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cat_cox Catalytic Cox Proportional Hazards Model (COX) Fitting Function
with Fixed Tau

Description

Fits a Catalytic Cox proportional hazards model for survival data with specified variance param-
eters and iterative coefficient estimation, with either CRE (Catalytic-regularized Estimator) or WME
(Weighted Mixture Estimator) methods.
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Usage

cat_cox(
formula,
cat_init,
tau = NULL,
method = c("CRE", "WME"),
init_coefficients = NULL,
tol = 1e-05,
max_iter = 25

)

Arguments

formula A formula specifying the Cox model. Should at least include response variables
(e.g. ~ .).

cat_init A list generated from cat_cox_initialization.

tau Optional numeric scalar controlling the weight of the synthetic data in the coef-
ficient estimation, defaults to the number of predictors.

method The estimation method, either "CRE" (Catalytic-regularized Estimator) or "WME"
(Weighted Mixture Estimator).

init_coefficients

Initial coefficient values before iteration. Defaults to zero if not provided (if
using CRE).

tol Convergence tolerance for iterative methods. Default is 1e-5 (if using CRE).

max_iter Maximum number of iterations allowed for convergence. Default is 25 (if using
CRE).

Value

A list containing the values of all the arguments and the following components:

coefficients Estimated coefficient vector.

model Fitted Cox model object (if using WME).

iteration_log Matrix logging variance and coefficient values for each iteration(if using CRE).

iter Number of iterations (if using CRE).

Examples

library(survival)
data("cancer")
cancer$status[cancer$status == 1] <- 0
cancer$status[cancer$status == 2] <- 1

cat_init <- cat_cox_initialization(
formula = Surv(time, status) ~ 1, # formula for simple model
data = cancer,
syn_size = 100, # Synthetic data size
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hazard_constant = 0.1, # Hazard rate value
entry_points = rep(0, nrow(cancer)), # Entry points of each observation
x_degree = rep(1, ncol(cancer) - 2), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model_cre <- cat_cox(
formula = ~.,
cat_init = cat_init, # Only accept object generated from `cat_cox_initialization`
tau = 1, # Weight for synthetic data
method = "CRE", # Choose from `"CRE"` or `"WME"`
init_coefficients = rep(0, ncol(cat_init$x)), # Initial coefficient values (Only for `CRE`)
tol = 1e-1, # Tolerance for convergence criterion (Only for `CRE`)
max_iter = 3 # Maximum number of iterations for convergence (Only for `CRE`)

)
cat_model_cre

cat_model_wme <- cat_cox(
formula = ~.,
cat_init = cat_init, # Only accept object generated from `cat_cox_initialization`
tau = 1, # Weight for synthetic data
method = "WME"

)
cat_model_wme

cat_cox_bayes Bayesian Estimation for Catalytic Cox Proportional-Hazards Model
(COX) with Fixed tau

Description

This function performs Bayesian estimation for a catalytic Cox proportional-hazards model (COX)
using RStan by given a single tau value. It allows users to estimate the coefficients and cumulative
baseline hazard increments over specified time intervals with Bayesian sampling.

Usage

cat_cox_bayes(
formula,
cat_init,
tau = NULL,
hazard_beta = 2,
chains = 4,
iter = 2000,
warmup = 1000,
...

)
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Arguments

formula A formula specifying the Cox model. Should at least include response variables
(e.g. ~.).

cat_init A list generated from cat_cox_initialization.

tau Optional numeric scalar controlling the weight of the synthetic data in the coef-
ficient estimation, defaults to ncol(cat_init$obs_x).

hazard_beta Numeric, default 2. Shape parameter for the Gamma distribution in the hazard
model.

chains Integer, default 4. Number of Markov chains to be run in the RStan sampling.

iter Integer, default 2000. Number of iterations per chain in the RStan sampling.

warmup Integer, default 1000. Number of warm-up (or burn-in) iterations for each chain.

... Additional arguments passed to RStan’s rstan::sampling function.

Value

A list containing the values of all the arguments and the following components:

stan_data A data list used for fitting RStan sampling model.

stan_model Compiled RStan model object for Cox regression.
stan_sample_model

Fitted RStan sampling model containing posterior samples.

coefficients Mean posterior estimates of model coefficients from stan_sample_model.
increment_cumulative_baseline_hazard

Mean posterior estimates of Estimated cumulative hazard increments over time
intervals from stan_sample_model.

Examples

library(survival)
data("cancer")
cancer$status[cancer$status == 1] <- 0
cancer$status[cancer$status == 2] <- 1

cat_init <- cat_cox_initialization(
formula = Surv(time, status) ~ 1, # formula for simple model
data = cancer,
syn_size = 100, # Synthetic data size
hazard_constant = 0.1, # Hazard rate value
entry_points = rep(0, nrow(cancer)), # Entry points of each observation
x_degree = rep(1, ncol(cancer) - 2), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model <- cat_cox_bayes(
formula = ~., # Should at least include response variables
cat_init = cat_init, # Only accept object generated from `cat_cox_initialization`
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tau = 1, # Weight for synthetic data
hazard_beta = 2, # Shape parameter for the Gamma distribution in the hazard model
chains = 1, # Number of Markov chains to be run in the RStan sampling
iter = 10, # Number of iterations per chain in the RStan sampling
warmup = 5 # Number of warm-up (or burn-in) iterations for each chain

)
cat_model

cat_cox_bayes_joint Bayesian Estimation for Catalytic Cox Proportional-Hazards Model
(COX) with adaptive tau

Description

This function performs Bayesian estimation for a catalytic Cox proportional-hazards model (COX)
using RStan by using adaptive tau. It allows users to estimate the coefficients and cumulative
baseline hazard increments over specified time intervals with Bayesian sampling.

Usage

cat_cox_bayes_joint(
formula,
cat_init,
hazard_beta = 2,
tau_alpha = 2,
tau_gamma = 1,
chains = 4,
iter = 2000,
warmup = 1000,
...

)

Arguments

formula A formula specifying the Cox model. Should at least include response variables
(e.g. ~ .).

cat_init A list generated from cat_cox_initialization.
hazard_beta Numeric, default 2. Shape parameter for the Gamma distribution in the hazard

model.
tau_alpha Numeric, defaults 2. Scalar for the shape parameter of the Gamma-like function

for tau.
tau_gamma Numeric, defaults 1. Scalar for the scale parameter of the Gamma-like function

for tau.
chains Integer, default 4. Number of Markov chains to be run in the RStan sampling.
iter Integer, default 2000. Number of iterations per chain in the RStan sampling.
warmup Integer, default 1000. Number of warm-up (or burn-in) iterations for each chain.
... Additional arguments passed to RStan’s rstan::sampling function.
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Value

A list containing the values of all the arguments and the following components:

stan_data A data list used for fitting RStan sampling model.

stan_model Compiled RStan model object for Cox regression.

stan_sample_model

Fitted RStan sampling model containing posterior samples.

tau Mean posterior estimates of tau value from stan_sample_model.

coefficients Mean posterior estimates of model coefficients from stan_sample_model.

increment_cumulative_baseline_hazard

Mean posterior estimates of Estimated cumulative hazard increments over time
intervals from stan_sample_model.

Examples

library(survival)
data("cancer")
cancer$status[cancer$status == 1] <- 0
cancer$status[cancer$status == 2] <- 1

cat_init <- cat_cox_initialization(
formula = Surv(time, status) ~ 1, # formula for simple model
data = cancer,
syn_size = 100, # Synthetic data size
hazard_constant = 0.1, # Hazard rate value
entry_points = rep(0, nrow(cancer)), # Entry points of each observation
x_degree = rep(1, ncol(cancer) - 2), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model <- cat_cox_bayes_joint(
formula = ~., # Should at least include response variables
cat_init = cat_init, # Only accept object generated from `cat_cox_initialization`
hazard_beta = 2, # Shape parameter for the Gamma distribution in the hazard model
tau_alpha = 2, # Shape parameter of the Gamma-like function for tau
tau_gamma = 1, # Scale parameter of the Gamma-like function for tau
chains = 1, # Number of Markov chains to be run in the RStan sampling
iter = 10, # Number of iterations per chain in the RStan sampling
warmup = 5 # Number of warm-up (or burn-in) iterations for each chain

)
cat_model
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cat_cox_initialization

Initialization for Catalytic Cox proportional hazards model (COX)

Description

This function prepares and initializes a catalytic Cox proportional hazards model by processing
input data, extracting necessary variables, generating synthetic datasets, and fitting a model.

Usage

cat_cox_initialization(
formula,
data,
syn_size = NULL,
hazard_constant = NULL,
entry_points = NULL,
x_degree = NULL,
resample_only = FALSE,
na_replace = stats::na.omit

)

Arguments

formula A formula specifying the Cox model. Should include response and predictor
variables.

data A data frame containing the data for modeling.

syn_size An integer specifying the size of the synthetic dataset to be generated. Default
is four times the number of predictor columns.

hazard_constant

A constant hazard rate for generating synthetic time data if not using a fitted
Cox model. Default is NULL and will calculate in function.

entry_points A numeric vector for entry points of each observation. Default is NULL.

x_degree A numeric vector indicating the degree for polynomial expansion of predictors.
Default is 1 for each predictor.

resample_only A logical indicating whether to perform resampling only. Default is FALSE.

na_replace A function to handle NA values in the data. Default is stats::na.omit.

Value

A list containing the values of all the input arguments and the following components:

• Function Information:

– function_name: The name of the function, "cat_cox_initialization".
– time_col_name: The name of the time variable in the dataset.
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– status_col_name: The name of the status variable (event indicator) in the dataset.
– simple_model: If the formula has no predictors, a constant hazard rate model is used;

otherwise, a fitted Cox model object.

• Observation Data Information:

– obs_size: Number of observations in the original dataset.
– obs_data: Data frame of standardized observation data.
– obs_x: Predictor variables for observed data.
– obs_time: Observed survival times.
– obs_status: Event indicator for observed data.

• Synthetic Data Information:

– syn_size: Number of synthetic observations generated.
– syn_data: Data frame of synthetic predictor and response variables.
– syn_x: Synthetic predictor variables.
– syn_time: Synthetic survival times.
– syn_status: Event indicator for synthetic data (defaults to 1).
– syn_x_resample_inform: Information about resampling methods for synthetic predic-

tors:

* Coordinate: Preserves the original data values as reference coordinates during pro-
cessing.

* Deskewing: Adjusts the data distribution to reduce skewness and enhance symmetry.

* Smoothing: Reduces noise in the data to stabilize the dataset and prevent overfitting.

* Flattening: Creates a more uniform distribution by modifying low-frequency cate-
gories in categorical variables.

* Symmetrizing: Balances the data around its mean to improve statistical properties
for model fitting.

• Whole Data Information:

– size: Total number of combined original and synthetic observations.
– data: Data frame combining original and synthetic datasets.
– x: Combined predictor variables from original and synthetic data.
– time: Combined survival times from original and synthetic data.
– status: Combined event indicators from original and synthetic data.

Examples

library(survival)
data("cancer")
cancer$status[cancer$status == 1] <- 0
cancer$status[cancer$status == 2] <- 1

cat_init <- cat_cox_initialization(
formula = Surv(time, status) ~ 1, # formula for simple model
data = cancer,
syn_size = 100, # Synthetic data size
hazard_constant = NULL, # Hazard rate value
entry_points = rep(0, nrow(cancer)), # Entry points of each observation
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x_degree = rep(1, ncol(cancer) - 2), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)
cat_init

cat_cox_tune Catalytic Cox Proportional-Hazards Model (COX) Fitting Function
by Tuning tau from a Sequence of tau Values

Description

This function tunes a catalytic Cox proportional-hazards model (COX) by performing cross-validation
to estimate the optimal value of the tuning parameter tau. It finally uses the optimal tau value in
the cat_cox function for model fitting.

Usage

cat_cox_tune(
formula,
cat_init,
method = c("CRE", "WME"),
tau_seq = NULL,
cross_validation_fold_num = 5,
...

)

Arguments

formula A formula specifying the Cox model. Should at least include response variables
(e.g. ~.).

cat_init A list generated from cat_cox_initialization.

method The estimation method, either "CRE" (Catalytic-regularized Estimator) or "WME"
(Weighted Mixture Estimator).

tau_seq A numeric vector specifying the sequence of tau values to be tested. If NULL,
a default sequence is generated based on the number of predictors.

cross_validation_fold_num

An integer representing the number of folds for cross-validation. Defaults to 5.

... Additional arguments passed to the cat_cox function for model fitting.

Value

A list containing the values of all the arguments and the following components:

tau he optimal tau value determined from cross-validation.

model The fitted lmer model object by using the optimal tau value.
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coefficients Coefficients of the fitted model by using the optimal tau value.
likelihood_list

Average likelihood value for each tau value.

