinese well, this function
manages to solve some problems. See Details.

Usage

corp_or_dtm(
...,
from = "dir",
type = "corpus",
enc = "auto",
mycutter = DEFAULT_cutter,
stop_word = NULL,
stop_pattern = NULL,
control = "auto",
myfun1 = NULL,
myfun2 = NULL,
special = "",
use_stri_replace_all = FALSE

)

Arguments

... names of folders, files, or the mixture of the two kinds. It can also be a character
vector of texts to be processed when setting from to "v", see below.

from should be "dir" or "v". If your inputs are filenames, it should be "dir" (default),
If the input is a character vector of texts, it should be "v". However, if it is
set to "v", make sure each element is not identical to filename in your working



6 corp_or_dtm

directory; and, if they are identical, the function will raise an error. To do this
check is because if they are identical, jiebaR::segment will take the input as a
file to read!

type what do you want for result. It is case insensitive, thus those start with "c" or
"C" represent a corpus result; and those start with "d" or "D" for document term
matrix, and those start with "t" or "T" for term document matrix. Input other
than the above represents a corpus result. The default value is "corpus".

enc a length 1 character specifying encoding when reading files. If your files may
have different encodings, or you do not know their encodings, set it to "auto"
(default) to let the function auto-detect encoding for each file.

mycutter the jiebar cutter to segment text. A default cutter is used. See Details.
stop_word a character vector to specify stop words that should be removed. If it is NULL,

nothing is removed. If it is "jiebar", "jiebaR" or "auto", the stop words used
by jiebaR are used, see make_stoplist. Please note the default value is NULL.
Texts are transformed to lower case before removing stop words, so your stop
words only need to contain lower case characters.

stop_pattern vector of regular expressions. These patterns are similar to stop words. Terms
that match the patterns will be removed. Note: the function will automatically
adds "^" and "$" to the pattern, which means first, the pattern you provide should
not contain these two; second, the matching is complete matching. That is to say,
if a word is to be removed, it not just contains the pattern (which is to be checked
by grepl, but the whole word match the pattern.

control a named list similar to that which is used by DocumentTermMatrix or TermDocumentMatrix
to create dtm or tdm. But there are some significant differences. Most of the time
you do not need to set this value because a default value is used. When you set
the argument to NULL, it still points to this default value. See Details.

myfun1 a function used to modify each text after being read by scancn and before being
segmented.

myfun2 a function used to modify each text after they are segmented.
special a length 1 character or regular expression to be passed to dir_or_file to spec-

ify what pattern should be met by filenames. The default is to read all files. See
dir_or_file.

use_stri_replace_all

default is FALSE. If it is TRUE, stringi::stri_replace_all is used to delete
stop words, which has a slightly higher speed. This is still experimental.

Details

Package tm sometimes tries to segment an already segmented Chinese Corpus and put together
terms that should not be put together. The function is to deal with the problem. It calls scancn
to read files and auto-detect file encodings, and calls jiebaR::segment to segment Chinese text,
and finally calls tm::Corpus to generate corpus. When creating DTM/TDM, it partially depends
on tm::DocumentTermMatrix and tm::TermDocumentMatrix, but also has some significant dif-
ferences in setting control argument.

Users should provide their jiebar cutter by mycutter. Otherwise, the function uses DEFAULT_cutter
which is created when the package is loaded. The DEFAULT_cutter is simply worker(write =
FALSE). See jiebaR::worker.



corp_or_dtm 7

As long as you have not manually created another variable called "DEFAULT_cutter", you can
directly use jiebaR::new_user_word(DEFAULT_cutter...) to add new words. By the way,
whether you manually create an object called "DEFAULT_cutter", the original loaded DEFAULT_cutter
which is used by default by functions in this package will not be removed by you. So, whenever
you want to use this default value, you do not need to set mycutter and keep it as default.

The argument control is very similar to the argument used by tm::DocumentTermMatrix, but is
quite different and will not be passed to it! The permitted elements are below:

• (1) wordLengths: length 2 positive integer vector. 0 and inf is not allowed. If you only want
words of 4 to 10, then set it to c(4, 10). If you do not want to limit the ceiling value, just
choose a large value, e.g., c(4, 100). In package tm (>= 0.7), 1 Chinese character is roughly of
length 2 (but not always computed by multiplying 2), so if a Chinese words is of 4 characters,
the min value of wordLengths is 8. But here in corp_or_dtm, word length is exactly the same
as what you see on the screen. So, a Chinese word with 4 characters is of length 4 rather than
8.

• (2) dictionary: a character vetcor of the words which will appear in DTM/TDM when you
do not want a full one. If none of the words in the dictionary appears in corpus, a blank
DTM/TDM will be created. The vector should not contain NA, if it does, only non-NA el-
ements will be kept. Make sure at least 1 element is not NA. Note: if both dictionary and
wordLengths appear in your control list, wordLengths will be ignored.

• (3) bounds: an integer vector of length 2 which limits the term frequency of words. Only
words whose total frequencies are in this range will appear in the DTM/TDM. 0 and inf is
not allowed. Let a large enough value to indicate the unlimited ceiling.

• (4) have: an integer vector of length 2 which limits the time a word appears in the corpus.
Suppose a word appears 3 times in the 1st article and 2 times in the 2nd article, and 0 in the
3rd, then its bounds value = 3 + 2 + 0 = 5; but its have value = 1 + 1 + 0 = 2.

• (5) weighting: a function to compute word weights. The default is to compute term frequency.
But you can use other weighting functions, typically tm::weightBin or tm::weightTfIdf.

• (6) tokenizer: this value is temporarily deprecated and it cannot be modified by users.

By default, the argument control is set to "auto", "auto1", or DEFAULT_control1, which are the
same. This control list is created when the package is loaded. It is simply list(wordLengths =
c(1, 25)), Alternatively, DEFAULT_control2 (or "auto2") is also created when loading package,
which sets word length to 2 to 25.

Value

a corpus, or document term matrix, or term document matrix.

Examples

x <- c(
"Hello, what do you want to drink?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water")

# The simplest argument setting
dtm <- corp_or_dtm(x, from = "v", type = "dtm")



8 create_ttm

# Modify argument control to see what happens
dtm <- corp_or_dtm(x, from = "v", type="d", control = list(wordLengths = c(3, 20)))
tdm <- corp_or_dtm(x, from = "v", type = "T", stop_word = c("you", "to", "a", "of"))

create_ttm Create Term-Term Matrix (Term-Cooccurrence Matrix)

Description

This is a convenient function to create term-term matrix from document-term matrix, term-document
matrix, or a matrix that represents one of the two. Sparse matrix is used to speed up computing.
The output can be either a matrix or a sparse matrix.

