Package 'ccmm'

Title: Compositional Mediation Model
Description: Estimate the direct and indirect (mediation) effects of treatment on the outcome when intermediate variables (mediators) are compositional and high-dimensional. Sohn, M.B. and Li, H. (2017). Compositional Mediation Analysis for Microbiome Studies. (AOAS: In revision).
Authors: Michael B. Sohn
Maintainer: Michael B. Sohn <[email protected]>
License: GPL (>= 2)
Version: 1.0
Built: 2024-12-18 06:34:16 UTC
Source: CRAN

Help Index


Causal Compositional Mediation Model

Description

Estimate the direct and indirect (mediation) effects of treatment on the outcome when intermediate variables (mediators) are compositional and high-dimensional.

Author(s)

Michael B. Sohn

Maintainer: Michael B. Sohn <[email protected]>

References

Sohn, M.B. and Li, H. (2017). Compositional Mediation Analysis for Microbiome Studies. (AOAS: In revision)

Examples

## Not run: 
# Load test data
data(ccmm_test_data);
head(ccmm_test_data);
outcome <- ccmm_test_data[,1];
treatment <- ccmm_test_data[,2];
mediators <- as.matrix(ccmm_test_data[,3:22]);
covariates <- as.matrix(ccmm_test_data[,23:24]);

# Run CCMM
rslt.ccmm <- ccmm(outcome, mediators, treatment, covariates);

# Sensitivity analysis
rslt.sa <- ccmm.sa(outcome, mediators, treatment, covariates);
plot(rslt.sa, type="l", xlab=expression(rho), ylab="TIDE")
abline(h=rslt.ccmm$TIDE, lty=2)
abline(h=0, lty=3)
cisa <- tide.ci.zero.rho(outcome, mediators, treatment, covariates)
csqs <- quantile(cisa, c(0.025, 0.975))
segments(0, csqs[1], 0, csqs[2])

## End(Not run)

Causal Compositional Mediation Model

Description

Estimate the direct and indirect (mediation) effects of treatment on the outcome when intermediate variables (mediators) are compositional and high-dimensional.

Usage

ccmm(y, M, tr, x = NULL, w = NULL, method.est.cov = "bootstrap", n.boot = 2000,
	sig.level = 0.05, tol = 1e-06, max.iter = 5000)

Arguments

y

Vector of continuous outcomes

M

Matrix of compositional data

tr

Vector of continuous or binary treatments

x

Matrix of covariates

w

Vector of weights on samples

method.est.cov

One of two options ("bootstrap", "normal") to estimate the variance of indirect effects

n.boot

Number of bootstrap samples

sig.level

Significance level to estimate bootstrap confidence intervals for direct and indirect effects of treatment

tol

Error tolerance

max.iter

Maximum number of iteration in a debias procedure

Value

If method.est.cov is "bootstrap",

DE

Direct effect of treatment on an outcome

DE.CI

Bootstrap confidence interval for the direct effect

TIDE

Total indirect effect of treatment on an outcome

TIDE.CI

Bootstrap confidence interval for the indirect effect

IDEs

Component-wise indirect effects of treatment on an outcome

IDE.CIs

Bootstrap confidence intervals for the component-wise indirect effects

If method.est.cov is "normal",

DE

Direct effect of treatment on an outcome

Var.DE

Variance of the direct effect

TIDE

Total indirect effect of treatment on an outcome

Var.TIDE

Variance of the indirect effect

IDEs

Component-wise indirect effects of treatment on an outcome

Var.IDEs

Variances of the component-wise indirect effects

Author(s)

Michael B. Sohn

Maintainer: Michael B. Sohn <[email protected]>

References

Sohn, M.B. and Li, H. (2017). Compositional Mediation Analysis for Microbiome Studies (AOAS: In revision)