Examples

library(survival)
data("cancer")
cancer$status[cancer$status == 1] <- 0
cancer$status[cancer$status == 2] <- 1

cat_init <- cat_cox_initialization(
formula = Surv(time, status) ~ 1, # formula for simple model
data = cancer,
syn_size = 100, # Synthetic data size
hazard_constant = 0.1, # Hazard rate value
entry_points = rep(0, nrow(cancer)), # Entry points of each observation
x_degree = rep(1, ncol(cancer) - 2), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model <- cat_cox_tune(
formula = ~., # Should at least include response variables
cat_init = cat_init, # Only accept object generated from `cat_cox_initialization`
tau_seq = c(1, 2), # Vector of weights for synthetic data
cross_validation_fold_num = 5 # number of folds for cross-validation

)
cat_model

cat_glm Catalytic Generalized Linear Models (GLMs) Fitting Function with
Fixed Tau

Description

Fits a Catalytic Generalized Linear Models (GLMs) by using observed and synthetic data.

Usage

cat_glm(formula, cat_init, tau = NULL)

Arguments

formula A formula specifying the GLMs. Should at least include response variables (e.g.
~ .).

cat_init A list generated from cat_glm_initialization.
tau Optional numeric scalar controlling the weight of the synthetic data in the coef-

ficient estimation. Defaults to the number of predictors / 4 for Gaussian models
or the number of predictors otherwise.
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Value

A list containing the values of all the arguments and the following components:

coefficients Estimated coefficient vector.

model Fitted GLMs object (stats::glm).

Examples

gaussian_data <- data.frame(
X1 = stats::rnorm(10),
X2 = stats::rnorm(10),
Y = stats::rnorm(10)

)

cat_init <- cat_glm_initialization(
formula = Y ~ 1, # formula for simple model
data = gaussian_data,
syn_size = 100, # Synthetic data size
custom_variance = NULL, # User customized variance value
gaussian_known_variance = TRUE, # Indicating whether the data variance is known
x_degree = c(1, 1), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model <- cat_glm(
formula = ~.,
cat_init = cat_init, # Only accept object generated from `cat_glm_initialization`
tau = 1 # Weight for synthetic data

)
cat_model

cat_glm_bayes Bayesian Estimation for Catalytic Generalized Linear Models (GLMs)
with Fixed tau

Description

Fits a Bayesian generalized linear model using synthetic and observed data based on an initial
data structure, formula, and other model specifications. Supports only Gaussian and Binomial
distributions in the GLM family.

Usage

cat_glm_bayes(
formula,
cat_init,
tau = NULL,
chains = 4,
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iter = 2000,
warmup = 1000,
algorithm = "NUTS",
gaussian_variance_alpha = NULL,
gaussian_variance_beta = NULL,
...

)

Arguments

formula A formula specifying the GLMs. Should at least include response variables (e.g.
~.).

cat_init A list generated from cat_glm_initialization.

tau Optional numeric scalar controlling the weight of the synthetic data in the coef-
ficient estimation. Defaults to the number of predictors / 4 for Gaussian models
or the number of predictors otherwise.

chains Number of Markov chains to run. Default is 4.

iter Total number of iterations per chain. Default is 2000.

warmup Number of warm-up iterations per chain (discarded from final analysis). Default
is 1000.

algorithm The sampling algorithm to use in rstan::sampling. Default is "NUTS" (No-
U-Turn Sampler).

gaussian_variance_alpha

The shape parameter for the inverse-gamma prior on variance if the variance is
unknown in Gaussian models. Defaults to the number of predictors.

gaussian_variance_beta

The scale parameter for the inverse-gamma prior on variance if the variance
is unknown in Gaussian models. Defaults to the number of predictors times
variance of observation response.

... Additional parameters to pass to rstan::sampling.

Value

A list containing the values of all the arguments and the following components:

stan_data The data list used for fitting RStan sampling model.

stan_model Compiled RStan model object for GLMs.
stan_sample_model

Fitted RStan sampling model containing posterior samples.

coefficients Mean posterior estimates of model coefficients from stan_sample_model.

Examples

gaussian_data <- data.frame(
X1 = stats::rnorm(10),
X2 = stats::rnorm(10),
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Y = stats::rnorm(10)
)

cat_init <- cat_glm_initialization(
formula = Y ~ 1, # formula for simple model
data = gaussian_data,
syn_size = 100, # Synthetic data size
custom_variance = NULL, # User customized variance value
gaussian_known_variance = FALSE, # Indicating whether the data variance is unknown
x_degree = c(1, 1), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model <- cat_glm_bayes(
formula = ~.,
cat_init = cat_init, # Only accept object generated from `cat_glm_initialization`
tau = 1, # Weight for synthetic data
chains = 1, # Number of Markov chains to be run in the RStan sampling
iter = 10, # Number of iterations per chain in the RStan sampling
warmup = 5, # Number of warm-up (or burn-in) iterations for each chain
algorithm = "NUTS", # Sampling algorithm to use in \code{rstan::sampling}
gaussian_variance_alpha = 1, # The shape parameter for the inverse-gamma prior for variance
gaussian_variance_beta = 2 # The scale parameter for the inverse-gamma prior for variance

)
cat_model

cat_glm_bayes_joint Bayesian Estimation for Catalytic Generalized Linear Models (GLMs)
with adaptive tau

Description

This function performs Bayesian estimation for a catalytic Generalized Linear Models (GLMs)
using RStan by using adaptive tau. It supports both Gaussian and Binomial family models, enabling
flexibility in prior specifications and algorithm configurations.

Usage

cat_glm_bayes_joint(
formula,
cat_init,
chains = 4,
iter = 2000,
warmup = 1000,
algorithm = "NUTS",
tau_alpha = 2,
tau_gamma = 1,
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binomial_tau_lower = 0.05,
binomial_joint_theta = FALSE,
binomial_joint_alpha = FALSE,
gaussian_variance_alpha = NULL,
gaussian_variance_beta = NULL,
...

)

Arguments

formula A formula specifying the GLMs. Should at least include response variables (e.g.
~.).

cat_init A list generated from cat_glm_initialization.

chains Number of Markov chains to run. Default is 4.

iter Total number of iterations per chain. Default is 2000.

warmup Number of warm-up iterations per chain (discarded from final analysis). Default
is 1000.

algorithm The sampling algorithm to use in rstan::sampling. Default is "NUTS" (No-
U-Turn Sampler).

tau_alpha Shape parameter of the prior for tau. Default is 2.

tau_gamma Scale parameter of the prior for tau. Default is 1.
binomial_tau_lower

A numeric lower bound for tau in Binomial models. Default is 0.05.
binomial_joint_theta

Logical; if TRUE, uses joint theta (theta = 1/tau) in Binomial models. Default
is FALSE.

binomial_joint_alpha

Logical; if TRUE, uses joint alpha (adaptive tau_alpha) in Binomial models.
Default is FALSE. To activate this feature, both binomial_joint_theta = TRUE
and binomial_joint_alpha = TRUE must be set.

gaussian_variance_alpha

The shape parameter for the inverse-gamma prior on variance if the variance is
unknown in Gaussian models. Defaults to the number of predictors.

gaussian_variance_beta

The scale parameter for the inverse-gamma prior on variance if the variance
is unknown in Gaussian models. Defaults to the number of predictors times
variance of observation response.

... Additional parameters to pass to rstan::sampling.

Value

A list containing the values of all the arguments and the following components:

stan_data A data list used for fitting RStan sampling model.

stan_model Compiled RStan model object for GLMs.
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stan_sample_model

Fitted RStan sampling model containing posterior samples.

coefficients Mean posterior estimates of model coefficients from stan_sample_model.

tau Mean posterior of tau (or transformed theta if applicable).

Examples

gaussian_data <- data.frame(
X1 = stats::rnorm(10),
X2 = stats::rnorm(10),
Y = stats::rnorm(10)

)

cat_init <- cat_glm_initialization(
formula = Y ~ 1, # formula for simple model
data = gaussian_data,
syn_size = 100, # Synthetic data size
custom_variance = NULL, # User customized variance value
gaussian_known_variance = FALSE, # Indicating whether the data variance is unknown
x_degree = c(1, 1), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model <- cat_glm_bayes_joint(
formula = ~.,
cat_init = cat_init, # Only accept object generated from `cat_glm_initialization`
chains = 1, # Number of Markov chains to be run in the RStan sampling
iter = 10, # Number of iterations per chain in the RStan sampling
warmup = 5, # Number of warm-up (or burn-in) iterations for each chain
algorithm = "NUTS", # Sampling algorithm to use in \code{rstan::sampling}
tau_alpha = 1, # Shape parameter of the prior for tau
tau_gamma = 2, # Scale parameter of the prior for tau
binomial_tau_lower = 0.05, # Lower bound for tau in Binomial models.
binomial_joint_theta = FALSE, # Indicator for using joint theta for Binomial models
binomial_joint_alpha = FALSE, # Indicator for using oint alpha for Binomial models
gaussian_variance_alpha = 1, # The shape parameter for the inverse-gamma prior for variance
gaussian_variance_beta = 2 # The scale parameter for the inverse-gamma prior for variance

)
cat_model

cat_glm_bayes_joint_gibbs

Bayesian Estimation with Gibbs Sampling for Catalytic Generalized
Linear Models (GLMs) Binomial Family for Coefficients and tau
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Description

This function uses Gibbs sampling to estimate a Bayesian GLMs Binomial Family, where both the
coefficients and tau parameter are jointly sampled. tau is updated via a gamma distribution, while
coefficients are updated using Hamiltonian Monte Carlo (HMC) sampling. The model allows for
progress updates, warm-up iterations, and initial coefficient estimation based on initial tau value.

Usage

cat_glm_bayes_joint_gibbs(
formula,
cat_init,
iter = 1000,
warmup = 500,
coefs_iter = 5,
tau_0 = NULL,
tau_alpha = 2,
tau_gamma = 1,
refresh = TRUE

)

Arguments

formula A formula specifying the GLMs. Should at least include response variables (e.g.
~.).

cat_init A list generated from cat_glm_initialization.

iter Integer; the number of Gibbs sampling iterations (default = 1000).

warmup Integer; the number of initial iterations for warm-up (default = 500).

coefs_iter Integer; the number of iterations for the HMC step to update coefficients.

tau_0 Initial value for tau; defaults to the number of predictors / 4 if NULL.

tau_alpha Shape parameter for the gamma distribution when updating tau. Default is 2.

tau_gamma Scale parameter for the gamma distribution when updating tau. Default is 1.

refresh Logical; if TRUE, displays sampling progress. Default is TRUE.

Value

A list containing the values of all the arguments and the following components:

gibbs_iteration_log

Matrix containing the coefficients and tau values from each Gibbs iteration.

inform_df Summary statistics of each parameter, including mean, standard error, quantiles,
and effective sample size.

tau Mean of sampled tau values.

coefficients Mean of sampled coefficient values.
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Examples

binomial_data <- data.frame(
X1 = stats::rnorm(10),
X2 = stats::rnorm(10),
Y = stats::rbinom(10, 1, 0.5)

)

cat_init <- cat_glm_initialization(
formula = Y ~ 1, # formula for simple model
data = binomial_data,
family = binomial,
syn_size = 100, # Synthetic data size
custom_variance = NULL, # User customized variance value
gaussian_known_variance = FALSE, # Indicating whether the data variance is unknown
x_degree = c(1, 1), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model <- cat_glm_bayes_joint_gibbs(
formula = ~.,
cat_init = cat_init, # Only accept object generated from `cat_glm_initialization`
iter = 10, # Number of Gibbs sampling iterations
warmup = 5, # Number of warm-up (or burn-in) iterations for initial iterations
coefs_iter = 2, # Number of iterations for the HMC step to update coefficients
tau_alpha = 1, # Shape parameter for the gamma distribution when updating tau
tau_gamma = 2, # Scale parameter for the gamma distribution when updating tau
refresh = TRUE # Indicator for displaying sampling progress

)
cat_model

cat_glm_initialization

Initialization for Catalytic Generalized Linear Models (GLMs)

Description

This function prepares and initializes a catalytic Generalized Linear Models (GLMs) by processing
input data, extracting necessary variables, generating synthetic datasets, and fitting a model.

Usage

cat_glm_initialization(
formula,
family = "gaussian",
data,
syn_size = NULL,
custom_variance = NULL,
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gaussian_known_variance = FALSE,
x_degree = NULL,
resample_only = FALSE,
na_replace = stats::na.omit

)

Arguments

formula A formula specifying the GLMs. Should include response and predictor vari-
ables.

family The type of GLM family. Defaults to Gaussian.

data A data frame containing the data for modeling.

syn_size An integer specifying the size of the synthetic dataset to be generated. Default
is four times the number of predictor columns.

custom_variance

A custom variance value to be applied if using a Gaussian model. Defaults to
NULL.

gaussian_known_variance

A logical value indicating whether the data variance is known. Defaults to
FALSE. Only applicable to Gaussian family.

x_degree A numeric vector indicating the degree for polynomial expansion of predictors.
Default is 1 for each predictor.

resample_only A logical indicating whether to perform resampling only. Default is FALSE.

na_replace A function to handle NA values in the data. Default is stats::na.omit.