Usage

create_ttm(x, type = "dtm", tomatrix = FALSE, checks = TRUE)

Arguments

x an object of class DocumentTermMatrix or TermDocumentMatrix, or a matrix
which has its rownames or colnames as terms.

type if x is a matrix, this argument tells whether it is a DTM or a TDM; for the former,
a character starting with "D/d", and for the latter, starting with "T/t".

tomatrix should be logical, whether to output a matrix result. If TRUE, a matrix represent-
ing a TTM is returned. If FALSE (default), a list is returned: the first element is a
sparse matrix created by package Matrix, with no words, the second element is
a character vector of these words.

checks if x is a matrix, whether to check its validity, that is, whether it is numeric, all
values are 0 or positive, there is no NA.

Examples

x <- c(
"Hello, what do you want to drink?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water")

dtm <- corp_or_dtm(x, from = "v", type = "dtm")
ttm1 <- create_ttm(dtm)
ttm2 <- create_ttm(dtm, tomatrix = TRUE)
tdm <- t(dtm)
ttm3 <- create_ttm(tdm)
ttm_sparse <- ttm3[[1]]
ttm_ordinary <- as.matrix(ttm_sparse)
colnames(ttm_ordinary) <- ttm3[[2]]
rownames(ttm_ordinary) <- ttm3[[2]]
# You can also use Matrix::writeMM(ttm_sparse, filename)
# to write it on your disk.



csv2txt 9

csv2txt Write Texts in CSV into Many TXT/RTF Files

Description

The function writes texts in a given .csv file into separated .txt/.rtf files with file names added.

Usage

csv2txt(
csv,
folder,
which,
header = TRUE,
na_in_csv = c(NA, "", " ", "?", "NA", "999"),
na_in_txt = " ",
name_col = NULL,
ext = "txt"

)

Arguments

csv a .csv file. One of its columns contains texts to be written.

folder a name of a folder that stores the .txt/.rtf files created by the function. The folder
may already exist. If it does not exist, the function will try to create it recursively.
If it cannot be created, an error will be raised. See dir.create. Note: a name
that contains no punctuation is preferred.

which a number: which column of the csv file contains texts.

header should the .csv file be read with its first row as header? This argument is passed
to read.csv. Default is TRUE.

na_in_csv character vector indicating what content in the .csv file’s cells should be taken
as NA. The default values are "", " ", "?", "NA", "999"; and you can specify other
values. But whatever you specify, the default values will always be taken as NA.
If you do not provide a character vector, the default values are used.

na_in_txt a length 1 character specifying what to write into a .txt file if a csv cell is NA.
The default is " " (a space).

name_col a length 1 number to indicate which column of your data should be taken as
filenames. If it is NULL (default), a unique number will be given to each file, See
Detail. If a cell is taken to be NA, it will be converted to ""; if it is too long,
only the first 90 characters are used; one or more blanks and punctuations will
be replaced by " " (a space).

ext the extension of files to be written. Should be "txt", "rtf" or "". If it is not one of
the three, it is set to "".



10 DEFAULT_control1

Details

In writing .txt/.rtf files, the function gives each file a unique number as part of its filename. The
mechanism is as follows: suppose you have 1234 files, as this number has four digits, a series of
numbers 0001, 0002,...0012,...0300,...1234 are assigned rather than 1, 2,...12,...300,...1234. There
are several reasons to do this: first, if name_col is NULL, this procedure automatically assigns names.
Second, the column you specify may have duplicate names. Third, even the column does not have
duplicate names, the process the function modifies the names to make them valid may also produce
duplicate names. Fourth, numbers with full digits make it easy to sort them in any software.

Value

nothing is returned and .txt/rtf files are written into the folder.

Examples

## Not run:
# First, we create a csv file
x1 <- file.path(find.package("base"), "CITATION")
x2 <- file.path(find.package("base"), "DESCRIPTION")
txt2csv(x1, x2, must_txt = FALSE, csv = "x1x2csv.csv")
# Now try to write files
wd <- getwd()
wd <- gsub("/$|\\\\$", "", wd)
f <- paste(wd, "x1x2csv", sep="/")
csv2txt(csv = "x1x2csv.csv", folder = f, which = 3, ext = "")

## End(Not run)

DEFAULT_control1 A Default Value for corp_or_dtm 1

Description

In the previous version, this list object is by default used by corp_or_dtm. In this version, it is not
the default value but it can still be used by the user. See details in corp_or_dtm.

Usage

DEFAULT_control1

Format

An object of class list of length 2.

Details

The object specifies word length from 1 to 25. The second element, a tokenizer, is temporally
deprecated. Also, DEFAULT_control2 sets length from 2 to 25.



DEFAULT_control2 11

Examples

require(tm)
x <- c(

"Hello, what do you want to drink?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water")

dtm <- corp_or_dtm(x, from = "v", type = "dtm", control = DEFAULT_control1)

DEFAULT_control2 A Default Value for corp_or_dtm 2

Description

The object specifies word length from 2 to 25. The second element, a tokenizer, is temporally
deprecated. Also, DEFAULT_control1 sets length from 1 to 25.

Usage

DEFAULT_control2

Format

An object of class list of length 2.

Examples

require(tm)
x <- c(

"Hello, what do you want to drink?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water")

dtm <- corp_or_dtm(x, from = "v", type = "dtm", control = DEFAULT_control2)

DEFAULT_cutter A Default Cutter

Description

This is simply a jiebar object created when the package is loaded. write is set to FALSE, so as to
prevent segmented text from being automatically written into disk.

Usage

DEFAULT_cutter



12 dictionary_dtm

Format

An object of class jiebar (inherits from segment, jieba) of length 11.

Examples

require(jiebaR)
x <- c("drink a bottle of milk",

"drink a cup of coffee",
"drink some water")

seg_file(x, from = "v")
seg_file(x, from = "v", mycutter = DEFAULT_cutter)

dictionary_dtm Making DTM/TDM for Groups of Words

Description

A dictionary has several groups of words. Sometimes what we want is not the term frequency of
this or that single word, but rather the total sum of words that belong to the same group. Given a
dictionary, this function can save you a lot of time because it sums up the frequencies of all groups
of words and you do not need to do it manually.

Usage

dictionary_dtm(
x,
dictionary,
type = "dtm",
simple_sum = FALSE,
return_dictionary = FALSE,
checks = TRUE

)

Arguments

x an object of class DocumentTermMatrix or TermDocumentMatrix created by
corp_or_dtm or tm::DocumentTermMatrix or tm::TermDocumentMatrix. But
it can also be a numeric matrix and you have to specify its type, see below.

dictionary a dictionary telling the function how you group the words. It can be a list, matrix,
data.frame or character vector. Please see details for how to set this argument.

type if x is a matrix, you have to tell whether it represents a document term matrix or
a term document matrix. Character starting with "D" or "d" for document term
matrix, and that with "T" or "t" for term document matrix. The default is "dtm".

simple_sum if it is FALSE (default), a DTM/TDM will be returned. If TRUE, you will not
see the term frequency of each word in each text. Rather, a numeric vector is
returned, each of its element represents the sum of the corresponding group of
words in the corpus as a whole.



dictionary_dtm 13

return_dictionary

if TRUE, a modified dictionary is returned, which only contains words that do
exist in the DTM/TDM. The default is FALSE.

checks The default is TRUE. This will check whether x and dictionary is valid. For
dictionary, if the input is not a list of characters, the function will manage to
convert. You should not set this to FALSE unless you do believe that your input
is OK.