Examples

# Load test data
data(ccmm_test_data);
outcome <- ccmm_test_data[,1];
treatment <- ccmm_test_data[,2];
mediators <- as.matrix(ccmm_test_data[,3:22]);
covariates <- as.matrix(ccmm_test_data[,23:24]);

# Run CCMM
rslt.ccmm <- ccmm(outcome, mediators, treatment, covariates);

Test Data

Description

Contains artificial 200 samples with a continuous outcome variable y, a continuous treatment tr, 20 compositional mediators M and 2 covariates X. The true direct and indirect effects of treatment on the outcome both are 1.00. The true component-wise indirect effects (M1-M20) are 0.693, -0.425, 0.135, -0.057, -0.268, 0.970, -0.843, 0.805, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000.

Usage

data(ccmm_test_data)

Sensitivity analysis

Description

Estimated total indirect effects (TIDE) given correlation coefficients (rho)

Usage

ccmm.sa(y, M, tr, x = NULL, w = NULL, stp = 0.01)

Arguments

y

Vector of continuous outcomes

M

Matrix of compositional data

tr

Vector of continuous or binary treatments

x

Matrix of covariates

w

Vector of weights on samples

stp

Increment of the correlation coefficient

Value

Matrix of rho and TIDE

Author(s)

Michael B. Sohn

Maintainer: Michael B. Sohn <[email protected]>

References

Sohn, M.B. and Li, H. (2017). Compositional Mediation Analysis for Microbiome Studies (AOAS: In revision)

Examples

# Load test data
data(ccmm_test_data);
outcome <- ccmm_test_data[,1];
treatment <- ccmm_test_data[,2];
mediators <- as.matrix(ccmm_test_data[,3:22]);
covariates <- as.matrix(ccmm_test_data[,23:24]);

rslt.sa <- ccmm.sa(outcome, mediators, treatment, covariates);

Sensitivity analysis

Description

Estimate the total indirect effect (TIDE) given a correlation coefficient

Usage

ccmm.sensitivity(rh, y, M, tr, x = NULL, w = NULL)

Arguments

rh

Correlation coefficient

y

Vector of continuous outcomes

M

Matrix of compositional data

tr

Vector of continuous or binary treatments

x

Matrix of covariates

w

Vector of weights on samples

Value

Estimated TIDE given a correlation coefficient

Author(s)

Michael B. Sohn

Maintainer: Michael B. Sohn <[email protected]>

References

Sohn, M.B. and Li, H. (2017). Compositional Mediation Analysis for Microbiome Studies (AOAS: In revision)

Examples

# Load test data
data(ccmm_test_data);
outcome <- ccmm_test_data[,1];
treatment <- ccmm_test_data[,2];
mediators <- as.matrix(ccmm_test_data[,3:22]);
covariates <- as.matrix(ccmm_test_data[,23:24]);

ccmm.sensitivity(rh=0, outcome, mediators, treatment, covariates);

Bootstrap samples of TIDE with zero correlation

Description

Generate bootstrap samples of the total indirect effect (TIDE) when the correlation coefficient is zero

Usage

tide.ci.zero.rho(y, M, tr, x = NULL, w = NULL, n.boot=2000)

Arguments

y

Vector of continuous outcomes

M

Matrix of compositional data

tr

Vector of continuous or binary treatments

x

Matrix of covariates

w

Vector of weights on samples

n.boot

Number of bootstrap samples

Value

bootstrap samples of TIDE

Author(s)

Michael B. Sohn

Maintainer: Michael B. Sohn <[email protected]>

References

Sohn, M.B. and Li, H. (2017). Compositional Mediation Analysis for Microbiome Studies (AOAS: In revision)

Examples

# Load test data
data(ccmm_test_data);
outcome <- ccmm_test_data[,1];
treatment <- ccmm_test_data[,2];
mediators <- as.matrix(ccmm_test_data[,3:22]);
covariates <- as.matrix(ccmm_test_data[,23:24]);

cisa <- tide.ci.zero.rho(outcome, mediators, treatment, covariates, n.boot=200)