Value

A list containing the values of all the input arguments and the following components:

• Function Information
– function_name: The name of the function, "cat_glm_initialization".
– y_col_name: The name of the response variable in the dataset.
– simple_model: An object of class stats::glm, representing the fitted model for gener-

ating synthetic response from the original data.

• Observation Data Information
– obs_size: Number of observations in the original dataset.
– obs_data: Data frame of standardized observation data.
– obs_x: Predictor variables for observed data.
– obs_y: Response variable for observed data.

• Synthetic Data Information
– syn_size: Number of synthetic observations generated.
– syn_data: Data frame of synthetic predictor and response variables.
– syn_x: Synthetic predictor variables.
– syn_y: Synthetic response variable.
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– syn_x_resample_inform: Information about resampling methods for synthetic predic-
tors:

* Coordinate: Preserves the original data values as reference coordinates during pro-
cessing.

* Deskewing: Adjusts the data distribution to reduce skewness and enhance symmetry.

* Smoothing: Reduces noise in the data to stabilize the dataset and prevent overfitting.

* Flattening: Creates a more uniform distribution by modifying low-frequency cate-
gories in categorical variables.

* Symmetrizing: Balances the data around its mean to improve statistical properties
for model fitting.

• Whole Data Information
– size: Total number of combined original and synthetic observations.
– data: Data frame combining original and synthetic datasets.
– x: Combined predictor variables from original and synthetic data.
– y: Combined response variable from original and synthetic data.

Examples

gaussian_data <- data.frame(
X1 = stats::rnorm(10),
X2 = stats::rnorm(10),
Y = stats::rnorm(10)

)

cat_init <- cat_glm_initialization(
formula = Y ~ 1, # formula for simple model
data = gaussian_data,
syn_size = 100, # Synthetic data size
custom_variance = NULL, # User customized variance value
gaussian_known_variance = TRUE, # Indicating whether the data variance is known
x_degree = c(1, 1), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)
cat_init

cat_glm_tune Catalytic Generalized Linear Models (GLMs) Fitting Function by Tun-
ing tau from a Sequence of tau Values

Description

This function tunes a catalytic catalytic Generalized Linear Models (GLMs) by performing specified
risk estimate method to estimate the optimal value of the tuning parameter tau. The resulting
cat_glm_tune object encapsulates the fitted model, including estimated coefficients and family
information, facilitating further analysis.
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Usage

cat_glm_tune(
formula,
cat_init,
risk_estimate_method = c("parametric_bootstrap", "cross_validation",
"mallowian_estimate", "steinian_estimate"),

discrepancy_method = c("mean_square_error", "mean_classification_error",
"logistic_deviance"),

tau_seq = NULL,
tau_0 = NULL,
parametric_bootstrap_iteration_times = 100,
cross_validation_fold_num = 5

)

Arguments

formula A formula specifying the GLMs. Should at least include response variables (e.g.
~ .).

cat_init A list generated from cat_glm_initialization.
risk_estimate_method

Method for risk estimation, chosen from "parametric_bootstrap", "cross_validation",
"mallows_estimate", "steinian_estimate". Depends on the size of the data if not
provided.

discrepancy_method

Method for discrepancy calculation, chosen from "mean_square_error", "mean_classification_error",
"logistic_deviance". Depends on the family if not provided.

tau_seq Vector of numeric values for down-weighting synthetic data. Defaults to a se-
quence around one fourth of the number of predictors for gaussian and the num-
ber of predictors for binomial.

tau_0 Initial tau value used for discrepancy calculation in risk estimation. Defaults to
one fourth of the number of predictors for binomial and 1 for gaussian.

parametric_bootstrap_iteration_times

Number of bootstrap iterations for "parametric_bootstrap" risk estimation. De-
faults to 100.

cross_validation_fold_num

Number of folds for "cross_validation" risk estimation.. Defaults to 5.

Value

A list containing the values of all the arguments and the following components:

tau Optimal tau value determined through tuning.

model Fitted GLM model object with the optimal tau value.

coefficients Estimated coefficients from the model fitted by the optimal tau value.
risk_estimate_list

Collected risk estimates for each tau.
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Examples

gaussian_data <- data.frame(
X1 = stats::rnorm(10),
X2 = stats::rnorm(10),
Y = stats::rnorm(10)

)

cat_init <- cat_glm_initialization(
formula = Y ~ 1, # formula for simple model
data = gaussian_data,
syn_size = 100, # Synthetic data size
custom_variance = NULL, # User customized variance value
gaussian_known_variance = TRUE, # Indicating whether the data variance is known
x_degree = c(1, 1), # Degrees for polynomial expansion of predictors
resample_only = FALSE, # Whether to perform resampling only
na_replace = stats::na.omit # How to handle NA values in data

)

cat_model <- cat_glm_tune(
formula = ~.,
cat_init = cat_init, # Only accept object generated from `cat_glm_initialization`
risk_estimate_method = "parametric_bootstrap",
discrepancy_method = "mean_square_error",
tau_seq = c(1, 2), # Weight for synthetic data
tau_0 = 2,
parametric_bootstrap_iteration_times = 20, # Number of bootstrap iterations
cross_validation_fold_num = 5 # Number of folds

)
cat_model

cat_lmm Catalytic Linear Mixed Model (LMM) Fitting Function with fixed tau

Description

Fits a Catalytic linear mixed model (LMM) for observation and synthetic data with specified vari-
ance parameters and iterative coefficient estimation. This function initializes model parameters,
sorts synthetic data, calculates Eigen-decomposition, and iterative optimizes variance and coeffi-
cient values to convergence, by a single given tau value. (Only consider one random effect variance)

Usage

cat_lmm(
cat_init,
tau = NULL,
residual_variance_0 = 1,
random_effect_variance_0 = 1,
coefs_0 = NULL,
optimize_domain = c(0, 30),
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max_iter = 500,
tol = 1e-08

)

Arguments

cat_init A list generated from cat_lmm_initialization.

tau Optional numeric scalar controlling the weight of the synthetic data in the coef-
ficient estimation, defaults to ncol(cat_init$obs_x) / 4.

residual_variance_0

Initial value for residual variance, default is 1.
random_effect_variance_0

Initial value for random effect variance, default is 1.

coefs_0 Optional initial coefficient vector, default is NULL which initializes randomly.
optimize_domain

Numeric vector of length 2 defining optimization range for variance parameters,
default is c(0, 30).

max_iter Integer specifying maximum number of iterations for convergence, default is
500.

tol Tolerance for convergence criterion, default is 1e-08.

Value

A list containing the values of all the arguments and the following components:

coefficients Estimated coefficient vector.

iteration_log Matrix logging variance and coefficient values for each iteration.

Examples

data(mtcars)
cat_init <- cat_lmm_initialization(

formula = mpg ~ wt + (1 | cyl), # formula for simple model
data = mtcars,
x_cols = c("wt"), # Fixed effects
y_col = "mpg", # Response variable
z_cols = c("disp", "hp", "drat", "qsec", "vs", "am", "gear", "carb"), # Random effects
group_col = "cyl", # Grouping column
syn_size = 100, # Synthetic data size
resample_by_group = FALSE, # Resampling option
resample_only = FALSE, # Resampling method
na_replace = mean # NA replacement method

)

cat_model <- cat_lmm(
cat_init = cat_init, # Only accept object generated from cat_lmm_initialization
tau = 1, # Weight for synthetic data
residual_variance_0 = 1, # Initial value for residual variance
random_effect_variance_0 = 1, # Initial value for random effect variance
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coefs_0 = c(1), # Initial coefficient vector
optimize_domain = c(0, 10), # Optimization range for residual and random effect variance
max_iter = 2, # Maximum number of iterations for convergence
tol = 1e-01 # Tolerance for convergence criterion

)
cat_model

cat_lmm_initialization

Initialization for Catalytic Linear Mixed Model (LMM)

Description

This function prepares and initializes a catalytic linear mixed model by processing input data, ex-
tracting necessary variables, generating synthetic datasets, and fitting a model. (Only consider one
random effect variance)

Usage

cat_lmm_initialization(
formula,
data,
x_cols,
y_col,
z_cols,
group_col = NULL,
syn_size = NULL,
resample_by_group = FALSE,
resample_only = FALSE,
na_replace = mean

)

Arguments

formula A formula specifying the model. Should include response and predictor vari-
ables.

data A data frame containing the data for modeling.

x_cols A character vector of column names for fixed effects (predictors).

y_col A character string for the name of the response variable.

z_cols A character vector of column names for random effects.

group_col A character string for the grouping variable (optional). If not given (NULL), it
is extracted from the formula.

syn_size An integer specifying the size of the synthetic dataset to be generated, default is
length(x_cols) * 4.

resample_by_group

A logical indicating whether to resample by group, default is FALSE.
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resample_only A logical indicating whether to perform resampling only, default is FALSE.

na_replace A function to replace NA values in the data, default is mean.

Value

A list containing the values of all the input arguments and the following components:

• Function Information:

– function_name: A character string representing the name of the function, "cat_lmm_initialization".
– simple_model: An object of class lme4::lmer or stats::lm, representing the fitted

model for generating synthetic response from the original data.

• Observation Data Information:

– obs_size: An integer representing the number of observations in the original dataset.
– obs_data: The original data used for fitting the model, returned as a data frame.
– obs_x: A data frame containing the standardized predictor variables from the original

dataset.
– obs_y: A numeric vector of the standardized response variable from the original dataset.
– obs_z: A data frame containing the standardized random effect variables from the origi-

nal dataset.
– obs_group: A numeric vector representing the grouping variable for the original obser-

vations.

• Synthetic Data Information:

– syn_size: An integer representing the number of synthetic observations generated.
– syn_data: A data frame containing the synthetic dataset, combining synthetic predictor

and response variables.
– syn_x: A data frame containing the synthetic predictor variables.
– syn_y: A numeric vector of the synthetic response variable values.
– syn_z: A data frame containing the synthetic random effect variables.
– syn_group: A numeric vector representing the grouping variable for the synthetic obser-

vations.
– syn_x_resample_inform: A data frame containing information about the resampling

process for synthetic predictors:

* Coordinate: Preserves the original data values as reference coordinates during pro-
cessing.

* Deskewing: Adjusts the data distribution to reduce skewness and enhance symmetry.

* Smoothing: Reduces noise in the data to stabilize the dataset and prevent overfitting.

* Flattening: Creates a more uniform distribution by modifying low-frequency cate-
gories in categorical variables.

* Symmetrizing: Balances the data around its mean to improve statistical properties
for model fitting.

– syn_z_resample_inform: A data frame containing information about the resampling
process for synthetic random effects. The resampling methods are the same as those from
syn_x_resample_inform.

• Whole Data Information:
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– size: An integer representing the total size of the combined original and synthetic datasets.
– data: A combined data frame of the original and synthetic datasets.
– x: A combined data frame of the original and synthetic predictor variables.
– y: A combined numeric vector of the original and synthetic response variables.
– z: A combined data frame of the original and synthetic random effect variables.
– group: A combined numeric vector representing the grouping variable for both original

and synthetic datasets.

Examples

data(mtcars)
cat_init <- cat_lmm_initialization(

formula = mpg ~ wt + (1 | cyl), # formula for simple model
data = mtcars,
x_cols = c("wt"), # Fixed effects
y_col = "mpg", # Response variable
z_cols = c("disp", "hp", "drat", "qsec", "vs", "am", "gear", "carb"), # Random effects
group_col = "cyl", # Grouping column
syn_size = 100, # Synthetic data size
resample_by_group = FALSE, # Resampling option
resample_only = FALSE, # Resampling method
na_replace = mean # NA replacement method

)
cat_init

cat_lmm_tune Catalytic Linear Mixed Model (LMM) Fitting Function by Tuning tau
from a Sequence of tau Values

Description

This function tunes a catalytic linear mixed model by performing cross-validation to estimate the
optimal value of the tuning parameter tau. It finally uses the optimal tau value in the lmer function
from the lme4 package for model fitting. (Only consider one random effect variance)

Usage

cat_lmm_tune(cat_init, tau_seq = NULL, cross_validation_fold_num = 5)

Arguments

cat_init A list generated from cat_lmm_initialization.

tau_seq A numeric vector specifying the sequence of tau values to be tested. If NULL,
a default sequence is generated based on the number of predictors.

cross_validation_fold_num

An integer representing the number of folds for cross-validation. Defaults to 5.
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Value

A list containing the values of all the arguments and the following components:

tau The optimal tau value determined from cross-validation.

model The fitted lmer model object by using the optimal tau value.

coefficients Coefficients of the fitted model by using the optimal tau value.
risk_estimate_list

Average prediction errors for each tau value.