Details

The argument dictionary can be set in different ways:

• (1) list: if it is a list, each element represents a group of words. The element should be a
character vector; if it is not, the function will manage to convert. However, the length of the
element should be > 0 and has to contain at least 1 non-NA word.

• (2) matrix or data.frame: each entry of the input should be character; if it is not, the function
will manage to convert. At least one of the entries should not be NA. Each column (not row)
represents a group of words.

• (3) character vector: it represents one group of words.

• (4) Note: you do not need to worry about two same words existing in the same group, because
the function will only count one of them. Neither should you worry about that the words
in a certain group do not really exist in the DTM/TDM, because the function will simply
ignore those non-existent words. If none of the words of that group exists, the group will still
appear in the final result, although the total frequencies of that group are all 0’s. By setting
return_dictionary = TRUE, you can see which words do exist.

Value

if return_dictionary = FALSE, an object of class DocumentTermMatrix or TermDocumentMatrix
is returned; if TRUE, a list is returned, the 1st element is the DTM/TDM, and the 2nd element is a
named list of words. However, if simple_sum = TRUE, the DTM/TDM in the above two situations
will be replaced by a vector.

Examples

x <- c(
"Hello, what do you want to drink and eat?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water",
"eat a cake",
"eat a piece of pizza"

)
dtm <- corp_or_dtm(x, from = "v", type = "dtm")
D1 <- list(

aa <- c("drink", "eat"),
bb <- c("cake", "pizza"),
cc <- c("cup", "bottle")

)
y1 <- dictionary_dtm(dtm, D1, return_dictionary = TRUE)



14 dir_or_file

#
# NA, duplicated words, non-existent words,
# non-character elements do not affect the
# result.
D2 <-list(

has_na <- c("drink", "eat", NA),
this_is_factor <- factor(c("cake", "pizza")),
this_is_duplicated <- c("cup", "bottle", "cup", "bottle"),
do_not_exist <- c("tiger", "dream")

)
y2 <- dictionary_dtm(dtm, D2, return_dictionary = TRUE)
#
# You can read into a data.frame
# dictionary from a csv file.
# Each column represents a group.
D3 <- data.frame(

aa <- c("drink", "eat", NA, NA),
bb <- c("cake", "pizza", NA, NA),
cc <- c("cup", "bottle", NA, NA),
dd <- c("do", "to", "of", "and")

)
y3 <- dictionary_dtm(dtm, D3, simple_sum = TRUE)
#
# If it is a matrix:
mt <- t(as.matrix(dtm))
y4 <- dictionary_dtm(mt, D3, type = "t", return_dictionary = TRUE)

dir_or_file Collect Full Filenames from a Mix of Directories and Files

Description

The input can be one or more directories, one or more files, or the mixture of the two. It will return
the full paths of all files in a recursive way, and sort them in increasing order. When files are put in
different areas of your disk, you may need this function to collect them. It is essentially a wrapper
of list.files.

Usage

dir_or_file(..., special = "")

Arguments

... names of directories and files; if the input is not vector, the function will try
to coerce it. Relative paths and paths starting with "~/" are also accepted. In
Windows, both "/" and double inversed slashes inside filenames are accepted.

special a length 1 character or regular expression. Only filenames that have this pattern
will be collected. Default value is "" (character with size 0), and is to collect
everything.



get_tag_word 15

Details

Failure may occur when obtaining absolute paths, please see normalizePath for possible reasons.

Value

a character vector of full filenames with increasing order, and every name is unique. If no filename
is collected, an error will be raised.

Examples

x1 <- find.package("base")
x2 <- find.package("utils")
all_file <- dir_or_file(x1, x2, special = "rds$")

get_tag_word Extract Words of Some Certain Tags through Pos-Tagging

Description

Given a group of Chinese texts, this function manages to extract words of some specified types. For
example, sometimes you want to collect all verbs that are used in your texts. Note: this function
uses jiebaR::tagging to segment texts and do pos-tagging. The types assigned are not all correct.
So, alternatively, you can first pos-tag your texts with other methods and then use this function.

Usage

get_tag_word(
x,
tag = NULL,
tag_pattern = NULL,
mycutter = DEFAULT_cutter,
type = "word",
each = TRUE,
only_unique = FALSE,
keep_name = FALSE,
checks = TRUE

)

Arguments

x it must be a list of character vectors, even when the list contains only one el-
ement. Each element of the list is either a length 1 character vector of a text,
or a length >= 1 character vector which is the result of former tagging work. It
should not contain NA.

tag one or more tags should be specified. Words with these tags will be chosen.
Possible tags are "v", "n", "vn", etc.



16 get_tag_word

tag_pattern should be a length 1 regular expression. You can specify tags by this pattern
rather than directly provide tag names. For example, you can specify tag names
starting with "n" by tag_pattern = "^n". At least and at most one of tag and
tag_pattern should be NULL.

mycutter a cutter created with package jiebaR and given by users to tag texts. If your
texts have already been pos-tagged, you can set this to NULL. By default, a
DEFAULT_cutter is used, which is assigned as worker(write = FALSE) when
loading the package.

type if it is "word" (default), then extract the words that match your tags. If it is
"position", only the positions of the words are returned. Note: if it is "positions",
argument each (see below) will always be set to TRUE.

each if this is TRUE (default), the return will be a list, each element of which is a
extraction result of a text. If it is FALSE, the return will be a character vector
with extracted words. See detail.

only_unique if it is TRUE, only unique words are returned. The default is FALSE. See detail.

keep_name whether to keep the tag names of the extracted words. The default is FALSE.
Note: if only_unique = TRUE, all tag names will be removed.

checks whether to check the correctness of arguments. The default is TRUE.

Details

The Argument each and only_unique decide what kind of return you can get.

• if each = TRUE and only_unique = FALSE, you can get a list, each element of which contains
words extracted. This is the default.

• if each = TRUE and only_unique = TRUE, each element of the list only contains unique words.

• if each = FALSE and only_unique = FALSE, all words extracted will be put into a single vector.

• if each = FALSE and only_unique = TRUE, words extracted will be put into a single vector, but
only unique words will be returned.

Examples

# No Chinese, so use English instead.
x1 <- c(v = "drink", xdrink = "coffee", v = "drink", xdrink = "cola", v = "eat", xfood = "banana")
x2 <- c(v = "drink", xdrink = "tea", v = "buy", x = "computer")
x <- list(x1, x2)
get_tag_word(x, tag = "v", mycutter = NULL)
get_tag_word(x, tag = "v", mycutter = NULL, only_unique = TRUE)
get_tag_word(x, tag_pattern = "^x", mycutter = NULL)
get_tag_word(x, tag_pattern = "^x", mycutter = NULL, keep_name = TRUE)
get_tag_word(x, tag = "v", mycutter = NULL, each = FALSE)
get_tag_word(x, tag = "v", mycutter = NULL, each = FALSE, only_unique = TRUE)
get_tag_word(x, tag = "v", mycutter = NULL, type = "position")



get_tmp_chi_locale 17

get_tmp_chi_locale Check The Locale Functions are to Assume

Description

The locale setting of R is different on different operating systems or different versions of one system.
However, some functions in this package try to convert the locale setting of R to a new value. The
new value, by default, is "Chinese (Simplified)_China.936" in Windows, and "zh_CN.UTF-8" in
other systems. But users can modify this by options(tmp_chi_locale = "...") and then check
this by get_tmp_chi_locale( ). Note: if this value is NULL or NA, it means no locale modification
will be done by functions in this package. If this value is "auto", it will be automatically converted
to the default values.

Usage

get_tmp_chi_locale()

is_character_vector A Convenient Version of is.character

Description

This function checks to see if the object is a character vector. It is designed to have different actions
from is.character and thus sometimes more convenient. See Details.

Usage

is_character_vector(x, len = NULL, allow_all_na = TRUE)

Arguments

x object to be checked

len numeric vector represents the permitted length of character vector. If an object
is a character vector, but its length is not in len, the function still returns FALSE.
The default is NULL, which means any length is OK.

allow_all_na for length>1 character vector whose elements are all NA, if this argument is
FALSE, then the function returns FALSE, if this argument is TRUE (default), then
returns TRUE.



18 is_positive_integer

Details

Sometimes we want to check if an object is a character vector. But is.character cannot do this,
because it also returns TRUE for a character matrix or data frame. What’s more, we usually not only
want to see if an object is of class character, but also want to see if it is valid, that is, can be passed
to other functions without errors. But is.character even returns TRUE for character(0). Also,
is.character(NA) returns FALSE, but is.character(as.character(NA)) returns TRUE, but in
fact there is really no difference between the two for users and many functions that do not allow NA.

We list below the returns of is.character2:

• (1) if the object is NULL, is.character2 returns FALSE.

• (2) if the object is of length 0, it always returns FALSE.

• (3) if the object is not vector, FALSE.

• (4) if it has only one element and this element is NA, under all circumstances it returns FALSE.

• (5) if the vector is of length>1, all the elements are NA, but the vector’s class is not character,
it returns FALSE.

• (6) if a character vector is of length>1, and all the elements are NA, then the result depends on
argument allow_all_na, if allow_all_na = TRUE, then TRUE, otherwise, FALSE.

Value

TRUE or FALSE.

Examples

is_character_vector(character(0))
is_character_vector(NA)
is_character_vector(as.character(NA))
is_character_vector(c(NA, NA))
is_character_vector(as.character(c(NA,NA)))
is_character_vector(as.character(c(NA, NA)), allow_all_na = FALSE)
is_character_vector(as.character(c(NA, NA)), allow_all_na = TRUE)
is_character_vector(matrix(c("a", "b", "c", "d"), nr = 2))
is_character_vector(c("a", "b", "c"), len = c(1, 10))
is_character_vector(c("a", "b", "c"), len = c(1:10))

is_positive_integer A Convenient Version of is.integer

Description

This function checks if all elements of an object can be taken to be valid integers.

Usage

is_positive_integer(x, len = NULL)



m2doc 19

Arguments

x an object to be checked

len numeric vector specifying the allowed length of the x. If the length of the
checked object is not in len, the function will return FALSE, even when it is
a positive integer vector. The default is NULL, which means any length is OK.

Details

The reasons to use is_positive_integer are:

• (1) We often check if an object is a vector of positive integer. But is.numeric cannot do this
because it also returns TRUE for a numeric matrix.

• (2) Sometimes is.integer returns a too strict result. For example, is.integer(3.0) returns
FALSE, but the number 3.0 is valid in codes such as rep(10, 3.0), that is to say, as long as a
number can be taken to be a valid integer, we take it to be a integer, even when is.integer
returns FALSE.

• (3) is_positive_integer returns FALSE for length = 0 object, even when it is integer(0).
To let the function return this result is because integer of length 0 is a invalid input for many
functions.

• (4) is_positive_integer returns FALSE for any object that contains NA, so that object that
gets a TRUE from this function is more likely to be a valid value to be passed to other functions.

Value

TRUE or FALSE

Examples

is_positive_integer(NULL)
is_positive_integer(as.integer(NA))
is_positive_integer(integer(0))
is_positive_integer(3.0)
is_positive_integer(3.3)
is_positive_integer(1:5)
is_positive_integer(1:5, len = c(2, 10))
is_positive_integer(1:5, len = c(2:10))

m2doc Rewrite Terms and Frequencies into Many Files

Description

Given a matrix representing a document term matrix, this function takes each row as term fre-
quencies for one file, and rewrite each row as a text. Some text mining tools other than R accept
segmented Chinese texts. If you already convert texts into a matrix, you can use this function to
convert it into texts, corpus or create document term matrix again.



20 m3m

Usage

m2doc(m, checks = FALSE)

Arguments

m a numeric matrix, data frame is not allowed. It must represent a document term
matrix, rather than a term document matrix. Each row of the matrix represents
a text. The matrix should have column names as terms to be written, but if it is
NULL, the function will take them as "term1", "term2", "term3", ...No NA in the
matrix is allowed.

checks should be TRUE or FALSE. If it is TRUE, the function will check whether there
is any NA in the input, whether it is numeric, and whether there is any negative
number. Default is FALSE to save time.

Value

a character vector, each element is a text with repeated terms (by rep) linked by a space.

Examples

s <- sample(1:5, 20, replace = TRUE)
m <- matrix(s, nrow = 5)
colnames(m) <- c("r", "text", "mining", "data")
m2doc(m)

m3m Convert Objects among matrix, dgCMatrix, simple_triplet_matrix,
DocumentTermMatrix, TermDocumentMatrix

Description

This is to convert objects conveniently. The three types of matrix are 1st, "matrix"; 2nd, "dgCMa-
trix" in package Matrix; 3rd, "simple_triplet_matrix", "DocumentTermMatrix", "TermDocument-
Matrix" in package slam, tm. This function is to be used when you read a csv file and want it to be
a dtm; or, when you have a very large dtm and you want it to be saved or passed to another function
that deals with dgCMatrix object. Note, it cannot convert between simple_triplet_matrix on one
side, and dtm or tdm on the other.