Examples

data(mtcars)
cat_init <- cat_lmm_initialization(

formula = mpg ~ wt + (1 | cyl), # formula for simple model
data = mtcars,
x_cols = c("wt"), # Fixed effects
y_col = "mpg", # Response variable
z_cols = c("disp", "hp", "drat", "qsec", "vs", "am", "gear", "carb"), # Random effects
group_col = "cyl", # Grouping column
syn_size = 100, # Synthetic data size
resample_by_group = FALSE, # Resampling option
resample_only = FALSE, # Resampling method
na_replace = mean # NA replacement method

)

cat_model <- cat_lmm_tune(
cat_init = cat_init, # Only accept object generated from cat_lmm_initialization
tau_seq = c(1, 2), # Vector of weights for synthetic data
cross_validation_fold_num = 3 # number of folds for cross-validation

)
cat_model

cross_validation Perform Cross-Validation for Model Estimation

Description

This function performs cross-validation for estimating risk over a sequence of tuning parameters
(tau_seq) by fitting a Generalized Linear Model (GLM) to the data. It evaluates model performance
by splitting the dataset into multiple folds, training the model on a subset of the data, and testing it
on the remaining portion.

Usage

cross_validation(
formula,
cat_init,
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tau_seq,
discrepancy_method,
cross_validation_fold_num,
...

)

Arguments

formula A formula specifying the GLMs. Should at least include response variables.

cat_init A list generated from cat_glm_initialization.

tau_seq A sequence of tuning parameter values (tau) over which cross-validation will
be performed. Each value of tau is used to weight the synthetic data during
model fitting.

discrepancy_method

A function used to calculate the discrepancy (error) between model predictions
and actual values.

cross_validation_fold_num

The number of folds to use in cross-validation. The dataset will be randomly
split into this number of subsets, and the model will be trained and tested on
different combinations of these subsets.

... Other arguments passed to other internal functions.

Details

1. Randomization of the Data: The data is randomly shuffled into cross_validation_fold_num
subsets to ensure that the model is evaluated across different splits of the dataset.

2. Model Training and Prediction: For each fold, a training set is used to fit a GLM with
varying values of tau (from tau_seq), and the model is evaluated on a test set. The training
data consists of both the observed and synthetic data, with synthetic data weighted by tau.

3. Risk Estimation: After fitting the model, the discrepancy_method is used to calculate the
prediction error for each combination of fold and tau. These errors are accumulated for each
tau.

4. Average Risk Estimate: After completing all folds, the accumulated prediction errors are
averaged over the number of folds to provide a final risk estimate for each value of tau.

Value

A numeric vector of averaged risk estimates, one for each value of tau in tau_seq.
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cross_validation_cox Perform Cross-Validation for Catalytic Cox Proportional-Hazards
Model (COX) to Select Optimal tau

Description

This function performs cross-validation for the catalytic Cox proportional-hazards model (COX) to
estimate the likelihood associated with different values of tau. It splits the data into training and
testing sets and computes prediction errors for model evaluation.

Usage

cross_validation_cox(
formula,
cat_init,
method,
tau_seq,
cross_validation_fold_num,
...

)

Arguments

formula A formula specifying the Cox model. Should at least include response variables.

cat_init A list containing initialized parameters for the catalytic COX.

method Character string specifying the optimization method used in the Cat-Cox model
fitting.

tau_seq A numeric vector of tau values for which to estimate likelihood.
cross_validation_fold_num

An integer indicating the number of folds for cross-validation.

... Additional arguments passed to the cat_cox function for model fitting.

Value

A numeric vector containing the average likelihood estimates for each tau value.

cross_validation_lmm Perform Cross-Validation for Catalytic Linear Mixed Model (LMM) to
Select Optimal tau

Description

This function performs cross-validation for the catalytic linear mixed model (LMM) to estimate
the risk associated with different values of tau. It splits the data into training and testing sets and
computes prediction errors for model evaluation.
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Usage

cross_validation_lmm(cat_init, tau_seq, cross_validation_fold_num = 5)

Arguments

cat_init A list containing initialized parameters for the catalytic LMM.

tau_seq A numeric vector of tau values for which to estimate risk.

cross_validation_fold_num

An integer indicating the number of folds for cross-validation.

Value

A numeric vector containing the average risk estimates for each tau value.

extract_coefs Extract and Format Model Coefficients

Description

This function retrieves the coefficients from a x object, formats them with appropriate names, and
rounds each coefficient to the specified number of decimal places. Optionally, the intercept can be
included or excluded from the output.

Usage

extract_coefs(x, digit = 3)

Arguments

x A model object generated from catalytic that containing model coefficients.

digit An integer specifying the number of decimal places for rounding coefficients.
Default is 3.

Value

A named numeric vector of model coefficients, rounded to the specified number of decimal places.
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extract_dim Extract Dimension Information from Model Initialization

Description

This function retrieves and formats the dimensions of the dataset used in the model, including the
number of observed and synthetic data points and the total number of rows and columns.

Usage

extract_dim(cat_init)

Arguments

cat_init A list containing model initialization data, expected to include obs_size (ob-
served data size), syn_size (synthetic data size), size (total data size), and x
(the covariate matrix).

Value

A character string summarizing the dimensions of the dataset used in the model.

extract_stan_summary Extract and Format Summary of Stan Model Results

Description

This function extracts the summary statistics from a fitted Stan model stored within a x object,
formats the parameter names, and rounds values to a specified number of decimal places. By default,
the function includes an intercept term in the summary if present.

Usage

extract_stan_summary(x, digit = 3, with_intercept = TRUE)

Arguments

x A model object generated from catalytic that containing a fitted Stan model.

digit An integer specifying the number of decimal places to which the summary statis-
tics should be rounded. Default is 3.

with_intercept A logical value indicating whether the intercept should be included in the sum-
mary. If TRUE, the intercept is labeled and included in the formatted output.
Default is TRUE.
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Value

A matrix of rounded summary statistics from the Stan model, with row names representing param-
eter labels and columns containing summary values.

extract_tau_seq Extract and Format Sequence of Tau Values

Description

This function retrieves the sequence of tau values from a x object, rounds each value to the specified
number of decimal places, and formats the output as a concise string. If the sequence contains more
than 10 values, only the first 3 and last 3 values are shown, with ellipsis ("...") in between.

Usage

extract_tau_seq(x, digit = 3)

Arguments

x A model object generated from catalytic that containing a sequence of tau
values.

digit An integer specifying the number of decimal places to which tau values should
be rounded. Default is 3.

Value

A character string representing the rounded tau values, formatted for readability.

get_adjusted_cat_init Adjusted Cat Initialization

Description

This function adjusts the categorical initialization by creating a model frame for the predictors spec-
ified in the right-hand side of the formula and splits the adjusted data into observed and synthetic
parts.

Usage

get_adjusted_cat_init(cat_init, formula_rhs)

Arguments

cat_init The object generated from cat_glm_initialization, cat_cox_initialization
or cat_lmm_initialization

formula_rhs A formula specifying the right-hand side of the model for predictors.
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Value

A list containing the original cat_init with added components: - adj_x: The adjusted model
frame for the predictors. - adj_obs_x: The observed part of the adjusted predictors. - adj_syn_x:
The synthetic part of the adjusted predictors.

get_cox_gradient Compute the Gradient for Cox Proportional Hazards Model

Description

This function computes the gradient for the Cox proportional hazards model. The gradient is cal-
culated by considering the contributions of each observation to the gradient based on the risk set at
each event time.

Usage

get_cox_gradient(X, time, status, coefs, entry_points)

Arguments

X A matrix of covariates (design matrix) for the Cox model.

time A numeric vector of event times.

status A numeric vector of event indicators (1 for event, 0 for censored).

coefs A numeric vector of coefficients for the Cox model.

entry_points A numeric vector of entry times for the subjects. Defaults to 0.

Value

A numeric vector representing the gradient of the Cox proportional hazards model.

get_cox_hessian Compute the Hessian Matrix for Cox Proportional Hazards Model

Description

This function computes the Hessian matrix of the Cox proportional hazards model, which is used
for estimating the covariance matrix of the coefficients. The Hessian is calculated by summing
contributions from each event time in the risk set.

Usage

get_cox_hessian(X, time, status, coefs, entry_points)
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Arguments

X A matrix of covariates (design matrix) for the Cox model.

time A numeric vector of event times.

status A numeric vector of event indicators (1 for event, 0 for censored).

coefs A numeric vector of coefficients for the Cox model.

entry_points A numeric vector of entry times for the subjects. Defaults to 0.

Value

A matrix representing the negative Hessian of the Cox model.

get_cox_kappa Estimate the kappa value for the synthetic Cox proportional hazards
model

Description

This function iterative estimates the kappa value for the synthetic Cox proportional hazards model
using a vectorized approach for efficiency.

Usage

get_cox_kappa(X, time, status, hazard_constant)

Arguments

X A matrix of covariates with rows representing observations and columns repre-
senting features.

time A vector of time-to-event data.

status A vector indicating event occurrence (1 = event, 0 = censored).

hazard_constant

A scalar representing the hazard constant. Defaults to NULL, in which case it’s
calculated internally.

Value

A numeric value representing the estimated kappa for the synthetic Cox model.
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get_cox_partial_likelihood

Compute the Partial Likelihood for the Cox Proportional Hazards
Model

Description

This function calculates the partial likelihood for the Cox proportional hazards model. The partial
likelihood is computed for the censored observations in the dataset.

Usage

get_cox_partial_likelihood(X, time, status, coefs, entry_points)

Arguments

X A matrix of covariates with rows representing observations and columns repre-
senting features.

time A vector of time-to-event data.
status A vector indicating the event status (1 for event occurred, 0 for censored).
coefs A vector of regression coefficients.
entry_points A vector of entry points (optional). Defaults to NULL, in which case a vector of

zeros is used.

Value

A numeric scalar representing the partial likelihood of the Cox model.

get_cox_qr_solve Solve Linear System using QR Decomposition

Description

This function solves the linear system defined by hessian_matrix and gradient_vector using
QR decomposition. Any NA values in the resulting solution vector are replaced with 0.0001. If
there is an error during the solution process, a vector of default values (0.0001) is returned instead.

Usage

get_cox_qr_solve(hessian_matrix, gradient_vector)

Arguments

hessian_matrix A matrix of coefficients representing the system of linear equations.
gradient_vector

A numeric vector representing the constants in the linear system.
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Value

A numeric vector representing the solution to the linear system. NA values in the solution are
replaced with a small value (0.0001). If an error occurs during solving, a vector of default values
(0.0001) is returned.

get_cox_risk_and_failure_sets

Calculate Risk and Failure Sets for Cox Proportional Hazards Model

Description

This function calculates the risk and failure sets for subjects in a Cox proportional hazards model
based on their time-to-event data, status, and an indicator vector.

Usage

get_cox_risk_and_failure_sets(time_vector, status_vector, indicator_vector)

Arguments

time_vector A numeric vector of time-to-event data for each subject.

status_vector A numeric vector indicating event occurrence (1 = event, 0 = censored).
indicator_vector

A numeric vector representing the indicator times used to define risk and failure
sets.

Value

A list containing two elements:

• risk_set: A matrix indicating which subjects are at risk at each time point.

• failure_set: A matrix indicating which subjects experienced an event at each time point.

get_cox_risk_set_idx Identify the risk set indices for Cox proportional hazards model

Description

This function returns the indices of the risk set for a given time of interest in the Cox proportional
hazards model.
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Usage

get_cox_risk_set_idx(
time_of_interest,
entry_vector,
time_vector,
status_vector

)

Arguments

time_of_interest

A numeric value representing the time at which the risk set is calculated.

entry_vector A numeric vector representing the entry times of subjects.

time_vector A numeric vector representing the time-to-event or censoring times of subjects.

status_vector A numeric vector indicating event occurrence (1) or censoring (0) for each sub-
ject.

Value

A vector of indices representing the subjects at risk at the specified time of interest.

get_cox_syn_gradient Compute the gradient of the synthetic Cox proportional hazards model

Description

This function calculates the gradient of the synthetic Cox proportional hazards model using a vec-
torized approach.

Usage

get_cox_syn_gradient(X, time, coefs, hazard_constant)

Arguments

X A matrix of covariates with rows representing observations and columns repre-
senting features.

time A vector of time-to-event data.

coefs A vector of regression coefficients.
hazard_constant

A scalar representing the hazard constant.