Usage

m3m(x, to, keep_name = TRUE)



make_stoplist 21

Arguments

x object of class matrix, dgCMatrix, simple_triplet_matrix, DocumentTermMa-
trix, TermDocumentMatrix.

to to what class do you want to convert x to. Abbreviations can be used: "ma-
trix" and "m" mean "matrix": "dgCMatrix" and "M" mean "dgCMatrix"; "sim-
ple_triplet_matrix" and "stm" mean "simple_triplet_matrix"; "DocumentTermMa-
trix", "dtm", "DTM" mean "DocumentTermMatrix"; "TermDocumentMatrix",
"tdm", "TDM" mean "TermDocumentMatrix".

keep_name whether to keep names or dimnames, which are, for dtm-like object, documents
and terms. TRUE by default. If you set it to FALSE, you will lose them. But if
you convert dgCMatrix to dtm or tdm, it is required that the dgCMatrix object
has a list of length 2 as dimnames.

Value

the object whose class is specified by argument to.

Examples

# Make a matrix and convert to a dtm
m <- sample(0: 1, 50, replace = TRUE)
m <- matrix(m, nrow = 5)
colnames(m) <- letters[1: 10]
rownames(m) <- as.character(1: 5)
dtm <- m3m(m, "dtm")
# Convert dtm to dgCMatrix
M <- m3m(dtm, "M")

make_stoplist Input a Filename and Return a Vector of Stop Words

Description

When a filename is provided, the function will return a vector of terms. If nothing is provided, it
will return the stop words used in package jiebaR. See Details.

Usage

make_stoplist(x = "jiebar", print = TRUE)

Arguments

x a length 1 character specifying a valid stop word file. If it is not provided, or is
"jiebar" (default), "jiebaR" or "auto", it will return part of the stop words used
by package jiebaR. See Details.

print TRUE or FALSE, whether to print the first 5 words



22 match_pattern

Details

In a valid text file that saves stop words, each word should occupy a single line. However, if any line
that contains more than one word and these words are separated by blanks, punctuations, numbers, it
is also accepted, for the function will try to split them. Duplicated words will also be automatically
removed. The encoding of a stop words file is auto-detected by the function.

For stop word list from jiebaR, see jiebaR::STOPPATH. It contains many words that are often
removed in analyzing Chinese text. However, the result returned by make_stoplist is slightly
different.

Value

a character vector of words. If no word is obtained, it will return NULL.

match_pattern Extract Strings by Regular Expression Quickly

Description

Given a pattern and a character vector, the function will extract parts of these characters that match
the pattern. It is simply a wrapper of regmatches.

Usage

match_pattern(pattern, where, vec_result = TRUE, perl = FALSE)

Arguments

pattern a length 1 regular expression to be matched.
where a character vector, each of its elements may or may not have parts that match

the specified pattern.
vec_result should be TRUE or FALSE. If TRUE (default), all matched parts will be returned in

a character vector. If FALSE, a list is returned, each element of the list represents
the matching result of the corresponding element in where. If an element in
where has nothing matching the pattern, the result is still an element in the list
and assigned character(0).

perl default is FALSE. Should Perl-compatible regexps be used?

Value

a character vector or a list. If an element in where is NA, the result corresponds to this element is
character(0).

Examples

p <- "x.*?y"
x <- c("x6yx8y", "x10yx30y", "aaaaaa", NA, "x00y")
y <- match_pattern(p, x)
y <- match_pattern(p, x, vec_result = FALSE)



output_dtm 23

output_dtm Convert or Write DTM/TDM Object Quickly

Description

Given a TermDocumentMatrix or DocumentTermMatrix object, the function converts it to a matrix
or write it into a .csv file, with additional filenames attached to it.

Usage

output_dtm(x, outputfile = NULL, doc_name = NULL)

Arguments

x an object created by tm::TermDocumentMatrix or tm::DocumentTermMatrix.

outputfile when it is NULL (default), no file is written and a matrix is returned. When a
filename is provided, it will write the matrix into a file. The filename must end
with ".csv".

doc_name whether NULL or a character vector specifying the names you want to give to
texts. If it is not a character vector, the function will try to coerce. Then the
names become the row names of the returned matrix. Double inversed slashes
will be converted to "/" by the function. The length of the argument must be
equal to the number of files. NA element is not allowed. By default it is NULL,
which means no name is added.

Examples

require(tm)
x <- c(

"Hello, what do you want to drink?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water")

dtm <- corp_or_dtm(x, from = "v", type = "dtm")
output_dtm(dtm, doc_name = paste("doc", 1:4))

scancn Read a Text File by Auto-Detecting Encoding

Description

The function reads a text file and tries to detect file encoding. If you have Chinese files from
different sources and cannot give them a single encoding, just let this function detect and read them.
The function can save you much time on dealing with unrecognizable characters.



24 seg_file

Usage

scancn(x, enc = "auto", collapse = " ")

Arguments

x a length 1 character specifying filename.

enc a length 1 character of file encoding specified by user. The default is "auto",
which means let the function detect encoding.

collapse this is used by the collapse argument of paste in order to link characters to-
gether. Default is " " (three spaces).

Details

The function calls scan(x, what = "character", ...) and auto-detects file encoding. Sometimes
a Chinese file is encoded in "UTF-8", but what is actually read is a "?". When this happens, the
function reads it twice and uses stringi::stri_encode to convert it. If invalid inputs are found
in the content, the file will also be read twice.

The function always returns a length 1 character. If the return of scan is a vector with length larger
than 1, elements will be pasted together with three spaces or other specified symbols.

It will return a " " (one space) when all the elements of the vector are NA. If not all elements are NA,
those equal to NA will be changed to "" (a size 0 string) before being pasted together.

Value

a length 1 character of text.

Examples

# No Chinese is allowed, so try an English file
x <- file.path(find.package("base"), "CITATION")
scancn(x)

seg_file Convenient Tool to Segment Chinese Texts

Description

The function first collects filenames or text vectors, then it calls jiebaR::segment to segment texts.
In this process, it allows users to do additional modification. File encoding is detected automati-
cally. After segmenting, segmented words that belong to a text will be pasted together into a single
character with words split by " ". The segmented result will be returned or written on the disk.



seg_file 25

Usage

seg_file(
...,
from = "dir",
folder = NULL,
mycutter = DEFAULT_cutter,
enc = "auto",
myfun1 = NULL,
myfun2 = NULL,
special = "",
ext = "txt"

)

Arguments

... names of folders, files, or the mixture of the two kinds. It can also be a character
vector of text to be processed when setting from to "v", see below.

from should only be "dir" or "v". If your inputs are filenames, it should be "dir"
(default), If the inputs is a character vector of texts, it should be "v". However, if
it is set to "v", make sure each element of the vector is not identical to filename
in your working directory; if they are identical, an error will be raised. To do
this check is because if they are identical, the function segment will take the
input as a file to read!

folder a length 1 character indicating the folder to put the segmented text. Set it to NULL
if you want the result to be a character vector rather than to be written on your
disk. Otherwise, it should be a valid directory path, each segmented text will be
written into a .txt/.rtf file. If the specified folder does not exist, the function will
try to create it.

mycutter the jiebar cutter to segment text. A default cutter is used. See Details.

enc the file encoding used to read files. If files have different encodings or you do
not know their encodings, set it to "auto" (default) to let encodings be detected
automatically.

myfun1 a function used to modify each text after being read by scancn and before being
segmented.

myfun2 a function used to modify each text after they are segmented.

special a length 1 character or regular expression to be passed to dir_or_file to spec-
ify what pattern should be met by filenames. The default is to read all files.

ext the extension of written files. Should be "txt", "rtf" or "". If it is not one of the
three, it is set to "". This is only used when your input is a text vector rather than
filenames and you want to write the outcome into your disk.