Value

A numeric vector representing the gradient of the synthetic Cox model.
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get_cox_syn_hessian Compute the Synthetic Hessian Matrix for Cox Proportional Hazards
Model

Description

This function computes the synthetic Hessian matrix for the Cox proportional hazards model. The
Hessian is calculated by summing the contributions from each individual observation, scaled by the
hazard constant and the time of the event.

Usage

get_cox_syn_hessian(X, time, coefs, hazard_constant)

Arguments

X A matrix of covariates (design matrix) for the Cox model.

time A numeric vector of event times.

coefs A numeric vector of coefficients for the Cox model.
hazard_constant

A numeric value representing the hazard constant.

Value

A matrix representing the synthetic Hessian of the Cox model.

get_discrepancy Compute Discrepancy Measures

Description

This function computes various discrepancy measures between observed and estimated values. It
supports different methods including logarithmic error, square error, classification error, and logistic
deviance.

Usage

get_discrepancy(
discrepancy_method = c("mean_logarithmic_error", "mean_square_error",
"mean_classification_error", "logistic_deviance"),

family_string = NULL,
X = NULL,
Y = NULL,
coefs = NULL,
est_Y = NULL

)
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Arguments

discrepancy_method

A character string specifying the discrepancy method to use. Options are:

"logarithmic_error" Logarithmic error, suitable for probabilities.
"mean_square_error" Mean squared error.
"mean_classification_error" Mean of classification error, suitable for binary

outcomes.
"logistic_deviance" Logistic deviance, computed using a GLM model.

family_string A GLM family in string (e.g., "binomial") used to compute logistic deviance.

X A matrix of predictor variables.

Y A vector or data frame of observed values.

coefs A vector of coefficients for the GLM model.

est_Y A vector of estimated values. If not provided, it will be computed using get_glm_mean
with the specified family.

Value

A numeric value representing the discrepancy between observed and estimated values.

get_formula_lhs Extract Left-Hand Side of Formula as String

Description

This function extracts the left-hand side (LHS) of a formula object and converts it to a character
string. It uses get_formula_string to ensure consistent formatting.

Usage

get_formula_lhs(formula)

Arguments

formula A formula object from which the LHS will be extracted.

Value

A character string representing the left-hand side of the formula.
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get_formula_rhs Extract the Right-Hand Side of a Formula

Description

This function extracts the right-hand side (RHS) of a formula and returns it as a character string.
Optionally, it can include a tilde (~) at the beginning of the RHS.

Usage

get_formula_rhs(formula, with_tilde = FALSE)

Arguments

formula A formula object from which to extract the RHS.

with_tilde Logical, indicating whether to include a tilde (~) at the beginning of the RHS.
Defaults to FALSE.

Value

A character string representing the right-hand side of the formula. If with_tilde is TRUE, the string
includes a leading tilde.

get_formula_string Convert Formula to String

Description

This function converts a formula object to a character string. It removes extra whitespace and
formats the formula as a single line.

Usage

get_formula_string(formula)

Arguments

formula A formula object to be converted to a string.

Value

A character string representing the formula.
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get_glm_custom_var Get Custom Variance for Generalized Linear Model (GLM)

Description

This function calculates a custom variance for a Generalized Linear Model (GLM) based on the
specified formula, the model initialization object, and a scaling factor tau. The custom variance is
computed by adjusting the residuals of the fitted model and returning a weighted sum of squared
residuals.

Usage

get_glm_custom_var(formula, cat_init, tau)

Arguments

formula A formula object specifying the GLM model to be fitted, such as response ~
predictors.

cat_init A list object containing the initialization data for the model. Generated from
cat_initialization

tau A numeric value representing a scaling factor for down-weighting synthetic data

Value

A numeric value representing the custom variance for the GLM model.

get_glm_diag_approx_cov

Compute Diagonal Approximate Covariance Matrix

Description

This function computes the diagonal elements of the approximate covariance matrix for the coeffi-
cients in a generalized linear model (GLM). The covariance is derived from the second derivative
(Hessian) of the log-likelihood function.

Usage

get_glm_diag_approx_cov(X, model)

Arguments

X Matrix. The design matrix (predictors) for the GLM.

model A fitted GLM model object. The object should contain the fitted values and prior
weights necessary for computing the Hessian.
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Value

Numeric vector. The diagonal elements of the approximate covariance matrix.

get_glm_family_string Retrieve GLM Family Name or Name with Link Function

Description

This function retrieves the name of a GLM family or, optionally, the family name with the associated
link function.

Usage

get_glm_family_string(family, with_link = FALSE)

Arguments

family Character or function. The name of the GLM family (as a string) or a function
that returns a GLM family object.

with_link Logical. If TRUE, returns the family name along with the link function in the
format "family \[link\]". If FALSE, only the family name is returned. Default is
FALSE.

Value

A character string. The name of the GLM family, or the name with the link function if with_link
is TRUE.

get_glm_lambda Compute Lambda Based on Discrepancy Method

Description

This function calculates a lambda value based on the selected discrepancy method for a generalized
linear model (GLM). The discrepancy method determines the type of error or deviance used in the
calculation.

Usage

get_glm_lambda(
discrepancy_method = c("mean_square_error", "mean_classification_error",
"logistic_deviance"),

X,
coefs

)
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Arguments

discrepancy_method

Character. A string specifying the type of discrepancy method to use. Options
are "mean_square_error", "mean_classification_error", or "logistic_deviance".
Default is "mean_square_error".

X Matrix. The design matrix (predictors) for the GLM.

coefs Numeric vector. The coefficients for the GLM.

Value

Numeric. The computed lambda value based on the selected discrepancy method.

get_glm_log_density Compute Log Density Based on GLM Family

Description

This function calculates the log density of the response variable given a generalized linear model
(GLM) based on the specified family. The log density is computed differently for binomial and
gaussian families.

Usage

get_glm_log_density(family_string, X, Y, coefs, weights = 1)

Arguments

family_string Character. The GLM family to use. Options are "binomial" or "gaussian".

X Matrix. The design matrix (predictors) for the GLM.

Y Vector or data frame. The response variable for the GLM. If a data frame, it is
converted to a numeric vector.

coefs Numeric vector. The coefficients for the GLM.

weights Numeric vector. Weights for the observations. Default is 1 (no weighting).

Value

Numeric. The computed log density of the response variable based on the specified family.
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get_glm_log_density_grad

Compute Gradient of Log Density for GLM Families

Description

This function calculates the gradient of the log density with respect to the coefficients for a given
GLM family based on the provided predictors, response variable, and weights.

Usage

get_glm_log_density_grad(family_string, X, Y, coefs, weights = 1)

Arguments

family_string Character. The GLM family to use. Options are "binomial" or "gaussian".
X Matrix. The design matrix (predictors) for the GLM.
Y Vector. The response variable.
coefs Numeric vector. The coefficients for the GLM.
weights Numeric vector. The weights for the GLM. Default is 1.

Value

Numeric vector. The gradient of the log density with respect to the coefficients

get_glm_mean Compute Mean Based on GLM Family

Description

This function calculates the mean of the response variable for a generalized linear model (GLM)
based on the specified family. The calculation depends on whether the family is binomial or gaus-
sian.

Usage

get_glm_mean(family_string, X, coefs)

Arguments

family_string Character. The GLM family to use. Options are "binomial" or "gaussian".
X Matrix. The design matrix (predictors) for the GLM.
coefs Numeric vector. The coefficients for the GLM.

Value

Numeric vector. The computed mean of the response variable based on the specified family.
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get_glm_sample_data Generate Sample Data for GLM

Description

This function generates sample data for a specified GLM family. It can generate binomial or Gaus-
sian distributed data based on the provided parameters.

Usage

get_glm_sample_data(family_string, n = 10, mean = 0, sd = 1)

Arguments

family_string Character. The family of the GLM. Options are "binomial" or "gaussian".

n Integer. The number of samples to generate.

mean Numeric. The mean of the distribution (used for both binomial and Gaussian).

sd Numeric. The standard deviation of the distribution (used only for Gaussian).

Value

Numeric vector of generated sample data.

get_hmc_mcmc_result Run Hamiltonian Monte Carlo to Get MCMC Sample Result

Description

This function uses Hamiltonian Monte Carlo (HMC) to generate samples for Markov Chain Monte
Carlo (MCMC) sampling from a target distribution specified by neg_log_den_func. Each iteration
performs a full HMC update to generate a new sample position.

Usage

get_hmc_mcmc_result(
neg_log_den_func,
neg_log_den_grad_func,
coefs_0,
iter = 5,
hmc_scale = 0.01,
hmc_steps = 5

)
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Arguments

neg_log_den_func

A function that computes the negative log-density of the target distribution at a
given position.

neg_log_den_grad_func

A function that computes the gradient of neg_log_den_func at a given position.

coefs_0 A numeric vector specifying the initial position of the chain in the parameter
space.

iter An integer specifying the number of HMC sampling iterations. Defaults to 5.

hmc_scale A numeric value representing the scale factor for the leapfrog step size in the
HMC update. Defaults to 0.01.

hmc_steps An integer specifying the number of leapfrog steps in each HMC update. De-
faults to 5.

Value

A numeric vector representing the final position in the parameter space after the specified number
of iterations.

get_linear_predictor Compute Linear Predictor

Description

This function computes the linear predictor from a matrix of predictor variables and a vector of
coefficients. It handles cases with and without an intercept term.

Usage

get_linear_predictor(X, coefs)

Arguments

X A matrix of predictor variables.

coefs A vector of coefficients. It should be either the same length as the number of
columns in X (for models without an intercept) or one more than the number of
columns in X (for models with an intercept).

Value

A vector of linear predictor values.
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get_resampled_df Resampling Methods for Data Processing

Description

This function includes various resampling methods applied to input data for each column to prepare
it for analysis. These methods help to transform the data distribution and improve model fitting.

Usage

get_resampled_df(
data,
resample_size,
data_degree = NULL,
resample_only = FALSE

)

Arguments

data A data frame to be resampled.

resample_size An integer specifying the size of the resample.

data_degree A numeric vector indicating the degree of each column in the data (optional).

resample_only A logical value indicating whether to return only the resampled data (default is
FALSE).

Details

• Coordinate: This method refers to the preservation of the original data values as reference
coordinates during processing. It ensures that the transformations applied are based on the
initial structure of the data.

• Deskewing:Deskewing is the process of adjusting the data distribution to reduce skewness,
making it more symmetric. If the absolute value of skewness is greater than or equal to 1,
deskewing techniques will be applied to normalize the distribution, which can enhance model
performance.

• Smoothing: Smoothing techniques reduce noise in the data by averaging or modifying data
points. This is especially useful when there are many unique values in the original data col-
umn, as it helps to stabilize the dataset and prevent overfitting during model training.

• Flattening: Flattening modifies the data to create a more uniform distribution across its range.
This method is employed when the frequency of certain categories in categorical variables is
low, replacing some original values with randomly selected unique values from the dataset to
reduce sparsity.

• Symmetrizing: Symmetrizing adjusts the data so that it becomes more balanced around its
mean. This is crucial for achieving better statistical properties and improving the robustness
of the model fitting process.
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Value

A list containing:

resampled_df A data frame of resampled data.

resampled_df_log

A data frame recording the resampling process for each column.

get_standardized_data Standardize Data

Description

This function standardizes a dataset by converting columns to numeric or factor types and replacing
NA values. For continuous variables, NA values are replaced with either a specific numeric value
or a computed statistic. For categorical variables, NA values are replaced with the mode of the
column.

Usage

get_standardized_data(data, na_replace = stats::na.omit)

Arguments

data A data frame to be standardized.

na_replace A function or numeric value used to replace NA values. If a function, it should
take a vector and return a replacement value. If a numeric value, it is used di-
rectly to replace NA values in continuous columns. The default is stats::na.omit,
which omits rows with NA values (used as an indicator here, not the actual re-
placement value).

Value

A data frame where columns have been converted to numeric or factor types, and NA values have
been replaced according to the method specified.
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get_stan_model Generate Stan Model Based on Specified Parameters

Description

This function retrieves a Stan model file based on a combination of input parameters, constructs the
file path, and loads the Stan model.

Usage

get_stan_model(
type = c("glm", "cox"),
glm_family_string = c("gaussian", "binomial"),
joint_tau = FALSE,
glm_binomial_joint_theta = FALSE,
glm_binomial_joint_alpha = FALSE,
glm_gaussian_known_variance = FALSE

)

Arguments

type Character, either "glm" or "cox", specifying the type of model to load.

glm_family_string

Character, specifying the family for GLM models, either "binomial" or "gaussian".
Required for "glm" models, ignored for "cox" models.

joint_tau Logical, if TRUE, includes "joint" in the file name to indicate a joint model with
tau parameter.

glm_binomial_joint_theta

Logical, if TRUE and glm_family_string is "binomial", includes "theta" in
the file name for joint theta parameter.

glm_binomial_joint_alpha

Logical, if TRUE and glm_family_string is "binomial", includes "alpha" in
the file name for joint alpha parameter.

glm_gaussian_known_variance

Logical, if TRUE and glm_family_string is "gaussian", includes "known_variance"
in the file name to specify known variance.

Value

A compiled Stan model loaded by rstan::stan_model.
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hmc_neal_2010 Hamiltonian Monte Carlo (HMC) Implementation

Description

This function implements the Hamiltonian Monte Carlo algorithm as described by Radford M. Neal
(2010) in "MCMC using Hamiltonian dynamics", which is a part of the Handbook of Markov Chain
Monte Carlo. The method uses Hamiltonian dynamics to propose new positions and then applies
the Metropolis criterion to decide whether to accept or reject the new position.

Usage

hmc_neal_2010(
neg_log_den_func,
neg_log_den_grad_func,
leapfrog_stepsize,
leapfrog_step,
current_pos

)

Arguments

neg_log_den_func

A function that evaluates the negative log of the density (potential energy) of the
distribution to be sampled, including any constants.

neg_log_den_grad_func

A function that computes the gradient of neg_log_den_func.
leapfrog_stepsize

A numeric value specifying the step size for the leapfrog integration method.

leapfrog_step A numeric value specifying the number of leapfrog steps to take to propose a
new state.

current_pos A numeric vector representing the current position (state) of the system.

Details

This function was written for illustrative purposes. More elaborate on Radford M. Neal’s personal
webpage (http://www.cs.utoronto.ca/~radford/).

Value

A list containing the following elements:

• position: The position of the system after the leapfrog steps, which is the proposed new
position if accepted, or the current position if rejected.

• potential_energy: The potential energy of the proposed position.

• accepted: A logical value indicating whether the proposal was accepted (TRUE) or rejected
(FALSE).
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//arxiv.org/pdf/1206.1901

is.continuous Check if a Variable is Continuous

Description

This function checks whether a given vector represents a continuous variable. A continuous variable
is numeric and has more than two unique values.

Usage

is.continuous(lst)

Arguments

lst A vector to be checked.

Value

A logical value indicating whether the input vector is considered continuous. Returns TRUE if the
vector is numeric and has more than two unique values; otherwise, returns FALSE.

mallowian_estimate Perform Mallowian Estimate for Model Risk (Only Applicable for
Gaussian Family)

Description

This function calculates the Mallowian estimate for model risk by fitting a sequence of Generalized
Linear Models (GLMs) with varying values of tau. It uses the in-sample prediction error along
with a regularized projection matrix to estimate the model risk. The tau parameter influences the
weighting of synthetic data during model fitting.

Usage

mallowian_estimate(formula, cat_init, tau_seq, ...)

https://arxiv.org/pdf/1206.1901
https://arxiv.org/pdf/1206.1901
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Arguments

formula A formula specifying the GLMs. Should at least include response variables.

cat_init A list generated from cat_glm_initialization.

tau_seq A sequence of tuning parameter values (tau) over which the Mallowian estimate
will be computed. Each value of tau is used to weight the synthetic data during
model fitting.

... Other arguments passed to other internal functions.

Details

1. Model Fitting: For each value of tau in tau_seq, the function fits a GLM model using the
observed and synthetic data. The synthetic data is weighted by the corresponding tau value
during the fitting process.

2. In-sample Prediction Error: After fitting the model, the function computes the in-sample
prediction error (Mean Squared Error) to assess the model’s performance.

3. Regularized Projection Matrix: The function calculates a regularized projection matrix us-
ing the observed and synthetic data, which influences the covariance matrix used in risk esti-
mation.

4. Mallowian Risk Estimate: The final Mallowian risk estimate is computed by combining the
in-sample prediction error with a penalty term involving the projection matrix and a variance
term. This estimate is calculated for each value of tau in tau_seq.

Value

A numeric vector of Mallowian risk estimates, one for each value of tau in tau_seq.

parametric_bootstrap Perform Parametric Bootstrap for Model Risk Estimation

Description

This function performs parametric bootstrapping to estimate model risk. It fits a sequence of Gen-
eralized Linear Models (GLMs) with different values of tau, calculates the in-sample prediction
error, and incorporates deviations from the bootstrap response samples. The final risk estimate is
obtained by combining the in-sample error and the covariance penalty derived from the bootstrap
samples.

Usage

parametric_bootstrap(
formula,
cat_init,
tau_seq,
tau_0,
discrepancy_method,
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parametric_bootstrap_iteration_times,
...

)

Arguments

formula A formula specifying the GLMs. Should at least include response variables.

cat_init A list generated from cat_glm_initialization.

tau_seq A sequence of tuning parameter values (tau) over which the model risk will be
estimated. Each tau value is used to weight the synthetic data during model
fitting.

tau_0 A reference value for tau used in the preliminary estimate model and variance
calculation.

discrepancy_method

The method used to calculate the discrepancy (e.g., logistic deviance).

parametric_bootstrap_iteration_times

The number of bootstrap iterations to perform.

... Other arguments passed to other internal functions.

Details

1. Preliminary Estimate Model: The function first fits a GLM model using the observed and
synthetic data with an initial value of tau_0 for the synthetic data weights.

2. Bootstrap Samples: The function generates bootstrap response samples based on the mean
and standard deviation of the preliminary estimate model, using parametric bootstrapping.

3. In-sample Prediction Error: For each value of tau in tau_seq, the function computes the
in-sample prediction error (e.g., using logistic deviance).

4. Bootstrap Models: For each bootstrap iteration, the function fits a GLM using the bootstrap
response samples and calculates the corresponding lambda values.

5. Covariance Penalty: The function approximates the covariance penalty using the weighted
deviations across all bootstrap iterations.

6. Final Risk Estimate: The final model risk estimate is calculated by summing the in-sample
prediction error and the average weighted deviations from the bootstrap response samples.

Value

A numeric vector containing the risk estimates for each tau in tau_seq.
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plot.cat_tune Plot Likelihood or Risk Estimate vs. Tau for Tuning Model

Description

This function generates a plot showing the relationship between the tuning parameter tau and either
the likelihood score (for a cat_cox_tune model) or the risk estimate (for other models) during
cross-validation or other model evaluation methods. The plot highlights the optimal tau value and
provides visual cues for the best tuning parameter based on the specified method.

Usage

## S3 method for class 'cat_tune'
plot(x, digit = 2, legend_pos = "topright", text_pos = 3, ...)

Arguments

x A fitted model object of class cat_tune that contains the results of the tuning
process. This object includes the likelihood or risk estimate lists, the tuning
sequence (tau_seq), and the selected optimal tau.

digit An integer specifying the number of decimal places to round the displayed val-
ues (default is 2).

legend_pos A character string specifying the position of the legend on the plot (default is
"topright").

text_pos An integer specifying the position of the text label on the plot (default is 3, which
places the text above the point).

... Additional parameters to pass to other functions.

Details

The function generates a line plot with tau_seq on the x-axis and either the likelihood score or risk
estimate on the y-axis. If the model is of class cat_cox_tune, the plot shows the likelihood score,
while for other models, it shows the risk estimates. The optimal tau is marked with a red cross, and
red dashed lines are drawn to highlight the optimal point on the plot.

Value

A plot with the specified y-values plotted against tau_seq, including a highlighted optimal tau
point.
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predict.cat_cox Predict Linear Predictor for New Data Using a Fitted Cox Model

Description

This function calculates the linear predictor (LP) for new data points based on a fitted Cox propor-
tional hazards model.

Usage

## S3 method for class 'cat_cox'
predict(object, newdata = NULL, ...)

Arguments

object A fitted model object of class cat_cox, containing the COX fit and model de-
tails.

newdata An optional data frame with new predictor values. If NULL, the function uses the
observation data from the model’s initialization object.

... Additional arguments passed to other functions.

Value

A vector of linear predictor values for the specified new data.

predict.cat_glm Predict Outcome for New Data Using a Fitted GLM Model

Description

This function generates predictions for new data points based on a fitted categorical Generalized
Linear Model (GLM) object. Depending on the type of model, it either uses stats::predict.glm
or calculates predictions based on the model coefficients.

Usage

## S3 method for class 'cat_glm'
predict(object, newdata = NULL, ...)
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Arguments

object A fitted model object of class cat_glm, containing the GLM fit and model de-
tails.

newdata An optional data frame containing new predictor values. If NULL, the function
uses the observation data from the model’s initialization object.

... Additional arguments passed to stats::predict.glm, if applicable. User should
input type = c("link", "response", "terms") for different regression mod-
els.

Value

A vector of predicted values for the specified new data.

predict.cat_lmm Predict Linear Predictor for New Data Using a Fitted Linear Mixed
Model

Description

This function calculates the linear predictor (LP) for new data points based on a fitted linear mixed
model (LMM) stored in object.

Usage

## S3 method for class 'cat_lmm'
predict(object, newdata = NULL, ...)

Arguments

object A fitted model object of class cat_lmm, containing the LMM fit and model de-
tails.

newdata An optional data frame with new predictor values. If NULL, the function uses the
observation data from the model’s initialization object.

... Additional arguments passed to other functions.

Value

A vector of linear predictor values for the specified new data.
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print.cat Print Method for cat Object

Description

The print.cat function provides a detailed summary of the cat object, displaying key information
about the model and its settings, including model type, covariates, formula, tau values, and relevant
coefficients.

Usage

## S3 method for class 'cat'
print(x, digit = 3, detail = TRUE, ...)

Arguments

x An object of class cat, representing a fitted model.

digit An integer indicating the number of decimal places for printing coefficient esti-
mates. Default is 3.

detail A logical indicating whether to print additional details for interpreting the out-
put. Default is TRUE.

... Additional parameters to pass to other functions.

Details

This function customizes the output based on the model type stored within the x object, such as
GLM, Cox, or other types of models.

The print.cat function prints a summary of the model stored in the x object. It will display
different information depending on the model’s type (GLM, Cox, etc.). It will show:

• The model’s function name.

• The dimensions of the covariates used in the model.

• The tau values.

• Model-specific details such as family for GLMs or method and iteration info for Cox models.

• Coefficients related to the model.

Value

The x object is returned invisibly.
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print.cat_bayes Print Summary of cat_bayes Model

Description

This function prints a formatted summary of a cat_bayes model object, displaying key parameters
and settings of the fitted model, including the formula, covariate dimensions, tau (if applicable),
family, and algorithm settings, as well as the coefficients’ summary.

Usage

## S3 method for class 'cat_bayes'
print(x, digit = 3, detail = TRUE, ...)

Arguments

x An object of class cat_tune, typically resulting from a tuning process, including
cat_glm_bayes, cat_glm_bayes_joint, cat_cox_bayes and cat_cox_bayes_joint.

digit An integer indicating the number of decimal places for printing coefficient esti-
mates. Default is 3.

detail A logical value indicating whether to include additional detailed output at the
end of the summary. If TRUE, it will print additional interpretation help.

... Additional parameters to pass to other functions.

Details

This function provides an organized printout of essential details from a Bayesian model fit. It in-
cludes the model formula, dimensionality of covariates, model family, Stan algorithm settings, and
summary of the model coefficients. If detail is set to TRUE, additional information on interpreting
the output is included.

Value

The x object is returned invisibly.

print.cat_gibbs Print Summary of cat_gibbs Model

Description

This function prints a summary of the cat_gibbs model, displaying details about the formula,
covariate dimensions, family, coefficients, and Gibbs sampling settings.
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Usage

## S3 method for class 'cat_gibbs'
print(x, digit = 3, detail = TRUE, ...)

Arguments

x A cat_gibbs model object containing the results of a Bayesian GLM fitted
using Gibbs sampling.

digit An integer indicating the number of decimal places for printing coefficient esti-
mates. Default is 3.

detail A logical value indicating whether to include additional detailed output at the
end of the summary. If TRUE, it will print additional interpretation help.

... Additional parameters to pass to other functions.

Details

The summary includes:

• The function name and formula used in the model.

• Dimensions of the covariate matrix.

• Family and link function details.

• Sampling information, including the total iterations, warm-up iterations, and effective Gibbs
sampling post-warmup.

• Coefficients with summary statistics and effective sample size.

If detail is set to TRUE, additional guidance for interpreting the printed output is provided.

Value

The x object is returned invisibly.

print.cat_initialization

Print Summary for Catalytic Initialization Model

Description

This function provides a comprehensive summary of a catalytic initialization model object (cat_init),
including formula details, data dimensions, and sample data previews.