Details

Users should provide their jiebar cutter by mycutter. Otherwise, the function uses DEFAULT_cutter
which is created when the package is loaded. The DEFAULT_cutter is simply worker(write =
FALSE). See jiebaR::worker.



26 slim_text

As long as you have not manually created another variable called "DEFAULT_cutter", you can
directly use jiebaR::new_user_word(DEFAULT_cutter...) to add new words. By the way,
whether you manually create an object called "DEFAULT_cutter", the original loaded DEFAULT_cutter
which is used by default by functions in this package will not be removed by you. So, when-
ever you want to use this default value, either you do not set mycutter, or set it to mycutter =
chinese.misc::DEFAULT_cutter.

The encoding for writing files (if folder is not NULL) is always "UTF-8".

Value

a character vector, each element is a segmented text, with words split by " ". If folder is a folder
name, the result will be written into your disk and nothing returns.

Examples

require(jiebaR)
# No Chinese word is allowed, so we use English here.
x <- c("drink a bottle of milk",

"drink a cup of coffee",
"DRINK SOME WATER")

seg_file(x, from = "v", myfun1 = tolower)

slim_text Remove Words through Speech Tagging

Description

The function calls jiebaR::tagging to do speech tagging on a Chinese text, and then removes
words that have certain tags.

Usage

slim_text(
x,
mycutter = DEFAULT_cutter,
rm_place = TRUE,
rm_time = TRUE,
rm_eng = FALSE,
rm_alpha = FALSE,
paste = TRUE

)

Arguments

x a length 1 character of Chinese text to be tagged

mycutter a jiebar cutter provided by users to tag text. It has a default value, see Details.



slim_text 27

rm_place TRUE or FALSE. if TRUE (default), words related to a specified place ("ns") are
removed.

rm_time TRUE or FALSE. if TRUE (default), time related words ("t") are removed.

rm_eng TRUE or FALSE. if TRUE, English words are removed. The default is FALSE.

rm_alpha should be "any", TRUE or FALSE (default). Some English words are tagged as
"x", so cannot be remove by setting rm_eng. But when rm_alpha is TRUE, any
word that contains only a-zA-Z will be removed. If it is "any", then words that
are mixtures of a-zA-Z and Chinese/digits will be removed.

paste TRUE or FALSE, whether to paste the segmented words together into a length 1
character. The default is TRUE.

Details

Stop words are often removed from texts. But a stop word list hardly includes all words that need to
be removed. So, before removing stop words, we can remove a lot of insignificant words by tagging
and make the texts "slim". The webpage http://www.docin.com/p-341417726.html?_t_t_t=0.3930890985844252
provides details about Chinese word tags.

Only words with the following tags are to be preserved:

• (1) "n": nouns;

• (2) "t": time related words;

• (3) "s": space related words;

• (4) "v": verbs;

• (5) "a": adjectives;

• (6) "b": words only used as attributes in Chinese;

• (7) "x": strings;

• (8) "j", "l", "i", "z": some specific Chinese letters and phrases;

• (9) "unknown": words of unknown type;

• (10) "eng": English words.

Optionally, words related to a specified place ("ns"), time related words ("t") and english words
("eng") can be removed.

By default, a DEFAULT_cutter is used by the mycutter argument, which is assigned as worker(write
= FALSE) when loading the package. As long as you have not manually created another variable
called "DEFAULT_cutter", you can directly use jiebaR::new_user_word(DEFAULT_cutter...)
to add new words. By the way, whether you manually create an object called "DEFAULT_cutter",
the original loaded DEFAULT_cutter which is used by default by functions in this package will not
be removed by you. So, whenever you want to use this default value, you just do not set mycutter.

Value

a length 1 character of segmented text, or a character vector, each element of which is a word.



28 sort_tf

Examples

require(jiebaR)
cutter <- jiebaR::worker()
# Give some English words a new tag.
new_user_word(cutter, c("aaa", "bbb", "ccc"), rep("x", 3))
x <- "we have new words: aaa, bbb, ccc."
# The default is to keep English words.
slim_text(x, mycutter = cutter)
# Remove words tagged as "eng" but others are kept.
slim_text(x, mycutter = cutter, rm_eng = TRUE)
# Remove any word that only has a-zA-Z,
# even when rm_eng = FALSE.
slim_text(x, mycutter = cutter, rm_eng = TRUE, rm_alpha = TRUE)
slim_text(x, mycutter = cutter, rm_eng = FALSE, rm_alpha = TRUE)

sort_tf Find High Frequency Terms

Description

By inputting a matrix, or a document term matrix, or term document matrix, this function counts
the sum of each term and output top n terms. The result can be messaged on the screen, so that you
can manually copy them to other places (e. g., Excel).

Usage

sort_tf(x, top = 10, type = "dtm", todf = FALSE, must_exact = FALSE)

Arguments

x a matrix, or an object created by corp_or_dtm or by tm::DocumentTermMatrix,
or tm::TermDocumentMatrix. Data frame is not allowed. If it is a matrix, the
column names (if type is "dtm") or row names (if type is "tdm") is taken to
be terms, see below. If the names are NULL, terms are set to "term1", "term2",
"term3"...automatically.

top a length 1 integer. As terms are in the decreasing order of the term frequency,
this argument decides how many top terms should be returned. The default is 10.
If the number of terms is smaller than top, all terms are returned. Sometimes
the returned terms are more than top, see below.

type should start with "D/d" representing document term matrix, or "T/t" representing
term document matrix. It is only used when x is a matrix. The default is "dtm".

todf should be TRUE or FALSE. If it is FALSE (default) terms and their frequencies will
be pasted by "&" and messaged on the screen, nothing is returned. Otherwise,
terms and frequencies will be returned as data frame.

must_exact should be TRUE or FALSE (default). It decides whether the number of returned
words should be equal to that specified by top. See Details.



sparse_left 29

Details

Sometimes you may pick more terms than specified by top. For example, you specify to pick up
the top 5 terms, and the frequency of the 5th term is 20. But in fact there are two more terms that
have frequency of 20. As a result, sort_tf may pick up 7 terms. If you want the number is exactly
5, set must_exact to TRUE.

Value

return nothing and message the result, or return a data frame.