Usage

## S3 method for class 'cat_initialization'
print(x, show_data = TRUE, detail = TRUE, ...)



print.cat_tune 61

Arguments

x A catalytic initialization model object containing formula, family, data dimen-
sions, and sampling details.

show_data Logical, default TRUE. If TRUE, previews the head of both observation and syn-
thetic data (up to the first 10 columns).

detail Logical, default TRUE. If TRUE, adds guidance for interpreting the output.

... Additional parameters to pass to other functions.

Details

The function provides a detailed overview of the initialization process for the cat_initialization
model, including:

• The formula used in the model.

• The type of model (if Gaussian, the known or unknown variance is specified).

• The family of the Generalized Linear Model (GLM), along with the associated link function.

• The dimensions of the observation and synthetic data sets, with an option to display the first
few rows.

• Information on the data generation process if available.

The show_data parameter controls whether the first few rows of the data are printed, while the
detail parameter controls whether additional help for interpreting the printed output is displayed.

Value

Invisibly returns the x object.

print.cat_tune Print Method for cat_tune Object

Description

This function prints a summary of the cat_tune object, displaying key details such as the function
name, dimensions of covariates, tau sequence, optimal tau, likelihood or risk estimate, and the
model’s coefficients.

Usage

## S3 method for class 'cat_tune'
print(x, digit = 3, detail = TRUE, ...)
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Arguments

x An object of class cat_tune, typically resulting from a tuning process, including
cat_glm_tune, cat_cox_tune and cat_lmm_tune.

digit An integer indicating the number of decimal places for printing coefficient esti-
mates. Default is 3.

detail A logical value indicating whether to include additional detailed output at the
end of the summary. If TRUE, it will print additional interpretation help.

... Additional parameters to pass to other functions.

Details

This method provides a comprehensive overview of the tuning process for the model, including
the tau sequence and optimal tau, along with either the maximum likelihood (for Cox models) or
minimum risk estimate (for other models). It also displays the coefficients of the model.

The function also checks if the x is a Cox model (cat_cox_tune) to adjust the interpretation of the
output.

Value

The x object is returned invisibly.

print_df_head_tail Print Data Frame with Head and Tail Rows

Description

This function displays the first 5 and last 5 rows of a data frame. Column names are displayed only
for the first 5 rows, with ellipses (...) in the middle to indicate additional rows.

Usage

print_df_head_tail(df, digit = 3)

Arguments

df A data frame to display.

digit An integer specifying the number of decimal places to which the summary statis-
tics should be rounded. Default is 3.

Value

Invisibly returns the original data frame.
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print_glm_bayes_joint_binomial_suggestion

Generate Suggestions for Bayesian Joint Binomial GLM Parameter
Estimation

Description

This function provides suggestions for improving the parameter estimation process in Bayesian
joint Binomial GLM modeling based on the diagnostic output from a Stan model. It evaluates the
results and suggests adjustments to improve model fit and convergence.

Usage

print_glm_bayes_joint_binomial_suggestion(
alpha,
stan_iter,
stan_sample_model,
binomial_joint_theta,
binomial_joint_alpha,
binomial_tau_lower

)

Arguments

alpha Numeric. The alpha parameter used in the prior distribution.

stan_iter Integer. The number of iterations used in Stan sampling.

stan_sample_model

Stan model object containing sampling results.

binomial_joint_theta

Logical. Whether to use theta in the binomial model.

binomial_joint_alpha

Logical. Whether to use joint alpha in the binomial model.

binomial_tau_lower

Numeric. The lower bound for tau in the binomial model.

Value

NULL. The function prints suggestions to the console based on the model diagnostics.
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steinian_estimate Perform Steinian Estimate for Model Risk (Only Applicable for Bino-
mial Family)

Description

This function computes the Steinian estimate for model risk by fitting a sequence of Generalized
Linear Models (GLMs) with varying values of tau. It combines the preliminary estimate from a
model fitted with an initial tau_0 value with a penalty term that incorporates the in-sample predic-
tion error and a covariance penalty, which is based on models fitted by inverting the response of
individual observations.

Usage

steinian_estimate(formula, cat_init, tau_seq, tau_0, ...)

Arguments

formula A formula specifying the GLMs. Should at least include response variables.

cat_init A list generated from cat_glm_initialization.

tau_seq A sequence of tuning parameter values (tau) over which the Steinian estimate
will be computed. Each value of tau is used to weight the synthetic data during
model fitting.

tau_0 A reference value for tau that is used in the calculation of the preliminary esti-
mate model and the variance term.

... Other arguments passed to other internal functions.

Details

1. Preliminary Estimate Model: The function first fits a GLM model using the observed and
synthetic data with an initial value of tau_0 for the synthetic data weights.

2. In-sample Prediction Error: For each value of tau in tau_seq, the function computes the
in-sample prediction error (logistic deviance).

3. Steinian Penalty: The function calculates the Steinian covariance penalty for each observa-
tion by fitting a modified model that inverts one observation at a time. The penalty is added to
the in-sample prediction error to obtain the final risk estimate.

4. Steinian Risk Estimate: The final Steinian risk estimate is calculated by summing the in-
sample prediction error and the Steinian penalty term for each value of tau in tau_seq.

Value

A numeric vector of Steinian risk estimates, one for each value of tau in tau_seq.
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swim Simulated SWIM Dataset with Binary Response

Description

Simulated SWIM Dataset with Binary Response

Usage

data(swim)

Format

A list containing the following elements:

x A 3211 by 12 matrix of numeric values.

female Binary variable indicating gender (1 = Female, 0 = Male).

agege35 Binary variable indicating if the individual is aged 35 or older (1 = Age 35 or older, 0 =
Younger than 35).

hsdip Binary variable indicating if the individual has a high school diploma (1 = Has diploma, 0 =
No diploma).

nevmar Binary variable indicating if the individual has never been married (1 = Never married, 0
= Ever married).

divwid Binary variable indicating if the individual is divorced or widowed (1 = Divorced or wid-
owed, 0 = Otherwise).

numchild Numerical variable indicating the number of children the individual has.

childlt6 Binary variable indicating if the individual has children under the age of 6 (1 = Has chil-
dren under 6, 0 = No children under 6).

blknh Binary variable indicating if the individual is black non-Hispanic (1 = Black Non-Hispanic,
0 = Otherwise).

hisp Binary variable indicating if the individual is Hispanic (1 = Newly Hispanic, 0 = Otherwise).

earnyrm1 Numerical variable indicating the individual’s earnings one year prior to the study (pos-
sibly negative earnings or debt).

empyrm1 Binary variable indicating if the individual was employed one year prior to the study (1
= Employed, 0 = Unemployed).

enrol Binary variable indicating if the individual was enrolled the job hunting training session (1 =
Enrolled, 0 = Unenrolled).

y A 3211 by 1 matrix containing zeros and ones.

empyr1 Binary variable indicating if the individual was employed one year after the start of the
study (1 = Employed, 0 = Unemployed).
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Note

The dataset used in this study was simulated based on the patterns and results described in "The
Saturation Work Initiative Model in San Diego: A Five-Year Follow-up Study". This data is not
directly extracted from the book but was generated to emulate a similar structure for research and
educational purposes.

References

Friedlander, D., & Hamilton, G. (1993). The Saturation Work Initiative Model in San Diego: A
Five-Year Follow-up Study.

traceplot Traceplot for Bayesian Model Sampling

Description

The traceplot function is a generic function used to generate traceplots for Bayesian model sam-
pling, primarily for assessing the convergence and mixing of Markov Chain Monte Carlo (MCMC)
chains. This function dispatches specific traceplot methods depending on the class of the object
object.

Usage

traceplot(object, ...)

Arguments

object An object representing a Bayesian model, typically generated by the cat_glm_bayes
or cat_cox_bayes functions, or similar models with Bayesian sampling re-
sults. The function uses S3 method dispatch to apply the appropriate traceplot
method based on the class of object.

... Additional arguments passed to specific traceplot methods for customization,
such as selecting parameters to plot or setting display options.

Details

This generic traceplot function allows for flexible visualization of MCMC chains across differ-
ent types of Bayesian models. Specific traceplot methods, such as traceplot.cat_bayes, are
dispatched based on the object class to produce tailored traceplots, providing insights into the
sampling progress and convergence diagnostics of each chain.

Value

A traceplot displaying the MCMC sampling chains for each parameter, assisting in convergence
analysis. The exact output format depends on the specific traceplot method applied.
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traceplot.cat_bayes Traceplot for Bayesian Sampling Model

Description

This function generates a traceplot for the Bayesian sampling model fitted using rstan. It utilizes
the traceplot function from the rstan package to visualize the sampling progress and convergence
of the Markov Chain Monte Carlo (MCMC) chains for the given model.

Usage

## S3 method for class 'cat_bayes'
traceplot(object, ...)

Arguments

object A fitted model object of class cat_bayes that contains the Stan sampling model.
The object should include the stan_sample_model, which is the result of fitting
the model using the rstan package.

... Additional arguments passed to the rstan::traceplot function. These can in-
clude customization options for the traceplot, such as pars for selecting specific
parameters or inc_warmup for including or excluding warmup iterations.

Details

The function calls rstan::traceplot on the stan_sample_model contained within the x object.
The resulting plot displays the trace of each parameter across MCMC iterations, helping to assess
the convergence and mixing of the chains.

Value

A traceplot displaying the MCMC chains’ trace for each parameter, helping to assess convergence.

traceplot.cat_gibbs Traceplot for Gibbs Sampling Model

Description

This function generates a traceplot for the Gibbs sampling model, which is typically used for pos-
terior sampling in a Bayesian context. The traceplot visualizes the evolution of parameter values
across Gibbs sampling iterations. It helps to diagnose the convergence and mixing of the chains.

Usage

## S3 method for class 'cat_gibbs'
traceplot(object, pars = NULL, inc_warmup = FALSE, ...)
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Arguments

object A fitted model object of class cat_gibbs that contains Gibbs sampling results.
The object must include gibbs_iteration_log, which holds the iteration logs
for all sampled parameters, and warmup and iter which indicate the warmup
and total iteration counts, respectively.

pars A character vector specifying the parameter names to plot. If NULL, the function
will select the first 9 parameters automatically.

inc_warmup A logical value indicating whether to include warmup iterations in the traceplot.
If TRUE, warmup iterations are included, otherwise they are excluded. Defaults
to FALSE.

... Additional parameters to pass to other functions.

Details

The function generates a series of line plots for the selected parameters, displaying their values over
the iterations of the Gibbs sampling process. If inc_warmup is set to TRUE, the traceplot includes
the warmup period, otherwise, it starts after the warmup. The traceplots are arranged in a 3x3 grid,
and no more than 9 parameters can be selected for plotting at once.

Value

A series of traceplots for the selected parameters, showing their evolution over the Gibbs sampling
iterations.

update_lmm_variance Calculates the log-likelihood for linear mixed models (LMMs) by com-
bining observed and synthetic log-likelihoods based on the variance
parameters.

Description

This function evaluates the log-likelihood of observed and synthetic data, using residual and random-
effect variance terms to determine the fit of variance parameters in the mixed model context.

Usage

update_lmm_variance(
residual_variance,
random_effect_variance,
obs_z_eigenvalues,
syn_z_eigenvalues,
obs_adjusted_residuals,
syn_adjusted_residuals,
tau

)
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Arguments

residual_variance

Numeric, the variance associated with the residual errors.

random_effect_variance

Numeric, the variance associated with random effects.

obs_z_eigenvalues

Vector, eigenvalues of the observed Z matrix of data.

syn_z_eigenvalues

Vector, eigenvalues of the synthetic Z matrix of data.

obs_adjusted_residuals

Vector, adjusted residuals of observed data.

syn_adjusted_residuals

Vector, adjusted residuals of synthetic data.

tau Numeric, weight factor for the synthetic data.

Value

The sum of observed and synthetic log-likelihoods.

validate_cox_initialization_input

Validate Inputs for Catalytic Cox proportional hazards model (COX)
Initialization

Description

This function performs validation checks on input parameters for initializing a catalytic Cox pro-
portional hazards model. It ensures that essential parameters meet requirements, such as being of
the correct type, appropriate length, and having valid values.

Usage

validate_cox_initialization_input(
formula,
data,
syn_size,
hazard_constant,
entry_points,
x_degree

)
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Arguments

formula An object of class formula. The model formula specifying the Cox model struc-
ture. It must contain a Surv object to indicate survival analysis.

data A data.frame containing the dataset to be used for model fitting. It should
include all variables referenced in formula.

syn_size A positive integer indicating the size of the synthetic dataset. It is recommended
that this value is at least four times the number of columns in data.

hazard_constant

A positive numeric value representing the hazard constant for the Cox model.

entry_points A numeric vector representing entry times for observations. This vector should
be non-negative and have a length equal to the number of rows in data.

x_degree A numeric vector indicating degrees for each covariate. It should be non-negative
and match the number of covariates (i.e., ncol(data) - 2).