Examples

require(tm)
x <- c(

"Hello, what do you want to drink?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water",
"hello, drink a cup of coffee")

dtm <- corp_or_dtm(x, from = "v", type = "dtm")
# Argument top is 5, but more than 5 terms are returned
sort_tf(dtm, top = 5)
# Set must_exact to TRUE, return exactly 5 terms
sort_tf(dtm, top=5, must_exact=TRUE)
# Input is a matrix and terms are not specified
m=as.matrix(dtm)
colnames(m)=NULL
mt=t(m)
sort_tf(mt, top=5, type="tdm")

sparse_left Check How many Words are Left under Certain Sparse Values

Description

This function does not really remove sparse words (which is what tm::removeSparseTerms does);
rather, it only shows how many words are left when you specify some sparse values. See Examples.

Usage

sparse_left(x, sparse)

Arguments

x a DocumentTermMatrix or TermDocumentMatrix object.

sparse a numeric vector with elements >= 0 and <= 1.



30 tf2doc

Examples

x <- c(
"Hello, what do you want to drink?",
"drink a bottle of milk",
"drink a cup of coffee",
"drink some water")

dtm <- corp_or_dtm(x, from = "v", type = "dtm")
y <- sparse_left(dtm, seq(0, 1, 0.1))
# Then you can use plot(sort(y, decreasing = TRUE), type = "b") to
# see which sparse value is proper.

tf2doc Transform Terms and Frequencies into a Text

Description

This function is simply a wrapper of rep, but allows different structures of input. For rewriting
more texts in the same time, see m2doc.

Usage

tf2doc(term, num)

Arguments

term terms that you want to rewrite into a text. A character vector is preferred, but
matrix, list, data frame are also OK. NA in the argument will be taken as letters
"NA" and repeated.

num frequencies of terms in term. A numeric vector is preferred, but matrix, list, data
frame are also OK. Its length must be equal to that of term. No NA is allowed.

Value

a character vector. Terms are pasted with a space.

Examples

x <- matrix(c("coffee", "milk", "tea", "cola"), nrow = 2)
y <- factor(c(5:8))
tf2doc(x, y)



topic_trend 31

topic_trend Simple Rise or Fall Trend of Several Years

Description

When topic names and corresponding years are given, this function computes the rise and fall trend
during the period by lm.

Usage

topic_trend(year, topic, relative = FALSE, zero = 0)

Arguments

year a numeric vector of years for corresponding topics, if it is not numeric, the
function will try to coerce. The years should be written in full-digit, that is, if
they are 1998 and 2013, do not simply write 98 and 13. No NA is allowed. And,
the number of unique years is at least 3, otherwise an error will be raised.

topic a character vector of topics. If it is not character, the function will try to coerce.
The length of topic and year should be the same. No NA is allowed.

relative if FALSE (default), the numbers of topics is used. If TRUE, the percentage of a
topic in a year against the total number of that year is used. Suppose this year
we have 200 texts on art, and the total number of texts in this year is 1000, then
the relative value is 200/1000 = 0.2 rather than the absolute number 200. Note:
if to use relative value, NA of the amount of a topic will be automatically set to
0.

zero this can only be 0 (default) or NA. Suppose we have 0 text on a certain topic,
then you will make sure whether the amount is really 0, or the data of this topic
in that year is missing. Set this argument to NA to make all 0 into NA.

Details

The detail of trend info in the result is as follows:

• (1) trendIndex: a regression with function lm is done for every topic with year as x and amount
of topics as y. The value of trendIndex is the slope k in y = kx+b.

• (2) trendLevel: the p value of k.

• (3) totalTrend: if trendIndex is larger than 0, then "rise", otherwise "fall". If trendLevel is
smaller than 0.05, than "significant rise" or "significant fall".

• (4) maxminYear: if totalTrend is "rise" or "significant rise", then this value points out which
year has the largest amount. If several years have the largest value, the most recent year
is returned. If totalTrend is "fall" or "significant fall", the year has the smallest amount is
returned.



32 txt2csv

• (5) detailTrend: if totalTrend is "rise" or "significant rise", then the function will see whether
the year has the largest amount is the last year, if it is, then "rise along", otherwise "rise and
fall". If totalTrend is "fall" or "significant fall", the function will see whether the year has the
smallest amount is the last year, if it is, then "fall along", otherwise "fall and rise".

• (6) simpleTrend: it is simply whether the amount of the last year is larger than that of the first
year. If yes, then "rise", if smaller, then "fall", if the same, then "equal".

When computing trend for a topic, if less than 3 years has valid value and value in other years are
all NA, then trendIndex, trendLevel and maxminYear will be -999, and other cells are "less than 3y".
If the numbers of a topic do not change through years, then trendIndex will be 0, trendLevel and
maxminYear will be -999, totalTrend and detailTrend will be "almost same".

Value

a list. The 1st element is trend info. The 2nd is a summary of amount of each topic in each year.
If argument relative is TRUE, a 3rd element is returned, which is the relative value (percentage) of
each topic in each year.

Examples

set.seed(1)
topic <- sample(c("art", "economy", "law", "politics", "sociology"), 50, replace = TRUE)
set.seed(2)
year <- sample(2011: 2016, 50, replace = TRUE)
tr1 <- topic_trend(year, topic)
tr2 <- topic_trend(year, topic, zero = NA)
tr3 <- topic_trend(year, topic, relative=TRUE)

txt2csv Write Many Separated Files into a CSV

Description

Given filenames, folder names, or the mixture of the two, the function will read texts in .txt or other
separated files, and then write them into one .csv file. It helps those who prefer texts in a table
format.

Usage

txt2csv(..., csv, must_txt = TRUE, na_in_txt = NULL)

Arguments

... names of folders and files, obtained files may end with ".txt" or not , see below.
Encoding for each file is auto-detected.

csv a .csv file that will contain texts. It must end with ".csv".

must_txt should be TRUE or FALSE. Should all qualified texts end with ".txt"? If you want
to read other types of file, such as .rtf, set it to FALSE. Default is TRUE.



V 33

na_in_txt character vector that specifies what content, when it occupies a single line,
should be treated as NA. See Details. Length of it can be larger than 1.

Details

Whether a file is taken as NA is judged by scancn. " " (a space) is also taken as NA. However, you
can further decide what else is deemed as NA, e. g., "404 ERROR", if your texts are from websites.
If a file cannot be accessed, the result to be written in the corresponding cell of csv file will become
NA, and there will be a message, but no error is raised. In the .csv file, full filenames of txt occupy a
column and fulltexts occupy another.

Examples

## Not run:
x1 <- file.path(find.package("base"), "CITATION")
x2 <- file.path(find.package("base"), "DESCRIPTION")
txt2csv(x1, x2, must_txt = FALSE, csv = 'x1x2csv.csv')

## End(Not run)

V Copy and Paste from Excel-Like Files

Description

These functions make it easy for copy and paste data from Excel-like files, especially when there are
blank cells or when different columns have different lengths. All of them have the same arguments.

• V, when you do not copy rownames or colnames

• VR, when the 1st column is for rownames and there are no colnames in what you copy

• VC, when there are colnames but no rownames

• VRC and the same: VCR, when there are both rownames and colnames

If you copy something from a text document (e.g., Windows Notepad), the function may warn
"incomplete final line found by readTableHeader...". This is because your content does not end with
an end of line sign. You can simply ignore this warning!

Usage

V(tofactor = 0, keepblank = 0, sep = "\t")

Arguments

tofactor if this is equal to numeric 1 or TRUE, characters will be converted to factors.
Otherwise no conversion will be done. The default is not to convert.

keepblank if characters are not to be converted to factors, this argument decides how to deal
with blank cells in character columns. If it is numeric 1 or TRUE, a blank cell
will be converted to "" (size 0 string). Otherwise it is viewed as NA (default).



34 VCR

sep a single character to differentiate cells of a table. The default value should be
used when your data is from Excel.

VC Copy and Paste from Excel-Like Files

Description

See V.

Usage

VC(tofactor = 0, keepblank = 0, sep = "\t")

Arguments

tofactor if this is equal to numeric 1 or TRUE, characters will be converted to factors.
Otherwise no conversion will be done. The default is not to convert.

keepblank if characters are not to be converted to factors, this argument decides how to deal
with blank cells in character columns. If it is numeric 1 or TRUE, a blank cell
will be converted to "" (size 0 string). Otherwise it is viewed as NA (default).

sep a single character to differentiate cells of a table. The default value should be
used when your data is from Excel.

VCR Copy and Paste from Excel-Like Files

Description

See V.

Usage

VCR(tofactor = 0, keepblank = 0, sep = "\t")

Arguments

tofactor if this is equal to numeric 1 or TRUE, characters will be converted to factors.
Otherwise no conversion will be done. The default is not to convert.

keepblank if characters are not to be converted to factors, this argument decides how to deal
with blank cells in character columns. If it is numeric 1 or TRUE, a blank cell
will be converted to "" (size 0 string). Otherwise it is viewed as NA (default).

sep a single character to differentiate cells of a table. The default value should be
used when your data is from Excel.



VR 35

VR Copy and Paste from Excel-Like Files

Description

See V.

Usage

VR(tofactor = 0, keepblank = 0, sep = "\t")

Arguments

tofactor if this is equal to numeric 1 or TRUE, characters will be converted to factors.
Otherwise no conversion will be done. The default is not to convert.

keepblank if characters are not to be converted to factors, this argument decides how to deal
with blank cells in character columns. If it is numeric 1 or TRUE, a blank cell
will be converted to "" (size 0 string). Otherwise it is viewed as NA (default).

sep a single character to differentiate cells of a table. The default value should be
used when your data is from Excel.

VRC Copy and Paste from Excel-Like Files

Description

See V.

Usage

VRC(tofactor = 0, keepblank = 0, sep = "\t")

Arguments

tofactor if this is equal to numeric 1 or TRUE, characters will be converted to factors.
Otherwise no conversion will be done. The default is not to convert.

keepblank if characters are not to be converted to factors, this argument decides how to deal
with blank cells in character columns. If it is numeric 1 or TRUE, a blank cell
will be converted to "" (size 0 string). Otherwise it is viewed as NA (default).

sep a single character to differentiate cells of a table. The default value should be
used when your data is from Excel.



36 word_cor

word_cor Word Correlation in DTM/TDM

Description

Given a DTM/TDM/matrix, the function computes the pearson/spearman/kendall correlation be-
tween pairs of words and filters the values by p value and minimum value of correlation. It is a little
more flexible than tm::findAssocs.

Usage

word_cor(x, word, type = "dtm", method = "kendall", p = NULL, min = NULL)

Arguments

x a DocumentTermMatrix, TermDocumentMatrix object, or a matrix. If it is a
matrix, you must specify its type by the argument type. If it is a matrix, NA
is not allowed, and rownames/colnames that are taken as words should not be
NULL.

word a character vector of words that you want to know their correlation in you data.
If it is not a vector, the function will try to coerce. The length of it should not
larger than 200. The function only computes for words that do exist in data, and
those not in data will not be included.

type if it starts with "d/D", it represents a DTM; if with "t/T", TDM; others are not
valid. This is only used when x is a matrix. The default is "dtm".

method what index is to be computed? It can only be "pearson", "spearman", or "kendall"
(default). The method is passed to stats::cor.test. The default is "kendall".

p if the p value of a correlation index is >= this value, the index will be convert to
NA in the correlation matrix. The default is NULL, which means no filter is done.
Note: if both argument p and min are non-Null, their relation is "or" rather than
"and".

min if the correlation index is smaller than this value, it will be convert to NA. The
default is NULL, which means no filter is done.

Value

a list. The 1st element is the correlation matrix with diagonal converted to NA. The 2nd element is
the p value matrix with diagonal converted to NA.

Examples

set.seed(1)
s <- sample(1:10, 100, replace = TRUE)
m <- matrix(s, nrow = 20)
myword<- c("alpha", "apple", "cake", "data", "r")
colnames(m) <- myword



word_cor 37

mycor1 <- word_cor(m, myword)
mycor2 <- word_cor(m, myword, method = "pearson", min = 0.1, p = 0.4)
mt <- t(m)
mycor3 <- word_cor(mt, myword, type = "T", method = "spearman", p = 0.5)



Index

∗ chinese.misc_general_topics
chinese.misc-package, 2

∗ datasets
DEFAULT_control1, 10
DEFAULT_control2, 11
DEFAULT_cutter, 11

as.character2, 3
as.numeric2, 4

chinese.misc (chinese.misc-package), 2
chinese.misc-package, 2
corp_or_dtm, 5, 10, 12, 28
create_ttm, 8
csv2txt, 9

DEFAULT_control1, 10
DEFAULT_control2, 11
DEFAULT_cutter, 11
dictionary_dtm, 12
dir.create, 9
dir_or_file, 6, 14

get_tag_word, 15
get_tmp_chi_locale, 17

is.character, 17
is_character_vector, 17
is_positive_integer, 18

list.files, 14

m2doc, 19, 30
m3m, 20
make_stoplist, 6, 21
match_pattern, 22

normalizePath, 15

output_dtm, 23

read.csv, 9

regmatches, 22
rep, 20

scancn, 6, 23, 33
seg_file, 24
slim_text, 26
sort_tf, 28
sparse_left, 29

tf2doc, 30
topic_trend, 31
txt2csv, 32

V, 33, 34, 35
VC, 34
VCR, 34
VR, 35
VRC, 35

word_cor, 36

38


	chinese.misc-package
	as.character2
	as.numeric2
	corp_or_dtm
	create_ttm
	csv2txt
	DEFAULT_control1
	DEFAULT_control2
	DEFAULT_cutter
	dictionary_dtm
	dir_or_file
	get_tag_word
	get_tmp_chi_locale
	is_character_vector
	is_positive_integer
	m2doc
	m3m
	make_stoplist
	match_pattern
	output_dtm
	scancn
	seg_file
	slim_text
	sort_tf
	sparse_left
	tf2doc
	topic_trend
	txt2csv
	V
	VC
	VCR
	VR
	VRC
	word_cor
	Index