Details

This function checks:

• That syn_size, hazard_constant, entry_points, and x_degree are positive values.

• That formula includes a Surv object to be suitable for Cox models.

• That data is a data.frame.

• The complexity of formula to ensure it has fewer terms than the number of columns in data.

• The length of x_degree and entry_points to match the dimensions of data. If the conditions
are not met, descriptive error messages are returned.

Value

Returns nothing if all checks pass; otherwise, raises an error.

validate_cox_input Validate Inputs for Catalytic Cox Model

Description

This function validates the parameters provided for setting up a catalytic Cox proportional hazards
model with an initialization object created by cat_cox_initialization.

Usage

validate_cox_input(
formula,
cat_init,
tau = NULL,
tau_seq = NULL,
init_coefficients = NULL,
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tol = NULL,
max_iter = NULL,
cross_validation_fold_num = NULL,
hazard_beta = NULL,
tau_alpha = NULL,
tau_gamma = NULL

)

Arguments

formula An object of class formula. Specifies the model structure for the Cox model,
including a Surv object for survival analysis. Should at least include response
variance.

cat_init An initialization object generated by cat_cox_initialization. This object
should contain necessary information about the dataset, including the time and
status column names.

tau Optional. A numeric scalar, the regularization parameter for the Cox model.
Must be positive.

tau_seq Optional. A numeric vector for specifying a sequence of regularization parame-
ters. Must be positive.

init_coefficients

Optional. A numeric vector of initial coefficients for the Cox model. Should
match the number of predictors in the dataset.

tol Optional. A positive numeric value indicating the tolerance level for conver-
gence in iterative fitting.

max_iter Optional. A positive integer indicating the maximum number of iterations al-
lowed in the model fitting.

cross_validation_fold_num

Optional. A positive integer specifying the number of folds for cross-validation.
Should be greater than 1 and less than or equal to the size of the dataset.

hazard_beta Optional. A positive numeric value representing a constant for adjusting the
hazard rate in the Cox model.

tau_alpha Optional. A positive numeric value controlling the influence of tau.

tau_gamma Optional. A positive numeric value controlling the influence of tau_seq.

Details

This function checks:

• That tau, tol, max_iter, cross_validation_fold_num, hazard_beta, tau_alpha, and
tau_gamma are positive.

• That tau_seq is a non-negative vector.

• That cat_init is generated from cat_cox_initialization.

• That formula uses the same time and status column names as those in cat_init.

• That init_coefficients has the correct length for the number of predictors.
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• That cross_validation_fold_num is between 2 and the dataset size.

• That the dataset is sufficiently large for cross-validation, recommending fewer folds if it is not.
If any conditions are not met, the function will raise an error or warning.

Value

Returns nothing if all checks pass; otherwise, raises an error or warning.

validate_glm_initialization_input

Validate Inputs for Catalytic Generalized Linear Models (GLMs) Ini-
tialization

Description

This function validates the input parameters required for initializing a catalytic Generalized Linear
Model (GLM). It ensures the appropriate structure and compatibility of the formula, family, data,
and additional parameters before proceeding with further modeling.

Usage

validate_glm_initialization_input(
formula,
family,
data,
syn_size,
custom_variance,
gaussian_known_variance,
x_degree

)

Arguments

formula A formula object specifying the stats::glm model to be fitted. It must not
contain random effects or survival terms.

family A character or family object specifying the error distribution and link function.
Valid values are "binomial" and "gaussian".

data A data.frame containing the data to be used in the GLM.

syn_size A positive integer specifying the sample size used for the synthetic data.
custom_variance

A positive numeric value for the custom variance used in the model (only appli-
cable for Gaussian family).

gaussian_known_variance

A logical indicating whether the variance is known for the Gaussian family.

x_degree A numeric vector specifying the degree of the predictors. Its length should
match the number of predictors (excluding the response variable).
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Details

This function performs the following checks:

• Ensures that syn_size, custom_variance, and x_degree are positive values.

• Verifies that the provided formula is suitable for GLMs, ensuring no random effects or sur-
vival terms.

• Checks that the provided data is a data.frame.

• Confirms that the formula does not contain too many terms relative to the number of columns
in data.

• Ensures that the family is either "binomial" or "gaussian".

• Validates that x_degree has the correct length relative to the number of predictors in data.

• Warns if syn_size is too small relative to the number of columns in data.

• Issues warnings if custom_variance or gaussian_known_variance are used with incom-
patible families. If any of these conditions are not met, the function raises an error or warning
to guide the user.

Value

Returns nothing if all checks pass; otherwise, raises an error or warning.

validate_glm_input Validate Inputs for Catalytic Generalized Linear Models (GLMs)

Description

This function validates the input parameters for initializing a catalytic Generalized Linear Models
(GLMs). It ensures that the provided model formula, family, and additional parameters are suitable
for further analysis. The function performs various checks on the input values to confirm they meet
expected criteria.

Usage

validate_glm_input(
formula,
cat_init,
tau = NULL,
tau_seq = NULL,
tau_0 = NULL,
parametric_bootstrap_iteration_times = NULL,
cross_validation_fold_num = NULL,
risk_estimate_method = NULL,
discrepancy_method = NULL,
binomial_joint_theta = FALSE,
binomial_joint_alpha = FALSE,
binomial_tau_lower = NULL,
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tau_alpha = NULL,
tau_gamma = NULL,
gibbs_iter = NULL,
gibbs_warmup = NULL,
coefs_iter = NULL,
gaussian_variance_alpha = NULL,
gaussian_variance_beta = NULL

)

Arguments

formula A formula object specifying the GLM to be fitted. The left-hand side of the
formula should at least contains the response variable.

cat_init An object of class cat_initialization generated by cat_glm_initialization.
It contains model initialization details, such as the response variable name and
the GLM family.

tau A positive numeric value for the tau parameter in the model. It represents a
regularization or scaling factor and must be greater than zero.

tau_seq A numeric vector specifying a sequence of tau values. This is used for parameter
tuning and must contain positive values.

tau_0 A positive numeric value for the initial tau parameter, which must be greater
than zero.

parametric_bootstrap_iteration_times

An integer specifying the number of iterations for the parametric bootstrap method.
It must be greater than zero.

cross_validation_fold_num

An integer for the number of folds in cross-validation. It must be greater than 1
and less than or equal to the number of observations.

risk_estimate_method

A character string specifying the method for estimating risk, such as "paramet-
ric_bootstrap" or other options, depending on the family of the GLM.

discrepancy_method

A character string specifying the method for calculating discrepancy. The valid
options depend on the GLM family and risk estimation method.

binomial_joint_theta

Logical; if TRUE, uses joint theta (theta = 1/tau) in Binomial models.
binomial_joint_alpha

Logical; if TRUE, uses joint alpha (adaptive tau_alpha) in Binomial models.
binomial_tau_lower

A positive numeric value specifying the lower bound for tau in binomial GLMs.
It must be greater than zero.

tau_alpha A positive numeric value for the tau alpha parameter.

tau_gamma A positive numeric value for the tau gamma parameter.

gibbs_iter An integer for the number of Gibbs iterations in the sampling process. It must
be greater than zero.
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gibbs_warmup An integer for the number of warm-up iterations in the Gibbs sampling. It must
be positive and less than the total number of iterations.

coefs_iter An integer specifying the number of iterations for the coefficient update in the
Gibbs sampling. It must be positive.

gaussian_variance_alpha

The shape parameter for the inverse-gamma prior on variance if the variance is
unknown in Gaussian models. It must be positive.

gaussian_variance_beta

The scale parameter for the inverse-gamma prior on variance if the variance is
unknown in Gaussian models. It must be positive.

Details

This function performs several checks to ensure the validity of the input parameters:

• Ensures that tau, tau_0, parametric_bootstrap_iteration_times, binomial_tau_lower,
tau_alpha, tau_gamma, gibbs_iter, gibbs_warmup, and coefs_iter are positive values.

• Verifies that cat_init is an object generated by cat_glm_initialization.

• Checks that the formula response name matches the response name used in the cat_init
object.

• Verifies that risk_estimate_method and discrepancy_method are compatible with the GLM
family and that no invalid combinations are used.

• Warns if the dataset size is too large for the specified risk estimation method. If any of these
conditions are not met, the function raises an error or warning to guide the user.

Value

Returns nothing if all checks pass; otherwise, raises an error or warning.

validate_lmm_initialization_input

Validate Inputs for Catalytic Linear Mixed Model (LMM) Initialization

Description

This function validates the parameters needed for initializing a catalytic Linear Mixed Model (LMM)
or Generalized Linear Model (GLM) based on the input formula, data, and column specifications.

Usage

validate_lmm_initialization_input(
formula,
data,
x_cols,
y_col,
z_cols,
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group_col,
syn_size

)

Arguments

formula An object of class formula representing the model formula, typically including
fixed and random effects for LMMs or for GLMs.

data A data.frame containing the data for model fitting. This should include all
columns specified in x_cols, y_col, z_cols, and group_col.

x_cols A character vector of column names to be used as predictor variables in the
model.

y_col A single character string specifying the name of the response variable column.

z_cols A character vector of column names to be used as additional predictors or group-
ing factors, depending on the model structure.

group_col A single character string specifying the name of the grouping variable for ran-
dom effects.

syn_size Optional. A positive integer indicating the synthetic data size, typically for use
in data augmentation or model diagnostics.

Details

This function performs the following checks:

• Ensures syn_size is a positive integer.

• Verifies that formula is not for survival analysis (e.g., does not contain Surv terms).

• Checks that the formula is not overly complex by confirming it has fewer terms than the total
columns in data.

• Ensures y_col and group_col each contain only one column name.

• Confirms data is a data.frame.

• Validates that all specified columns in x_cols, y_col, z_cols, and group_col exist in data
without overlap or missing values.

• Warns if syn_size is set too small relative to the data dimensions, recommending a larger
value. If any of these conditions are not met, the function raises an error or warning to guide
the user.

Value

Returns nothing if all checks pass; otherwise, raises an error or warning.
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validate_lmm_input Validate Inputs for Catalytic Linear Mixed Model (LMM)

Description

This function validates the parameters needed for fitting a catalytic Linear Mixed Model (LMM) or
Generalized Linear Model (GLM), specifically for the use with the categorical initialization from
cat_lmm_initialization.

Usage

validate_lmm_input(
cat_init,
tau = NULL,
residual_variance_0 = NULL,
random_effect_variance_0 = NULL,
coefs_0 = NULL,
optimize_domain = NULL,
max_iter = NULL,
tol = NULL,
tau_seq = NULL,
cross_validation_fold_num = NULL

)

Arguments

cat_init An object of class cat_initialization, typically generated from the cat_lmm_initialization
function.

tau A positive numeric value specifying the penalty parameter for the model.
residual_variance_0

A positive numeric value for the initial residual variance estimate.
random_effect_variance_0

A positive numeric value for the initial random effect variance estimate.

coefs_0 A numeric vector of length equal to the number of columns in the observation
matrix. This represents the initial values for the model coefficients.

optimize_domain

A numeric vector of length 2 specifying the domain for the optimization proce-
dure.

max_iter A positive integer specifying the maximum number of iterations for the opti-
mization.

tol A positive numeric value indicating the tolerance level for convergence.

tau_seq A numeric vector representing a sequence of values for the penalty parameter.
cross_validation_fold_num

A positive integer specifying the number of folds for cross-validation.
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Details

This function performs the following checks:

• Ensures that tau, tau_seq, residual_variance_0, random_effect_variance_0, optimize_domain,
max_iter, and tol are positive values.

• Verifies that cat_init is an object generated by cat_lmm_initialization.

• Checks if coefs_0 has the same length as the number of columns in the observation matrix of
cat_init.

• Ensures optimize_domain is a numeric vector of length 2.

• Confirms that cross_validation_fold_num is greater than 1 and less than the number of
observations in cat_init. If any of these conditions are not met, the function raises an error
to guide the user.

Value

Returns nothing if all checks pass; otherwise, raises an error.

validate_positive Validate Positive or Non-negative Parameter

Description

This function checks whether a parameter value is positive (or non-negative if incl_0 is set to
TRUE). It can handle both single numeric values and vectors, and it raises an error with an informa-
tive message if the validation fails.

Usage

validate_positive(param_name, param_value, incl_0 = FALSE, is_vector = FALSE)

Arguments

param_name A string representing the name of the parameter. Used in the error message.

param_value The parameter value to validate, either a single numeric or a numeric vector.

incl_0 Logical, if TRUE, allows non-negative values (larger or equal to 0); if FALSE,
requires positive values (larger than 0).

is_vector Logical, if TRUE, treats param_value as a vector; otherwise, expects a single
numeric value.

Value

NULL if validation passes; otherwise, an error is raised.
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